Stomatal and non-stomatal limitations on leaf carbon assimilation in beech (Fagus sylvatica L.) seedlings under natural conditions

Aranda, Ismael

2012

http://hdl.handle.net/10138/162215

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.
Stomatal and non-stomatal limitations on leaf carbon assimilation in beech (Fagus sylvatica L.) seedlings under natural conditions

I. Aranda1, *, J. Rodriguez-Calcerrada2,3, T. M. Robson4, F. J. Cano3, L. Alte1 and D. Sanchez-Gomez3

1 Instituto Nacional de Investigaciones Agrarias y Tecnologías Agroalimentarias, Centro de Investigación Forestal, Carretera a Coruña Km 7.5, E-28040 Madrid, Spain
2 Centre d’Ecologie Fonctionnelle et Evolutive. CNRS 1919 Route de Mende, 34293 Montpellier Cedex 5, France
3 Unidad de Anatomía, Grupo de Investigación de Genética y Fisiología Forestal, E.T.S.I. Montes, Universidad Politécnica de Madrid (UPM), Ciudad Universitaria s/n, 28050 Madrid, Spain
4 Department of Biological and Environmental Sciences, Plant Biology, University of Helsinki, 00014, Finland

Abstract

Limitations to diffusion and biochemical factors affecting leaf carbon uptake were analyzed in young beech seedlings (Fagus sylvatica L.) growing in natural gaps of a beech-wood at the southern limit of the species. Half of the seedlings received periodic watering in addition to natural rainfall to reduce the severity of the summer drought. Plant water status was evaluated by measuring predawn water potential. Basic biochemical parameters were inferred from chlorophyll fluorescence and photosynthesis-CO2 curves (A-Cc) under saturating light. The curves were established on three dates during the summer months. The main variables studied included: stomatal and mesophyll conductance to CO2 (gs and gm respectively), maximum velocity of carboxylation (Vcmax) and maximum electron transport capacity (Jmax).

The gm was estimated by two methodologies: the curve-fitting and J constant methods.

Seedlings withstood moderate water stress, as the leaf predawn water potential (Ψpd) measured during the study was within the range −0.2 to −0.5 MPa. Mild drought caused gs and gm to decrease only slightly in response to Ψpd. However both diffusional parameters explained most of the limitations to CO2 uptake. In addition, it should be highlighted that biochemical limitations, prompted by Vcmax and Jmax, were related mainly to ontogenic factors, without any clear relationship with drought under the moderate water stress experienced by beech seedlings through the study.

The results may help to further understanding of the functional mechanisms influencing the carbon fixation capacity of beech seedlings under natural conditions.

Key words: diffusion limitations; stomatal conductance; mesophyll conductance; photosynthesis; drought; regeneration.

Resumen

Limitaciones estomáticas y no-estomáticas en la asimilación foliar de carbono en brinzales de haya (Fagus sylvatica L.) bajo condiciones naturales

Las limitaciones a la difusión de CO2 y los factores bioquímicos que afectan la captura foliar de carbono fueron analizadas en jóvenes brinzales de haya (Fagus sylvatica L.) que crecían en un claro de un hayaedro en el límite Sur de la distribución de la especie. La mitad de los brinzales recibieron periódicamente un riego adicional a la lluvia caída durante el verano con el objeto de minimizar la sequía estival. El grado de estrés hídrico soportado por las plantas fue evaluado a través de la medida del potencial hídrico al pre-alba (Ψpd). Los parámetros funcionales básicos que condicionan la fijación de carbono fueron inferidos a través de curvas de respuesta bajo luz saturante en las que se relaciona la tasa neta de fotosíntesis (A), y la concentración de CO2 en el interior de los cloroplastos (Cc), en conjunción con medidas de fluorescencia de la clorofila. Dichas curvas se elaboraron en tres momentos a lo largo de los meses de verano, infririéndose de las mismas: las conductancias estomáticas y del mesófilo al CO2 (gs y gm respectivamente), la velocidad máxima de carboxilación (Vcmax) y la tasa máxima de transporte electrónico (Jmax). La gm fue estimada a partir de dos metodologías: métodos del ajuste de la curva y la J constante.

* Corresponding author: aranda@inia.es
Received: 02-11-11. Accepted: 27-04-12.
Los brinzales tuvieron que afrontar un estrés hídrico moderado, tal y como se deduce del potencial hídrico medido a lo largo del estudio (–0,2 a –0,5 MPa). Esto supuso una sequía que provocó que \(g_s \) y \(g_m \) disminuyeran solo ligeramente en respuesta al \(\Psi_{ps} \). Además, las limitaciones no-estomáticas, definidas por \(V_{c,max} \) y \(J_{max} \), fueron también importantes como restricciones fisiológicas a la fotosíntesis neta. Sin embargo, debe subrayarse que las limitaciones bioquímicas marcadas por modificaciones en \(V_{c,max} \) y \(J_{max} \) estuvieron marcadas fundamentalmente por factores ontogénicos asociados a la fecha de medición, sin una clara relación con la sequía bajo el estrés hídrico moderado soportado por los brinzales a lo largo del estudio.

Los resultados presentados pueden ayudar a comprender mejor los mecanismos funcionales que condicionan la capacidad de fijación de carbono en brinzales de haya bajo condiciones naturales.

Palabras clave: limitaciones a la difusión; conductancia estomática; conductancia del mesófilo; fotosíntesis; sequía; regeneración.

Introduction

Water scarcity is recognized as one of the main environmental factors limiting leaf CO\(_2\) fixation, and in turn growth and yield in plants (Chaves, 1991). The principal limitations to carbon uptake operate at the leaf level, which represents the main control point in the process of carbon fixation by plants. Although great advances have been made since pioneering studies there are some uncertainties that remain in our understanding of how the factors limiting CO\(_2\) fixation are modulated (Grassi and Magnani, 2005; Diaz-Espejo et al., 2007). For instance, the importance of CO\(_2\) diffusion from the leaf inter-cellular spaces into the chloroplast and its effect on photosynthesis (see Flexas et al., 2008 for a comprehensive review) has only recently been recognized. Technical advances in the measurement of gas exchange and fluorescence, and isotopic techniques, have provided more-accurate means to assess successive resistances across the entire CO\(_2\) diffusion pathway through the leaf, prompting their importance for carbon uptake to be reconsidered (Flexas et al., 2002; Ennahl and Earl, 2005; Warren, 2006). In this context, it is important to elucidate the changes in biochemical factors and diffusion resistances during photosynthesis when plants are submitted to naturally stressful conditions, such as drought (Niinemets et al., 2005; Galmés et al., 2007; Flexas et al., 2009). This dual limitation influences the potential of seedlings to maintain a positive leaf carbon balance, and should be accounted for when assessing the ultimate consequences of water stress on ecological succession and niche partitioning under sub-Mediterranean environments (Kunstler et al., 2005; Robson et al., 2009). Moreover, the basic physiological parameters that drive the process of carbon uptake (i.e. maximum velocity of carboxylation, \(V_{c,max} \), or maximum rate of electronic transport, \(J_{max} \)) might differ between well-watered and water-stressed plants (Flexas et al., 2006; Grassi et al., 2009). For an accurate estimation of \(V_{c,max} \) and \(J_{max} \), we need to account for the mesophyll conductance of CO\(_2\). Indeed, any change in the estimation of \(V_{c,max} \) and \(J_{max} \) could modify the way that models, such as that from Farquhar et al. (1980), are applied, and their outcomes in process-based modelling from leaves to ecosystems (Bernacchi et al., 2002; Ethier and Livingston, 2004; Keenan et al., 2010).

Under conditions of low water availability in the soil or atmosphere, plants first trigger mechanisms aimed to minimize water loss. Of these, stomatal closure is one of the most extensively studied and widely recognized (Chaves et al., 2002; Brodribb and Jordan, 2008). However, the stomatal control of water loss incurs a penalty, since CO\(_2\) diffusion into the leaf is concomitantly limited, leading to reduced carbon uptake potential (Wilson et al., 2000a; Aranda et al., 2000; Medrano et al., 2002.). In addition, mesophyll conductance of CO\(_2\) can become non-negligible and impair carbon fixation during drought periods (Flexas and Medrano, 2002; Niinemets et al., 2004; Warren, 2006). Though it has been postulated that \(g_m \) and \(g_s \) respond to the same environmental variables and in a similar manner (Flexas et al., 2008), the mechanistic linkage between both types of diffusive conductance is unclear, as is their impact on other functional processes such as the water use efficiency (Hanba et al., 2003). While a decrease of \(g_s \) and \(g_m \) under water stress has been reported under controlled conditions (Galmés et al., 2007; Galle et al., 2009), these responses have been less studied in seedlings of forest tree species in natural environments.

The effect of drought on the physiological response of beech has been an important topic of research in eco-
physiology since the 1990’s (Madsen, 1994; Tognetti et al., 1994; Fotelli et al., 2001; Leuschner et al., 2001). However, only recently has the importance of an increased risk of drought across large areas of the species range started to be considered (Leuzinger et al., 2005; Geßler et al., 2007; Granier et al., 2007), as extreme weather events have become more common at sites which were historically unperturbed by drought. Beech is known for its high sensitivity to water stress (Bréda et al., 2006 and references therein), but previous studies were focused mainly on stomatal closure as the main limitation to carbon uptake capacity at different scales; from the leaf (Backes and Leuscher, 2000, Aranda et al., 2002) to the ecosystem (Granier et al., 2000). However, the contribution of other non-stomatal factors on carbon balance in beech leaves is poorly understood (Epron et al., 1995; Warren et al., 2007; Montpied et al., 2009).

The main aim of this paper is to quantify the biochemical and diffusional limitations on leaf carbon assimilation by beech seedlings growing in natural gaps and exposed to two contrasting soil moisture regimes. We tested three hypotheses: that i) g_s co-limits carbon uptake to a similar degree as g_d under non-water-stressed conditions; ii) g_s and g_m decrease in response to moderate water-stress but at a different pace; iii) moderate drought involves a higher penalty on leaf carbon uptake incurred via an increase in CO_2 diffusion limitations through g_d and g_m rather than via biochemical limitations (e.g. decrease of V_{cmax} and J_{max}).

Material and methods

Site Characteristics

The study was carried out in the beech-oak forest of Montejo de la Sierra (41°9'1''N 3°55'W 1,400 masl), composed of a mixture of temperate and sub-Mediterranean broadleaved tree species. The forest is at the southwestern limit of European beech (Fagus sylvatica L.) distribution in Europe, and it is subjected to moderate drought. The site has previously been described in detail (Aranda et al., 2000, 2002, 2005; Rodriguez-Calcerrada et al. 2008a,b, 2010; Robson et al., 2009).

Experimental design

Two-year old beech seedlings were randomly selected in the spring of 2009 from a plantation of beech nuts carried out in the winter of 2007, in three plots in natural gaps created by fallen canopy trees. Each plot was split into two 1.3 × 2 m sub-plots, and each sub-plot was randomly assigned to either natural rainfall (D) or natural rainfall plus periodic watering (WW). Watered plants (WW) were separated from their un-watered counterparts (D) by a 0.4 m un-watered buffer zone. Irrigation started on June 27th. It consisted on adding 40 L water per m² of ground area every 7-10 days, and it finished two days before the last sampling date at the middle of August. Additional rainfall events were recorded during the summer months until the beginning of July, afterwards rainfall was almost absent (see Robson et al., 2009, and Figure 1a in Rodriguez-Calcerrada et al., 2010 for more details on the design and watering regime). Hemispherical photographs were taken during late summer, when the over-storey trees were in full leaf, to characterise the light environment for seedlings at two points in each sub-plot. A Global Site Factor (GSF%) for each plot was calculated, using an atmospheric transmittivity to solar radiation of 0.8 and 0.1 diffuse:direct radiation (canopy analysis software Hemiview 2.1, Delta-T devices Ltd, USA). GSF is an indicator of light availability that ranges between 0 (full canopy closure) and 1 (full sun light). GSF was 0.43 ± 0.06 (10.3 ± 1.5 mol m⁻² day⁻¹). There was no difference in radiation received between dry and watered sub-plots ($F_{1,6} = 0.02$, $P = 0.890$).

Gas Exchange and Chlorophyll fluorescence

Gas exchange measurements

On three dates during the summer in June (18-20), July (16-18), and August (20-22), gas exchange and chlorophyll fluorescence were measured in four to six seedlings per treatment. One attached, first-flush and fully expanded leaf per plant receiving direct sunlight, was selected for measurements. In June, a failure in the chlorophyll fluorescence system precluded chlorophyll fluorescence measurement.

Light-saturated CO_2 assimilation rate (A) was measured using portable photosynthesis system equipped with a blue-red light source (LI-6400; Li-Cor Inc., NE; USA) under different CO_2 concentrations. Measurements were carried out at constant light of 1,200 μmol m⁻² s⁻¹. This level of irradiance has been shown to be enough to saturate photosynthesis in leaves of beech seedlings in the field without eliciting photo-inhibition (Aranda et al.)
ment time to a temporal window between 9:00 a.m. and 13:00 p.m. Afterwards it was not possible to reasonably maintain the target temperature in the chamber and, in addition, midday stomatal closure was observed in some of non-watered plants even though water stress was not very intense. Measurements were carried out during three consecutive days. After, allowing 15 minutes at 400 ppm CO$_2$ concentration (C_a) for gas exchange rates to stabilize, gas exchange were recorded over a range of intercellular CO$_2$ (C_i) resulting from changing the CO$_2$ supply in twelve steps from 50 to 1,800 ppm. The supply of CO$_2$ was reduced step-wise to the minimum value; then returned to 400 ppm again, and increased step-wise from that concentration to complete the A-C_i curve at the high C_a end. Five records were taken at each target CO$_2$ concentration when photosynthesis and transpiration showed a CV lower than 5%. This was usually reached after three to four minutes.

Chlorophyll fluorescence was measured simultaneously with gas exchange at each target CO$_2$ concentration for A-C_i curves. Steady-state fluorescence (F_s) and maximum fluorescence (F_m') were measured, in the case of F_m' after applying a saturating pulse of actinic light. The photochemical efficiency of PSII (Φ_{PSII}) was then calculated according to Genty et al., (1989) and Kramer et al., (2004) as:

$$\Phi_{PSII} = \frac{F_m' - F_s}{F_m'}$$

(9)

The rate of electron transport through PSII (ETR) was calculated following Rosenqvist and van Kooten (2003) as:

$$ETR = 0.5 \Phi_{PSII} \frac{PPFD}{0.85}$$

(13)

A value of 0.85 for total leaf absorptance was assumed (Evans and Loreto, 2000), and a factor of 0.5 for the partitioning of light between the two photosystems (Laisk and Loreto, 1996).

A non-linear least squares fitting procedure was applied to measured A – C_i curves, to estimate the maximum rate of carboxylation (V_{max}) and the light-saturated maximum rate of RUBP-regeneration-limited electron transport rate (J_{max}). Regression models were constructed according to equations from Farquhar et al., (1980), including mesophyll conductance and some other modifications (see von Caemmerer, 2000) in which A_p was modelled as the minimum value of Rubisco-limited (A_p) and RuBP-limited (A_J) rate of photosynthesis according to (1), (2), (3), and without
Temperature of 25°C (Sharkey et al., 2007). We used an application for Microsoft Excel developed by Sharkey et al., (2007) for calculation of photosynthetic parameters. This application implements the curve-fitting method to iteratively calculate mesophyll conductance (g_{mn}; see Warren, 2006 and Flexas et al., 2008 for a comprehensive review on the methodologies to estimate g_{mn}). The reliability of the method was checked by comparing the values of g_{mn} in July and August according to the curvature method, with those estimated from chlorophyll fluorescence measurements in parallel to gas exchange, which allowed g_{mn} to be estimated by the J constant method (Harley et al., 1992; Warren, 2006; Flexas et al., 2008). Because the estimation of g_{mn} is sensitive to errors in both R_d and Γ^* (Harley et al., 1992), we used the R_d at the leaf temperature given from empirical relationships between R_d and temperature obtained in a parallel experiment on the same plants (Rodríguez-Calcerrada et al., 2010).

By taking into account the mean values of those variables involved in the Farquhar et al., (1980) leaf photosynthetic model, which after modification include mesophyll conductance (Harley et al., 1992), Grassi and Magnani (2005) developed a method to evaluate the limitations to photosynthesis during a plant’s vegetative period by the amount, activity and kinetics of Rubisco (eq 1). They partitioned the decline of optimum photosynthesis by three main limitations: these are stomatal limitation (S_o), mesophyll-conductance limitation (MC$_j$) and biochemical limitation (B$_j$). In turn, these parameters can be subdivided into the contribution of each relative limitation to the recorded difference from the reference value. The relative limitations are identified as: stomatal limitations (l_s), mesophyll limitations (l_m) and biochemical limitations (l_b). The complete mathematical formulae and full theoretical development of the model are given by Grassi and Magnani, (2005). We compared drought-treatment plants (D) with watered ones (WW) on each measurement date to circumvent any seasonal effect on the different parameters, and to better assess the role played by our water treatments irrespective of ontogenic influences.

Water potential and soil moisture

A pressure chamber (PMS Instrument Co. 1000, Corvallis, USA) was used to take measurements of leaf water potential. These were carried out on the same leaves previously used for $A-C_i$ curves. The same leaves were kept hydrated for twelve hours, and used to estimate specific leaf mass per area (LMA), and nitrogen content on a per mass basis (N_m) by the Kjeldhal method after oven drying. Nitrogen content on a leaf area basis (N_a) was estimated from LMA and N_m.

Volumetric soil moisture was measured at 10 and 30 cm depths several times during the summer months using a Time Domain Reflectometer (TDR, Trase System I, Soil Moisture Equipment Corp., Santa Barbara, USA). Soil moisture was recorded in two well-separated points in each sub-plot within the three main plots ($n = 6$).

Statistical Analysis

The effect of drought and time during the season on each physiological parameter was tested using a two-way analysis of variance. All computations were performed in Statistica 6.0. The pair-wise comparison between drought treatments on each date was tested by a post-hoc F test (LSD test). Linear regression models and Pearson correlation were used to analyse the relationships between variables.

Results

Climatic conditions and water status of seedlings

Temperature and relative humidity were moderate during the course of the experimental period. Temper-
Table 1. Mean values ± SE for water status (Ψpd, leaf predawn water potential) and leaf morphological traits (LMA, leaf mass per area; Nm, nitrogen content on a leaf dry mass basis) measured on beech seedlings growing in three canopy gaps. Half of the plants received natural rainfall during the summer months (D) and the other half had supplementary watering several times throughout the summer (WW). Significant differences are indicated by different letters (LSD-test after ANOVA).

<table>
<thead>
<tr>
<th></th>
<th>WW</th>
<th></th>
<th>D</th>
<th>WW</th>
<th></th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>June</td>
<td>-0.27 ± 0.02 cd</td>
<td>49.19 ± 2.82 ab</td>
<td>2.21 ± 0.13 ab</td>
<td>2.26 ± 0.15 ab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>July</td>
<td>-0.42 ± 0.05 ab</td>
<td>-0.54 ± 0.05 a</td>
<td>54.11 ± 1.34 b</td>
<td>45.72 ± 5.71 a</td>
<td>2.23 ± 0.10 ab</td>
<td>2.59 ± 0.04 b</td>
</tr>
<tr>
<td>August</td>
<td>-0.13 ± 0.02 d</td>
<td>-0.43 ± 0.14 abc</td>
<td>49.97 ± 3.33 ab</td>
<td>49.31 ± 2.15 ab</td>
<td>2.36 ± 0.08 ab</td>
<td>1.95 ± 0.10 a</td>
</tr>
</tbody>
</table>

Temperature seldom reached above 25°C and the maximum VPD was never higher than 1.5 kPa. These represent moderate climatic conditions during summer months in central Spain, since much higher temperatures and evaporative demands have been encountered in previous years at the same site (e.g. Aranda et al., 2002, Aranda et al., 2004). Soil moisture measured at 20 cm depth followed a very different pattern between treatments. In the subplot receiving additional water the soil moisture was within the range 15-20%, whereas in the subplot receiving just natural rainfall, soil moisture decreased to around 7.5% by the middle of August (Figure 1). However, the Ψpd remained similar between seedlings in the two treatments, and the water stress endured should only be considered moderate for the three dates (Ψpd over -0.5 MPa on average). Seedlings receiving additional water only attained a significantly higher Ψpd than in the un-watered plots on the last sampling date (T). The slightly higher Ψpd in WW treatment in August than on previous dates could be explained by the lowest VPD during the night immediately prior to that predawn water potential measurement. Otherwise, the absence of larger drops in the Ψpd at the end of summer for D seedlings, even though soil moisture reached the minimum value at this time, may be explained by deeper rooting of seedlings to below the depths where soil moisture was recorded. Overall, the dry period of the summer was not sufficiently intense to elicit decreases in predawn water potential as large as those reported in previous studies at the same stand in other years (Aranda et al., 2001, Aranda et al., 2002, Robson et al., 2009).

Gas exchange

There were no clear differences between treatments in A, and gs (measured at ambient 400 ppm) during June and July. In July as much A, or gs, were higher than in June, despite water status at dawn in both treatments was slightly worst. Only on the last date (August), there was a tendency for both parameters to decrease in those seedlings enduring the natural rainfall regime (D), compared with those receiving additional water (WW: Table 2). However, differences were not statistically significant when considering all dates and treatments.

Both gs and g_m were related to the draw-down of CO2 from the air (C_i) to the interior of leaf (C_o-C_i) or chloroplast (C_r-C_i) (Table 2). The largest drop from ambient CO2 (C_o = 400 ppm) to that in the intercellular spaces of leaves (C_i) was caused by g_s (range 154 ± 14 to 123 ± 11). The resistance to diffusion from the intercellular spaces into the chloroplasts (g_m) also promoted a decrease in CO2 concentrations, albeit lower (C_r-C_i: range 51 ± 7 to 105 ± 17). The g_m estimated by the fitting-curve method always gave higher values than the g_m* estimated by the method of the J constant. In both cases, the trend was to maintain higher values of g_m than of g_s of CO2 (Table 2).

The decrease in g_s from July to August had a greater effect on IWUE than the concomitant changes in g_m. This suggests a large effect of stomatal regulation on water use efficiency, reaching into the range of water stress endured by plants. This expectation was consistent with the negative relationship between g_s and IWUE, whereas there was not a clear relationship between IWUE and g_m (Figure 2) nor with the biochemical variables influencing the carbon uptake potential, Vcmax and Jmax (data not shown). However, this relationship should be viewed cautiously as estimated IWUE and g_m are not independent.

There were small seasonal changes in those parameters driving the uptake of carbon within chloroplasts (Vcmax and Jmax), with the lowest values tending to occur on the last sampling date in August, even for plants receiving additional water and with good water status (Ψpd ~ -0.2MPa). However, non statistical differences
were observed for treatments, being only significant for date when grouping data of both treatments within each date (ANOVA).

A weak negative relationship was observed between \(g_s \) and \(g_m \), and \(\Psi_{pd} \) (\(g_s = 0.10 + 0.06 \Psi_{pd}, R^2 = 0.23, P = 0.07; g_m = 0.18 + 0.13 \Psi_{pd}, R^2 = 0.27, P = 0.08 \)). However, neither \(V_{\text{max}} \) nor \(J_{\text{max}} \) showed any relationship with \(\Psi_{pd} \), suggesting that leaf-age could have had a greater effect in driving changes in biochemical regarding diffusional parameters (Table 2). In this respect, as much \(V_{\text{max}} \) as \(J_{\text{max}} \) were positively correlated with the nitrogen content on a leaf area basis (\(N_a \)) (Figure 3), and not with \(\Psi_{pd} \).

Following the approach of Grassi and Magnani (2005), by comparing the relative effect of dry conditions (D plants) as a proportion of normal WW plant traits, we observed that stomatal limitations increased significantly in July and even more so in August. Values of \(S_i \) accounted for 51 and 59% and \(M_{C_l} \) for 6 and 11% of photosynthetic down-regulation, in July and August respectively; while the rest was due to biochemical limitations \(B_l \) of 43 and 30%. So in August, the reduction of 27% in net photosynthetic rate was mainly due to diffusional limitations (\(S_i + M_{C_l} \) contributed 70% of this). The relative contribution of each single limitation to net photosynthesis was 33% by the stomatal limitation (\(l_s \)), for all treatments with the exception of water stress treatment on the last date; 22% from mesophyll related limitations (\(l_m \)); and 45% from biochemical related limitation (\(l_b \)).

Table 2. Gas exchange variables estimated from \(A-C_c \) curves in leaves of seedlings growing in three canopy gaps. Half of the plants received natural rainfall during the summer months (D) and the other half had supplementary watering several times throughout the summer (WW). Mean values ± SE. are displayed (n = 3-6). Mesophyll conductance to \(CO_2 \) could not be calculated. Significant differences are indicated by different letters (LSD-test after ANOVA)

<table>
<thead>
<tr>
<th></th>
<th>June</th>
<th>July</th>
<th>August</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WW</td>
<td>D</td>
<td>WW</td>
</tr>
<tr>
<td>(A_s) ((\mu mol \ m^{-2} \ s^{-1}))</td>
<td>7.03 ± 0.96 bc</td>
<td>7.25 ± 0.72 bc</td>
<td>10.19 ± 0.79 a</td>
</tr>
<tr>
<td>(g_s) ((mol \ CO_2 \ m^{-2} \ s^{-1}))</td>
<td>0.056 ± 0.013 b</td>
<td>0.064 ± 0.006 b</td>
<td>0.098 ± 0.006 b</td>
</tr>
<tr>
<td>(V_{\text{max}}) ((\mu mol \ m^{-2} \ s^{-1}))</td>
<td>44.4 ± 6.1 a</td>
<td>49.4 ± 7.7 a</td>
<td>67.7 ± 7.1 b</td>
</tr>
<tr>
<td>(J_{\text{max}}) ((\mu mol \ m^{-2} \ s^{-1}))</td>
<td>79.3 ± 8.8 a</td>
<td>78.2 ± 7.4 a</td>
<td>93.0 ± 8.5 a</td>
</tr>
<tr>
<td>(g_m) ((mol \ CO_2 \ m^{-2} \ s^{-1}))</td>
<td>0.124 ± 0.019 a</td>
<td>0.097 ± 0.011 a</td>
<td>0.107 ± 0.016 a</td>
</tr>
<tr>
<td>(g_{mw}) ((mol \ CO_2 \ m^{-2} \ s^{-1}))</td>
<td>–</td>
<td>–</td>
<td>0.098 ± 0.019 a</td>
</tr>
<tr>
<td>(I_{WUE}) ((\mu mol \ CO_2 \ mol^{-1} \ H_2O))</td>
<td>86 ± 8 ab</td>
<td>71 ± 2 ab</td>
<td>68 ± 7 ab</td>
</tr>
<tr>
<td>(C_i) ((\mu mol \ mol^{-1}))</td>
<td>247 ± 12 a</td>
<td>270 ± 3 a</td>
<td>277 ± 10 a</td>
</tr>
<tr>
<td>(C_{C_l}) ((\mu mol \ mol^{-1}))</td>
<td>186 ± 18 a</td>
<td>192 ± 11 a</td>
<td>172 ± 10 a</td>
</tr>
<tr>
<td>(C_{C_l} - C_i) ((\mu mol \ mol^{-1}))</td>
<td>153 ± 12 b</td>
<td>130 ± 3 b</td>
<td>123 ± 11 b</td>
</tr>
<tr>
<td>(C_{C_l} - C_i) ((\mu mol \ mol^{-1}))</td>
<td>61 ± 13 bc</td>
<td>79 ± 10 bc</td>
<td>105 ± 10 bc</td>
</tr>
</tbody>
</table>

Discussion

Diffusional limitations to photosynthesis under moderate water stress

The range of water stress beech seedlings had to cope with in 2009 was lower than during previous studies carried out in the recent past at the same site (minimum \(\Psi_{pd} \) around –0.5 MPa), but nevertheless enough to prompt changes in the stomatal conductance to water vapour at the end of summer (Aranda et al., 2002). In this respect, the present study furthers our understanding of the role played by different diffusional limitations and biochemical variables during \(CO_2 \) assimilation by leaves of beech seedlings growing under natural environments. We provide new information on how these processes operate under natural forest conditions, which compliments and builds upon previous reports on the same species under semi-controlled conditions and environmental manipulations (e.g. Epron et al., 1995; Dreyer et al., 2001; Warren et al., 2007). The main factor constraining photosynthesis under moderate water stress was diffusional limitation through stomata, as previously reported (Aranda et al., 2002, 2004, Gallé and Feller, 2007; Robson et al., 2009). In the range of water stress endured by beech seedlings, stomatal closure comprised one of the main limiting factors to carbon uptake (Chaves et al., 2002; Medrano et al., 2002). Water stress of \(\Psi_{pd} = –0.5 \) MPa was enough to prompt significant partial stomatal clo-
Adapted from Aranda et al. (2002), since otherwise the leaves are able to endure a minimum Ψpd in the range –1.5 to –2.0 MPa as previously reported (Aranda et al., 2001). Accordingly, in this study gs of CO₂ decreased from 0.073 to 0.044 µmol m⁻² s⁻¹ on the last date when differences between watering treatments were largest (Table 1). However, the responsiveness of stomata to water stress could only be partly validated from the weak gs-Ψpd relationship. The high sensitivity of carbon uptake to water stress is mediated by a sensitive stomatal response to low soil moisture or high evaporative demand (Aranda et al., 2000; Lendzion and Leuzinger, 2008). This stomatal limitation to carbon uptake may combine with any response of respiration to drought when considering the balance of carbon uptake and loss (Flexas et al., 2005; Flexas et al., 2006; Rodriguez-Calcerrada et al., 2010). If maintained for an extended time period this disequilibrium could precipitate a negative carbon balance, making growth unsustainable in long lasting stressful conditions, such as those typical for sub-Mediterranean beechwoods. This impairment of the
overall leaf carbon balance of seedlings could be exacerbated when occurring in combination with low soil moisture and deep shade in the understory of mature stands (Aranda et al., 2002; Aranda et al., 2004; Rodríguez-Calcerrada et al., 2008a; Robson et al., 2009). On other hand, it’s difficult to explain the lower values of gas exchange recorded in June compared with July. Predawn water potential was slightly higher in June, though a slight effect of water stress at the late spring could not be ruled out as a possible cause of the low gas exchange maintained in WW and D plants. Other possible explanation could be leaves of seedlings in both treatments had not achieved the full physiological competence in the first measurement date. In fact, a similar result has been observed previously in beech where a seasonal lag in maximum gas exchange rates was observed despite leaf unfolding have been completed by the middle-end of June (Aranda et al., 2000).

The stomatal limitation to carbon uptake, even under moderate water stress, sums to a low mesophyll diffusion conductance to CO2. The low gms, common to woody plant species (Wilson et al., 2000a; Grassi and Magnani, 2005), may be responsible for the low photosynthetic capacity of beech seedlings (Valladares et al., 2002; Aranda et al., 2004; Balandier et al., 2007). This finding agrees with the typically low photosynthetic capacity of shade-tolerant tree species. Accordingly, relative mesophyll limitation (lmc) accounted for 22% of the relative photosynthesis limitation, a little lower than the 30% value proposed by Epron et al., (1995) using a different approach. On the other hand, stomatal resistance was a bit higher (33-40% in our case vs. 30% from Epron et al., 1995). In our case, gms was slightly higher than the g, with values close to those previously reported by Epron et al., (1995), and following the same pattern as that observed by Warren et al., (2007) when comparing sun and shade leaves in mature trees. These results were consistent for changes in gms and qualitatively similar whether the J constant or the curvature method was used to estimate gms. In conclusion, both components of diffusional limitation comprised a high percent of the overall limitation to carbon uptake.

It has been noted that as stress intensifies there is a reduction in the mesophyll conductance of CO2 (Medrano et al., 2002; Chaves et al., 2003; Flexas et al., 2008). This increases the overall diffusional limitations imposed at the first step by stomata (Medrano et al., 2002). In the present study, where moderate water stress was suffered by beech seedlings, only a seasonal reduction in gs in response to water stress was evident. There was no consistent pattern in gs in response to the water stress imposed, except on the last date when the differences in Ψp between treatments were greatest. Taking into account the absolute limitations to photosynthesis, it is clear that the main reduction was due to diffusional resistances, mainly through the stomata, accounting for over 50% of the photosynthetic decrease. Under moderate water stress, stomatal limitation of photosynthesis is thought to be the main restriction on carbon uptake (Lawlor and Conric, 2002, Medrano et al., 2002; Grassi and Magnani, 2005; Diaz-Espejo et al., 2007; Grassi et al., 2009).

Limitations to carbon uptake imposed by biochemical factors and time of year

Beech seedlings had a low biochemical capacity for photosynthesis, as previously reported in a comparative study with other co-occurring species (Dreyer et al., 2001). In addition to the increase in diffusional limitations to carbon uptake imposed by water stress, there was also a seasonal reduction in seedlings’ photosynthetic capacity (Wilson et al., 2000a; Balandier et al., 2007). Vcmax and Jmax decreased slightly, though only significantly for Vcmax, between July and August irrespective of watering and caused a reduction in the capacity to fix carbon. Seasonally-induced decreases in photosynthetic capacity by the end of summer in beech have been reported before (Balandier et al., 2007), and they add to the impairment of carbon uptake caused by increased stomatal limitation under natural conditions of moderate water stress. The trend in the degree of down regulation of Vcmax and Jmax was similar between July and August in plants enduring the natural rainfall pattern and those receiving supplementary water, reinforcing the idea that this was an ontogenic effect. Accordingly, both variables showed a stronger relationship with the leaf nitrogen content (Balandier et al. 2007), than with the water stress experienced. The direct down-regulation of Vcmax as consequence of the moderate drought has been reported elsewhere (Wilson et al., 2000b, Xu and Baldocchi, 2003, Damour et al., 2009), and although not statistically significant, there was also a tendency towards consistently lower values in D than in WW on the last two measurement dates in the present study. However, the ontogenic effect should be recognized as the most plausible reason for the decrease of both biochemical parameters in the present study.
Conclusions

The combination of shade tolerance at juvenile stages and a positive reaction to higher light levels makes beech very resilient in both wet and mesic sites, conditioning the ecology and silviculture of the species (see Wagner et al., 2010 for a comprehensive review). However, even moderate drought may change the competitiveness of the species when water is not limiting (Cornic, 1994). Thus, carbon uptake at the leaf level was compromised in seedlings by moderate soil moisture causing stomatal closure which prevailed as the main limitation to net photosynthesis under moderate water stress, what is a well-known fact. Nevertheless, internal conductance of CO₂ was also an important limitation to carbon uptake comprising a 22% of the total limitation to carbon assimilation. This diffusion-al limitation could continue to increase, like those related with biochemical parameters, in extremely dry years.

The high sensitivity of beech to just moderate water stress is clearly apparent from this and previous studies (Madsen, 1994; Aranda et al., 2004; Robson et al., 2009), but also underscores the importance that the relatively low gs has on the carbon potential uptake of beech leaves whichever water stress endured by seedlings. Ultimately this sensitivity could jeopardize the future of the species in currently marginal beech stands, where future climatic conditions are expected to worsen, and where an increase in the temperature together with a decrease in the seasonal rainfall could compromise much more the low carbon uptake capacity of young beech seedlings.

Acknowledgements

This research was supported by the project of the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria SUM2008-00004-C03-01s and CGL2007-66066-C04-03/BOS of the Ministry of Science and Innovation of Spain (MSI). T.M.R. & D.S.G were funded through the programme “Juan de la Cierva” of the MSI, and associated to the projects [AGL2006-03242 to D.S.G., CGL2007-66066-C04-03/ BOS to T.M.R.]. FJ Cano was funded by a PhD fellowship from Regional Government of Madrid (CM). The authors are grateful to the Autonomous Community of Madrid (CM) for permission to work at el Hayedo de Montejo.

References

ics in European forests during the extremely dry year: 2003. Agricultural and Forest Meteorology 143, 123-145.
Rodríguez-Calcerrada J, Atkin OK, Robson MT, Zaragoza-Castells J, Gil L, Aranda I. 2010. Acclimation of leaf dark respiration to shifts in summer temperature was independent of degree of canopy closure and water stress in a manipulative field experiment with beech seedlings. Tree Physiology 30, 214-224.
Valladares F, Chico JM, Aranda I, Balagué L, Dizengremel P., Manrique E, Dreyer E. 2002. The greater seedling high-light tolerance of Quercus robur over Fagus sylvatica is
linked to a greater physiological plasticity. Trees 16, 395-403.

Wilson KB, Baldocchi DD & Hanson PJ. 2000a. Quantifying stomatal and non-stomatal limitations to carbon assimilation resulting from leaf ageing and drought in mature deciduous tree species. Tree Physiology 20, 787-797.

Xu L, Baldocchi DD. 2003. Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree Physiology 23, 865-877.