Formation of Heavy Neutron-Deficient Nuclides in 3He-Induced Reactions

Aaltonen, J.

2015-07

http://hdl.handle.net/10138/159531
https://doi.org/10.3103/S1062873815070047

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.
Formation of Heavy Neutron–Deficient Nuclides in 3He–Induced Reactions

ARTICLE in BULLETIN OF THE RUSSIAN ACADEMY OF SCIENCES PHYSICS · JULY 2015
DOI: 10.3103/S1062873815070047

9 AUTHORS, INCLUDING:

K. Helariutta
University of Helsinki
189 PUBLICATIONS 1,650 CITATIONS

V.A. Rubchenya
University of Jyväskylä
88 PUBLICATIONS 471 CITATIONS

Wladyslaw Henryk Trzaska
University of Jyväskylä
448 PUBLICATIONS 5,417 CITATIONS

Susanna Salminen-Paatero
University of Helsinki
18 PUBLICATIONS 48 CITATIONS
Formation of Heavy Neutron-Deficient Nuclides in 3He-Induced Reactions

J. Aaltonena, E. A. Gromovaa, V. A. Jakovlevb, K. Helariuttaa, N. A. Maltsevc, H. Penttiläd, V. A. Rubchenyab,c,d, W. H. Trzaskad, and S. Salminen-Paateroa

aDepartment of Chemistry, University of Helsinki, 00014 Helsinki, Finland
bKhlopin Radium Institute, St. Petersburg, 194021 Russia
cFaculty of Physics, St. Petersburg State University, 199034 Russia
dDepartment of Physics, University of Jyväskylä, 40014 Jyväskylä, Finland

Abstract—Reactions of 3He with actinide nuclei are a promising tool for the production of heavy neutron-deficient nuclei, which are of great interest as tracers in environmental studies. In this work, highly enriched 235U targets 1 mg cm^{-2} thick were irradiated using 3He ions with energies of 20.4–42.0 MeV at the Accelerator Laboratory of University of Jyväskylä, Finland. The irradiated targets were analyzed with gamma and alpha spectrometers and then dissolved in order to chemically separate Pu and Np from the fission products and the target material. The chemical yields of 234Np and 236Pu were determined by measuring their activities prior to and after chemical separation. Previously unknown excitation functions of the nuclides 234, 236, 237Pu and 234, 235, 236mNp were thus found. The obtained experimental data were analyzed using the direct reaction theory for a model with nuclear friction included in the fission channel and due consideration of the pre-equilibrium processes.

DOI: 10.3103/S1062873815070047

INTRODUCTION

At present, there is little information on the interaction between 3He and actinide nuclei. There have been few near-barrier measurements of the probability of fission in direct reactions of 3He with actinide nuclei [1].

The special structure of the nuclide 3He can produce interesting features in the excitation functions of various reaction channels. From a practical point of view, reactions induced by 3He can play an important part in the production of heavy neutron-deficient nuclides that are used in environmental studies.

Ways of obtaining various short-lived Np and Pu isotopes were studied systematically in [2–4]. These works focused on the isotopes 235Np ($T_{1/2} = 396.1 \text{ days}$), 236Pu ($T_{1/2} = 2.858 \text{ years}$), and 237Pu ($T_{1/2} = 45.2 \text{ days}$)—convenient tracers for, e.g., studying the spread and biological pathways of neptunium and plutonium isotopes ejected into the environment in nuclear accidents. These studies involved measuring the cross sections of several direct and indirect reaction channels of p and 3He beams and 236, 238U and 237Pu targets.

This work presents the results from experimental and theoretical studies on the formation cross sections of evaporation residues in the reaction 235U + 3He at incident nucleus energies in the range of 20–42 MeV. The investigated reaction channels are listed in Table 1.

The cross sections of evaporation residue formation are analyzed using the direct reaction theory and

Table 1. Reactions studied in this work

<table>
<thead>
<tr>
<th>Reaction channel</th>
<th>Q of reaction, MeV</th>
<th>Reaction product</th>
<th>$T_{1/2}$ [4]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3He, n</td>
<td>2.7</td>
<td>237Pu</td>
<td>45.2(1) days</td>
</tr>
<tr>
<td>3He, $2n$</td>
<td>−3.2</td>
<td>236Pu</td>
<td>2.858(8) years</td>
</tr>
<tr>
<td>3He, $3n$</td>
<td>−10.6</td>
<td>235Pu</td>
<td>25.3(5) minutes</td>
</tr>
<tr>
<td>3He, $4n$</td>
<td>−16.8</td>
<td>234Pu</td>
<td>8.8(1) hours</td>
</tr>
<tr>
<td>3He, pn</td>
<td>−2.9</td>
<td>236mNp</td>
<td>22.5(4) hours</td>
</tr>
<tr>
<td>3He, $p2n$</td>
<td>−8.6</td>
<td>235Np</td>
<td>396.1(12) days</td>
</tr>
<tr>
<td>3He, $p3n$</td>
<td>−15.6</td>
<td>234Np</td>
<td>4.4(1) days</td>
</tr>
</tbody>
</table>
statistical theory that includes a two-component pre-equilibrium model.

EXPERIMENTAL

Highly enriched (isotope purity, 99.992%) ^{235}U targets around 1 mg cm$^{-2}$ thick were prepared via the repeated thermal decomposition of uranium nitrocellulose on a 0.1-mm-thick aluminum substrate [6]. The targets were bombarded with ^{3}He ions on the K130 cyclotron of the Accelerator Laboratory of University of Jyväskylä. The ion energy was set using a system of degrader foils introduced into the ion beam between consecutively arranged targets. The total number of ions was measured with a current integrator. After exposure, the targets were left to cool for one–two days in order to allow the shortest-lived fission products to decay. They were then analyzed with gamma and alpha spectrometers. The targets were dissolved, and the neptunium and plutonium fission products were chemically separated from the target material using TRU Spec resin (Eichrom Technologies Inc., United States [7]); the details of the separation procedure can be found in [2]. The activity of the separated reaction products was measured. The activities of the isotopes ^{234}Np and ^{236}Pu measured before and after their chemical separation were used to determine their chemical yields. This allowed us to calculate their reaction cross sections from the resulting activity data.

The decay parameters used to calculate the cross sections were borrowed from [5, 8, 9]. The final cross sections are listed in Tables 2 and 3. Since 48(1)% of the ^{236}mNp nuclei were transformed into ^{236}Pu through beta decay, the measured cross sections for ^{236}Pu were produced by two mechanisms: reactions ($^{3}\text{He}, 2n$) and ($^{3}\text{He}, 2n + pn\beta^–$). The cross section of reaction ($^{3}\text{He}, 2n$) is thus found by subtracting the activity associated with the beta decay of ^{236}mNp. The formation cross section of ^{235}Np is in turn due to a combination of reaction ($^{3}\text{He}, 2n$), which leads directly to ^{235}Np, and electron capture in the short-lived isotope ^{235}Pu produced by the reaction ($^{3}\text{He}, 3n$). The activity of ^{235}Pu was not measured in this experiment.

THEORETICAL ANALYSIS

The interaction between an incident ^{3}He nucleus and actinides is a complex combination of different nuclear processes, including direct reactions and pre-equilibrium and equilibrium statistical decays of highly excited compound nuclei that at the same time are highly prone to fission. The yield cross sections of the evaporation residues were calculated using the FIPOUDY (Fission PRODuct Yields) computer code developed on the basis of the modification of the unified statistical model proposed in [11]. A two-component exciton model was used to adequately describe the initial excitation energy and the mass and charge distributions of the compound nuclei formed in ^{3}He-induced reactions. The initial exciton states for a model with proton and neutron particle-hole components were taken in the form of (2,0,1,0) configurations. Pre-equilibrium proton and neutron emissions started with the (3,1,1,0) and (2,0,1,0) exciton states.
the particles were modeled using the Monte Carlo technique (the details of the procedure can be found in [11]). The decay of the compound nuclei was described by a statistical model that included shell effects and the pairing effect, along with nuclear friction in the fission channel. The calculation results included neutron and proton spectra and the cross sections of evaporation residue formation and fission. Figure 1 compares the calculated cross sections of evaporation residue formation (triangles) with their experimental values (data points with error intervals) for the plutonium isotopes. The calculated cross sections for 237Pu lie below 10^{-2} mb, so the direct reaction mechanism is evidently important in this case. At the same time, we cannot explain the great difference between the experimental and theoretical values for the 234Pu nucleus.

Figure 2 compares the calculated cross sections of evaporation residue formation (triangles) with the experimental data (data points with error intervals) for the neptunium isotopes. Independent and cumulative cross sections (stars) obtained using the calculated cross sections for 235Pu are shown for the 235Np nucleus. The theoretical cross sections for 236mNp are the sums of the isomeric and ground state cross sections. The isomeric ratio in the reaction 235U(3He, pn)236Np has yet to be measured.

For the isotope 237Pu, we measured the contribution from the direct reaction mechanism. The main process directly influencing the reaction cross section was stripping, the scheme of which is presented in Fig. 3. To estimate the cross section in this reaction channel, we used the Born approximation for the distorted waves of the FRESKO computer code [12]. This code is an version of the coupled channel method in which allowance can be made for nuclear excitations and interactions of finite action radius between different reaction channels; i.e., the program enables us to calculate most of the direct reactions that can be described within the coupled channel formalism: collective and solitary excitations, stripping and pickup reactions, and multistep mechanisms and combinations thereof. In our calculations, it was assumed that the nuclei were spherically symmetric and in their ground states. The energy-dependent global optical
FORMATION OF HEAVY NEUTRON-DEFICIENT NUCLIDES

FORMATION OF HEAVY NEUTRON-DEFICIENT NUCLIDES

CONCLUSIONS
Investigations of the reaction 235U + 3He began late in the 1970s with the irradiation of 235U (50.3%) and 238U (99.7%) targets with a 3He beam having an energy of 21.9–27.0 MeV on the MGC-20 cyclotron [10]. The primary objective was to obtain the isotope 237Pu as a tracer for environmental studies. In these experiments, the cross sections of the reactions 235U(3He, 2n)236Pu and 235U(3He, n)237Pu were found to be 5.5(10) mb and 1.6(5) mb, respectively, at a 3He ion energy of 27 MeV. These values agree satisfactorily with the ones obtained in this work. A theoretical analysis of the cross sections for the formation of evaporation residues in the reactions between 3He and actinides was simultaneously performed for the first time. The yield of the evaporation residues depended strongly on the fission channel. To improve our theoretical predictions, additional measurements must be made of the fission characteristics, specifically the proton and neutron energies spectra and angular distributions.

ACKNOWLEDGMENTS
This work was supported by the Academy of Finland, contract nos. 112798 and 121049; by the Finnish Center for Advanced Programs of 2006–2011, project no. 213503; and by the Nuclear and Accelerator Physics program of the Department of Physics, University of Jyväskylä.

REFERENCES

Translated by S. Kittell