A common biological basis of obesity and nicotine addiction

Thorgeirsson, T. E.

2013-10

http://hdl.handle.net/10138/162701
https://doi.org/10.1038/tp.2013.81

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.
INTRODUCTION

Smoking and obesity are major risk factors for many serious diseases.1,2 Eating and smoking are behavioral traits that are at least in part controlled by the same reward mechanisms.3 Genome-wide association studies (GWAS) have yielded 32 single-nucleotide polymorphisms (SNPs) associated with body mass index (BMI).4 Smoking and SNPs associated with increased smoking quantity have been shown to correlate with lower BMI.5,6

According to the World Health Organization (WHO), more than one billion people smoke and over 400 million people are obese (BMI > 30 kg m⁻²), with both prevalences rising (see url section). Smoking can become compulsive, and the neurobiological processes relating to overindulgence in food overlap with those involved in substance abuse and addiction.3 All drugs of abuse have been shown to increase dopamine in the mesolimbic reward system, and studies of both human brain images3 and animal brains7 have revealed that similar neurocircuits are involved in the regulation of rewarding and reinforcement in drug addiction and compulsive eating. Based on the many similarities between hyperphagia and excessive drug use, it has even been suggested that some forms of obesity can become compulsive, and the neurobiological processes relating to overindulgence in food overlap with those involved in substance abuse and addiction.3

Smoking influences body weight, such that smokers weigh less than non-smokers, and smoking cessation often leads to weight increase. The relationship between body weight and smoking is partly explained by the effect of nicotine on appetite and metabolism. However, the brain reward system is involved in the control of the intake of both food and tobacco. We evaluated the effect of single-nucleotide polymorphisms (SNPs) affecting body mass index (BMI) on smoking behavior, and tested the 32 SNPs identified in a meta-analysis for association with two smoking phenotypes, smoking initiation (SI) and the number of cigarettes smoked per day (CPD) in an Icelandic sample (N = 34 216 smokers). Combined according to their effect on BMI, the SNPs correlate with both SI (r = 0.019, P = 0.00054) and CPD (r = 0.032, P = 8.0 × 10⁻⁷). These findings replicate in a second large data set (N = 127 274, thereof 76 242 smokers) for both SI (P = 1.2 × 10⁻⁵) and CPD (P = 9.3 × 10⁻⁷). Notably, the variant most strongly associated with BMI (rs1558902-A in FTO) did not associate with smoking behavior. The association with smoking behavior is not due to the effect of the SNPs on BMI. Our results strongly point to a common biological basis of the regulation of our appetite for tobacco and food, and thus the vulnerability to nicotine addiction and obesity.

Translational Psychiatry (2013) 3, e308; doi:10.1038/tp.2013.81; published online 1 October 2013

Keywords: addiction; body mass index; nicotine dependence; obesity; smoking
consistent with the notion that smoking influences body weight through nicotine's effects on body and brain, the increase of metabolic rate and suppression of appetite. Here we report how variants correlating with BMI influence smoking behavior.

MATERIALS AND METHODS

Study subjects

Written informed consent was obtained from all subjects. Inclusion in the study required the availability of genotypes from ongoing SNP array typing in Iceland or previous GWAS,15–17 and the study populations have all been described previously.15–17 The GWAS of smoking initiation (SI) involved comparison of ever smokers and never smokers, and the studies of smoking quantity probed CPD as a quantitative trait among smokers only. The definitions of smokers and never smokers varied somewhat between studies,15–17 as questions addressing smoking behavior varied with most studies probing for regular smoking over a certain period of time. Questions probing for smoking quantity also varied between studies, and for analysis of smoking quantity we used CPD data for smokers in categories with each category representing 10 CPD (effect size of 0.1 for analysis of smoking quantity we used CPD data for smokers in categories with each category representing 10 CPD (effect size of 0.1

Icelandic study design

A generalized form of linear regression was used to test the correlation between quantitative traits (BMI and height) and smoking phenotypes (CPD and SI) in Iceland. The generalized form assumes that the smoking behavior of related individuals is correlated proportional to the kinship between them rather than assuming that the smoking phenotypes of all individuals are independent. Let y be the vector of smoking behavior measurements, and let x be the vector of BMI or height measurements. We assume that the expectation of the smoking behavior depends linearly on BMI or height, \(Ey = \beta_0 + \beta_1 x \), and that the variance–covariance matrix of the smoking behavior depends only on the pairwise kinship between the study participants, \(\text{Var}(y) = 2\sigma^2 \Phi \), where

\[
\Phi_{ij} = \begin{cases} i = j & \frac{1}{2} \rho_{ij}, \\ i \neq j & 0 \end{cases}
\]

is based on the kinship between individuals as estimated from the Icelandic genealogical database (\(\rho \)) and an estimate of the heritability of the trait (\(\beta_1 \)). Assuming normally distributed errors, the maximum likelihood method gives estimates for (\(\beta \)), which will asymptotically follow a normal distribution and can be used to estimate the correlation between height and BMI on the one side and CPD and SI on the other.

In order to test the correlation between the set of 32 BMI SNPs or the set of 180 height SNPs and smoking behavior, the same type of analysis was performed replacing the observed BMI and height with the BMI and height predicted based on the sets of 32 and 180 SNPs. We shall describe how this was achieved for BMI, the analysis for height being conceptually identical. For each of the 32 SNPs reported to associate with BMI, let \(f_i \) be its minor allele frequency and \(\gamma_i \) be its published effect on BMI. For an individual with \(g_i \) minor alleles at SNP \(i \), the set of 32 BMI SNPs predict a BMI of

\[
\sum_{i=1}^{32} (g_i - \bar{g}_i) \gamma_i
\]

Conditional independence

We observe a correlation between the 32 BMI SNPs and smoking behavior. The 32 BMI SNPs associate with BMI and BMI associates with CPD. The question then arises of whether the correlation between the 32 BMI SNPs and CPD is all going through BMI. In other words, are the 32 BMI SNPs and CPD correlated conditional on BMI? Assuming that the 32 BMI SNPs and CPD are independent conditional on BMI, then the correlation between the 32 BMI SNPs and CPD will be the product of the correlation between the 32 BMI SNPs and BMI and the correlation between BMI and CPD. Denoting the estimator for the correlation between the 32 BMI SNPs and BMI with \(\text{CPD}_{\text{BMI}, \text{BMI}} \), and the variance of the estimator with \(\text{Var}(\text{CPD}_{\text{BMI}, \text{BMI}}) \), and similarly for the correlation between BMI and CPD. Then, \(\text{GC}_{\text{BMI}, \text{BMI}, \text{CPD}} \) is an estimator of the correlation between the 32 BMI SNPs and CPD, assuming conditional independence, and \(\text{Var}(\text{GC}_{\text{BMI}, \text{BMI}, \text{CPD}}) \) gives an estimate of the variance of the estimator. A standard test for the mean of two samples can now be applied to test the difference between the observed correlation between the 32 BMI SNPs and CPD and the correlation predicted based on the 32 BMI SNPs and BMI being independent conditional on BMI.

Replication outside of Iceland

The non-Icelandic studies shared only summary results from the genome-wide smoking behavior association scans in the form of effect sizes, P-values and allele frequencies. The –2.5 million SNPs from the HapMap dataset were imputed and tested for association within each study population.15–17 The significance levels of each study population were adjusted individually using the method of genomic control.18 We used standard fixed-effects additive meta-analysis to combine the results for each SNP. After combining the results from all the populations, we again applied the method of genomic control and adjusted both smoking phenotypes accordingly (\(\lambda_{GC} = 1.10 \) and \(\lambda_{GC} = 1.06 \) for SI and CPD, respectively).

As data were not available on the individual level, we could not predict SI and CPD on the individual level as was done in Iceland. In order to test for the association of the 32 SNPs associating with BMI and the 180 SNPs associating with height with smoking behavior, we weighted the combined significance over all the populations of each SNP by the expected z-score associated with the SNP, assuming that the effect on smoking behavior was proportional to the effect on BMI or height as follows. Again let us take BMI as an example. For each of the 32 SNPs reported to associate with BMI, let \(f_i \) be its minor allele frequency and \(\gamma_i \) be its published effect on BMI. We denote the unknown effect of each SNP on smoking behavior with \(\beta_i \) and our assumption about the SNP’s effect on smoking behavior being proportional to the SNP’s effect on BMI can be stated as \(\beta_i = k \gamma_i \), for some constant \(k \). Quantifying the significance of the association of each SNP with smoking behavior by its z-score \(z \), maximal power is achieved by weighing the SNPs according to the expected z-score. The expected z-score for the ith SNP is proportional to \(\beta_i \sqrt{f_i(1 - f_i)} \), which we assume is proportional to \(\gamma_i \sqrt{f_i(1 - f_i)} \), which we will refer to as \(w_i \) and use to weigh the smoking behavior z-scores of the 32 BMI SNPs together:

\[
z = \frac{\sum_{i=1}^{32} w_i z_i}{\sqrt{\sum_{i=1}^{32} w_i^2}}
\]

RESULTS AND DISCUSSION

To study the correlation between obesity variants and smoking phenotypes, we focused on the 32 SNPs associating with BMI

| Table 1. Association of BMI, height and SNPs associating with BMI and height with smoking phenotypes in Iceland |
|-----------|------------------|--------|------------------|--------|
| | CPD | Smoking | | CPD | Smoking |
| From | N | Correlation (95% CI) | P | N | Correlation (95% CI) | P |
| BMI | 33 620 | 0.095 (0.085, 0.106) | 2.5 × 10⁻⁶⁸ | 49 565 | -0.005 (-0.014, 0.004) | 0.29 |
| 32 BMI SNPs | 24 618 | 0.032 (0.019, 0.045) | 8.0 × 10⁻²⁸ | 34 216 | 0.019 (0.008, 0.030) | 0.00054 |
| Height | 33 875 | -0.004 (-0.015, 0.007) | 0.46 | 49 931 | -0.012 (-0.021, -0.002) | 0.013 |
| 180 Height SNPs | 24 630 | 0.001 (-0.011, 0.014) | 0.84 | 34 231 | 0.004 (-0.007, 0.015) | 0.44 |

Abbreviations: BMI, body mass index; CI, confidence interval; SNP, single-nucleotide polymorphism.

described in a recent report of a study of 249,796 subjects. We weighted the 32 SNPs together based on their published effect on BMI and tested the correlation with both CPD and SI in 49,565 chip-typed Icelanders (Table 1). We also tested the correlation between the actual measured BMI and the smoking phenotypes in a slightly larger set of Icelanders. For comparison, we performed a corresponding study using Icelandic data on human height and 180 SNPs reported to influence human height in a recent study of 183,731 individuals (Table 1).

BMI associated with CPD (r = 0.095, P = 2.5 × 10^{-6}) but not SI (r = −0.005, P = 0.29), whereas height did not associate with CPD (r = −0.004, P = 0.46) and showed only weak association with SI (r = 0.012, P = 0.013). The set of 32 BMI SNPs associated with both CPD (r = 0.032, P = 8.0 × 10^{-5}) and SI (r = 0.019, P = 0.00054), whereas the set of 180 height SNPs associated with neither smoking behavior (P = 0.84 and 0.44 for CPD and SI, respectively).

The correlation between the set of 32 BMI SNPs and BMI and the correlation between BMI and CPD predict a correlation between the 32 BMI SNPs and CPD of 0.013, which is significantly lower than the observed correlation of 0.032 between the set of 32 BMI SNPs and CPD (P = 0.0033). The correlation between BMI and SI is negative so that the predicted correlation between the 32 BMI SNPs and SI is also negative and even more significantly different from the observed correlation of 0.019 than from 0. Hence, the observed associations between the BMI variants and the smoking phenotypes are not explained by the direct phenotypic correlations between BMI and smoking behavior.

To investigate the contributions of individual SNPs and to replicate our observations in other populations, we looked up the correlations of each of the 32 SNPs with CPD and SI, using data from our previous studies outside of Iceland (N = 76,242 for CPD, and N = 127,274 for SI). For these studies, we utilized the fixed-effect additive meta-analysis results for ~2,500,000 SNPs obtained using the inverse-variance method for each of the two smoking phenotypes. Before conducting the meta-analysis, we performed a genomic control correction of each study. The combined z^2-test statistics were still somewhat inflated by a factor of λ_GC = 1.10 (SI) and λ_GC = 1.06 (CPD). The correlations between the set of 32 BMI SNPs and the two smoking variables were significant in this replication sample with P = 1.2 × 10^{-5} and 9.3 × 10^{-5}, for SI and CPD, respectively. Combined with Iceland, the association between the 32 BMI SNPs and SI and CPD reached a significance of P = 1.2 × 10^{-7} and P = 1.6 × 10^{-9}, respectively.

As expected, based on the correlations observed between the combined set of the 32 BMI SNPs (Table 1), we observe congruence in the effects that these SNPs have on BMI and smoking behavior. For most of the SNPs, the allele that associates with increased BMI also associates with both increased probability of SI and higher CPD (Figure 1). We note that the effect sizes are small and although the markers as a group clearly associate with the smoking behaviors, further studies are required to determine unequivocally which of the markers have an impact on smoking behavior. The SNP by far most strongly associated with BMI (rs1558902-A in FTO) represents a notable exception from the trend observed and shows no evidence for association with either CPD or SI.

Considering the 11 BMI SNPs most strongly associated with smoking (P < 0.05), 9 SNPs associate with smoking initiation and 4 with CPD (Supplementary Table 1 and Figure 1). For smoking initiation the most significant associations were to rs10767664-A (effect = 0.050495, P = 1.14 × 10^{-10}) in the Brain Neurotrophin Factor gene (BDNF) and rs2867125-C (effect = 0.0397, P = 0.000021) 45 kb upstream of the Transmembrane protein 18 gene (TMEM18), and for CPD the most significant associations were with rs2867125-C (effect = 0.286, P = 0.000346) (TMEM18) and rs4771122-G (effect = 0.0193, P = 0.000486) in the mitochondrial translational initiation factor 3 gene (MTIF3). In addition to rs286125-C (TMEM18), rs2815752-A (NEGR1) is among the top markers (P < 0.05) for both SI (effect = 0.186, P = 0.0244) and CPD (effect = 0.0097, P = 0.0305). A SNP within the BDNF gene has previously been shown to associate with smoking initiation (rs6265-C). This SNP is in linkage disequilibrium with the BMI-associated rs10767664 (r^2 = 0.85 in Iceland). The association with SI remains significant after removing rs10767664 (P = 1.3 × 10^{-5}). In summary, we have demonstrated that as a group, the 32 common variants identified in GWAS of BMI also have an impact on the smoking behavior. A variant within the nAChR gene cluster

Figure 1. Association of obesity variants with smoking initiation (SI) and CPD. The effects on smoking behaviors are depicted vs. the effects on BMI from a large meta-analysis. (a) The effect on smoking initiation vs the effect on BMI. (b) The effect on CPD vs the effect on BMI. The BMI effect is in standard units, and the effects on SI and CPD were obtained using a standard fixed-effects additive meta-analysis to combine the results for each SNP from Iceland with additional data from three large GWAS. The effects on SI are the p-values from logistic regression treating ever smoking as the response and the allele counts as covariates, and the GWAS of CPD used smoking quantity in categories with each category representing 10 CPD (effect size of 0.1 = 1 CPD). The dots representing each data point are color coded to indicate the p-value obtained as red (P < 0.0001), yellow (P < 0.001), green (P < 0.05) and black (P ≥ 0.05) and the input data are provided in (Supplementary Table 1).
at chr5 15q25 (rs1051730-A) was discovered in GWAS of smoking behavior, and subsequently shown to correlate with reduced BMI in smokers without an effect on the BMI of never smokers, thus most likely influencing BMI mainly through its effect on smoking behavior. The variants studied here represent a different class of SNPs affecting both BMI and smoking: They were found in GWAS of BMI and influence BMI in both smokers and never smokers, and the alleles correlating with elevated BMI tend to increase the propensity to smoke and/or associate with increased cigarette intake. We note that, in Iceland, the correlation between the predicted BMI and observed BMI is similar for smokers (0.15, \(P = 3.0 \times 10^{-9} \), \(N = 20\,462 \)) and never smokers (0.13, \(P = 7.2 \times 10^{-33} \), \(N = 7910 \)). The direction of this trend is opposite to what would be expected based on the known effects of nicotine on BMI, and inconsistent with an effect rooted in nicotine-mediated increase of metabolic rate and suppression of appetite. That the majority of variants known to associate with elevation of BMI correlate with smoking behaviors in this manner points to a common biological basis to regulation of the intake of food and tobacco.

CONFLICT OF INTEREST

Authors whose affiliations are listed are Decode genetics/AMGEN employees of Decode genetics/AMGEN.

ACKNOWLEDGMENTS

We thank the participants in the genetic studies whose contributions made this work possible. This work was supported in part by NIH (R01-DA017792 and R01-DA022522) and the European Commission’s Sixth Framework Programme, Integrated Project GENADDICT (LSHM-CT-2004-005166). The ENGAGE smoking consortium was formed through a component of the Integrated Project ENGAGE, supported by the European Commission’s Seventh Framework Program, grant agreement HEALTH-F4-2007-201413. SB was funded by the FP7-PEOPLE-2009-IAPP 25192 grant (NextGen).

AUTHOR CONTRIBUTIONS

TET, DFG, and KS wrote the manuscript. The study was designed by and the results interpreted by TET, DFG, PS, SB, UT and KS. The meta-analyses of smoking GWAS data were performed by DFG. TET, DFG, PS, SB, US, GT, and VS worked on data management and analysis. Smoking GWAS consortia were coordinated by HF (TAG), PFS (TAG) JM (OX-GSK) and MIM (ENGAGE). All authors contributed to the final version of the paper.

REFERENCES

Supplementary Information accompanies the paper on the Translational Psychiatry website (http://www.nature.com/tp)

CONSORTIA

The data utilized came from three large GWAS done by the ENGAGE, TAG, and OX-GSK consortia (references 15–17). The additional collaborators from these three consortia are listed below.

Thorgeirsson et al

Longo et al

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/.

© 2013 Macmillan Publishers Limited
Psychology, VU University Amsterdam, Amsterdam, The Netherlands. 13Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands. 14Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark. 15Estonian Genome Center, University of Tartu, Ria 23b, Tartu 51010, Estonia. 16MRC University of Tartu and Estonian Biocentre, Rii a str 23, Tartu 51010, Estonia. 17Institute of Epidemiology, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764 Munich/Neuherberg, Germany. 18Department of Twin Research and Genetic Epidemiology, King’s College London, St Thomas’ Hospital Campus, London SE17EH, UK. 19Department of Public Health, University of Helsinki, Helsinki, Finland. 20Faculty of Medicine, University of Niжnij Novgorod Medical Centre, Department of Epidemiology and Biostatistics, and HTA, Niжnij Novgorod, The Netherlands. 21Comprehensive Cancer Centre East, Niжmegen, The Netherlands. 22Radboud University Niжmegen Medical Centre, Department of Endocrinology, Niжmegen, The Netherlands. 23Welcome Trust Sanger Institute, Hinxton, UK. 24Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands. 25Department of Medicine, University of Leipzig, Liebigstr. 18, 04103, Leipzig, Germany. 26Coordination Centre for Clinical Trials, University of Leipzig, Härtestr. 16–18, 04103, Leipzig, Germany. 27Interdisciplinary Centre for Clinical Research, University of Leipzig,Inselstr. 22, 04103, Leipzig, Germany. 28EMGO Institute/Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands. 29Department of Psychiatry, University of Mainz, Mainz, Germany. 30Institute of Clinical Medicine, University of Oulu, Oulu, Finland. 31Lifecourse and service Department, National Institute of Health and Welfare, Oulu, Finland. 32Finnish Institute of Occupational Health, Oulu, Finland. 33European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK. 34Multidisciplinary Cardiovascular Research Centre (MCRC), Leeds Institute of Genetics, Health and Therapeutics (LIGHT), University of Leeds, Leeds, LS2 9JT, UK. 35Department of Health Sciences and Genetics, University of Leicester, LE1 7RH Leicester, UK. 36Department of Urology, Niжmegen, The Netherlands. 37Department of Epidemiology and Public Health, Imperial College, Faculty of Medicine, London, UK. 38Institute of Health Sciences, University of Oulu, Oulu, Finland. 39Biocenter Oulu, University of Oulu, Oulu, Finland. 40Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universitä t, Munich, Germany. 41Klinikum Grosshadern, Munich, Germany. 42Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield Hospital, Groby Road, Leicester, LE3 9QP, UK. 43Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands. 44Department of Mental Health and Alcohol Abuse Services, National Institute for Health and Welfare, Helsinki, Finland.

The Tobacco and Genetics Consortium (TAG)—Yun Jun Kang1, Jennifer Dackor2, Eric Boerwinkle3, Nora Franceschini4, Diego Aridissano5, Luisa Bernardinelli6,7, Pier M Mannucci8, Francesco Reykjavik, Iceland. 37Vogur SAA Addiction Treatment Center, Finland. 32Finnish Institute of Occupational Health, Oulu, Finland. 31Lifecourse and service Department, National Institute of Health and Welfare, Oulu, Finland. 32Finnish Institute of Occupational Health, Oulu, Finland. 33European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK. 34Multidisciplinary Cardiovascular Research Centre (MCRC), Leeds Institute of Genetics, Health and Therapeutics (LIGHT), University of Leeds, Leeds, LS2 9JT, UK. 35Department of Health Sciences and Genetics, University of Leicester, LE1 7RH Leicester, UK. 36Department of Psychiatry, University of Mainz, Mainz, Germany. 37Institute of Clinical Medicine, University of Oulu, Oulu, Finland. 38Department of Epidemiology, Helsinki, Helsinki, Finland. 28Finland South Regional Hospital District, Helsinki, Helsinki, Finland. 27Diabetes Prevention Unit, National Institute on Aging, Bethesda, Maryland, USA. 26Hjelt Institute, Department of Public Health, University of Helsinki, Helsinki, Finland. 25Department of Medicine, University of Washington, Seattle, Washington, USA. 24Department of Epidemiology, University of Washington, Seattle, Washington, USA. 23Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA. 22Group Health Research Institute, Seattle, Washington, USA. 21Department of Epidemiology, University of Washington, Seattle, Washington, USA. 20Department of Clinical Sciences, Diabetes and Endocrinology Unit, Lund University, Malmö, Sweden. 19Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA. 18Division of Clinical Cardiology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy. 17Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK. 16Cardiovascular Health Research Unit, University of Washington, Seattle, Washington, USA. 15Department of Epidemiology and Health Services, University of Washington, Seattle, Washington, USA. 14Department of Biostatistics, University of Washington, Seattle, Washington, USA. 13Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands. 12Department of Internal Medicine and Medical Specialties, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico, Ospedale Maggiore, Mangiagalli e Regina Elena, University of Milan, Milan, Italy. 11Department of Cardiology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy. 10Department of Applied Health Sciences, University of Pavia, Pavia, Italy. 9Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands. 8Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA. 7Division of Clinical Cardiology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy. 6Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK. 5Department of Applied Health Sciences, University of Pavia, Pavia, Italy. 4Department of Internal Medicine and Medical Specialties, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico, Ospedale Maggiore, Mangiagalli e Regina Elena, University of Milan, Milan, Italy. 3Department of Cardiology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy. 2Department of Cardiology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy. 1Department of Cardiology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.

Common biological basis of obesity and nicotine addiction

TE Thorgerisson et al.

Translated Psychiatry (2013), 1 – 7

© 2013 Macmillan Publishers Limited
Common biological basis of obesity and nicotine addiction

TE Thorgeirsson et al

Research Institute, Evanston, Illinois, USA. 84Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA. 85Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA. 86International Agency for Research on Cancer (IARC), Lyon, France. 87Institut Catalá d’Oncologia, Barcelona, Spain. 88General Hospital, Pordenone, Italy. 89Institute of Hygiene and Epidemiology, First Faculty of Medicine, Charles University, Prague, Czech Republic. 90Institut National de la santé et de la Recherche Médicale (INSERM) U794, Paris, France. 91Institut Gustave Roussy, Villejuif, France. 92Department of Environmental Medicine and Public Health, University of Padua, Padua, Italy. 93University of Glasgow Medical Faculty Dental School, Glasgow, UK. 94Specialized Institute of Hygiene and Epidemiology, Banská Bystrica, Slovakia. 95Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic. 96Palacky University, Olomouc, Czech Republic. 97Trinity College School of Dental Science, Dublin, Ireland. 98Cancer Registry of Norway, Oslo, Norway. 99University of Athens School of Medicine, Athens, Greece. 100Department of Cancer Epidemiology and Prevention, Maria Sklodowska-Curie Cancer Center and Institute of Oncology, Warsaw, Poland. 101University of Newcastle Dental School, Newcastle, UK. 102University of Aberdeen School of Medicine, Aberdeen, UK. 103Institute of Public Health, Bucharest, Romania. 104Center for Experimental Research and Medical Studies, University of Turin, Turin, Italy. 105National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, Maryland, USA. 106Department of Molecular Medicine, University of Helsinki, Helsinki, Finland. 107Department of Census, Cancer Research Centre, Moscow, Russia. 108Croatian National Cancer Registry, Zagreb, Croatia. 109Centre National de Genotypage, Institut Genomique, Commissariat a ` l’Energie Atomique, Evry, France. 110Institut National de la sante ´ et de la Recherche ´Eªnergetique Atomique (CEPH), Paris, France. 111Geriatric Unit, Azienda Sanitaria di Firenze, Florence, Italy. 112Genetics of Complex Traits, Peninsula Medical School, The University of Exeter, Exeter, UK. 113Laboratory of Epidemiology, Demography and Biometry, National Institute on Aging, Bethesda, Maryland, USA. 114Tuscany Health Regional Agency, Florence, Italy. 115Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. 116Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA. 117Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts, USA. 118Center for Human Genetics Research, Massachusetts General Hospital, Boston, Massachusetts, USA. 119Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA. 120Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA. 121Cardiovascular Epidemiology and Genetics, Institut Municipal d’Investigacio Medica, Barcelona, Spain. 122Harvard Medical School, Boston, Massachusetts, USA. 123Department of Clinical Sciences, Hypertension and Cardiovascular Diseases, University Hospital Malmö, Lund University, Malmö, Sweden. 124National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, USA. 125National Institute for Health and Welfare (THL), Helsinki, Finland. 126Center for Medical Genetics, University of Copenhagen, Copenhagen, Denmark. 127Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. 128EMGO Institute, Vrije Universiteit (VU) Medical Center, Amsterdam, The Netherlands. 129Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands. 130Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands. 131Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA. 132Program in Molecular and Genetic Epidemiology, Department of Epidemiology, Harvard University, Boston, Massachusetts, USA. 133Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA. 134Department of Epidemiology, Erasmus Medical Center, Member of the Netherlands Consortium on Healthy Aging, Rotterdam, The Netherlands. 135Department of Child and Adolescent Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands. 136Centre for Medical Systems Biology, Erasmus Medical Center, Rotterdam, The Netherlands. 137Department of Public Health, Erasmus Medical Center, Rotterdam, The Netherlands. 138Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. 139Department of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. 140Department of Psychiatry and Neurobehavaioral Sciences, University of Virginia, Charlottesville, Virginia, USA. 141Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA. 142Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA. 143Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA. 144Department of Functional Genomics, VU Amsterdam, Amsterdam, The Netherlands. 145Department of Medical Genomics, VU University Medical Center Amsterdam, Amsterdam, The Netherlands. 146Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina, USA. 147Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA. 148Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland. 149Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, USA. 150Cepheid, Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece. 151Tufts Clinical and Translational Science Institute, Tufts University School of Medicine, Boston, Massachusetts, USA. 152Center for Genetic Epidemiology and Modeling, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts, USA. 153Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, USA.

1 Department of Statistics, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK. 2 Clinical Sciences-Apupti Medicines

Translational Psychiatry (2013), 1 – 7

© 2013 Macmillan Publishers Limited
of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA. 4Department of Psychiatry, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA. 27Max-Planck Institute for Psycholinguistics, Nijmegen, The Netherlands. 28Division of Neurosciences and Mental Health, Imperial College London, UK. 29Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA. 30Genetics Division, GlaxoSmithKline, Research Triangle Park, North Carolina, USA. 31University Hospital Center, University of Lausanne, Lausanne, Switzerland. 32Department of Internal Medicine, University of Lausanne, Lausanne, Switzerland. 33Division of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany. 34Klinikum Grosshadern, Ludwig-Maximilians-Universität, Munich, Germany. 35Institute of Genetics and Molecular Medicine, MRC Human Genetics Unit, Edinburgh, UK. 36National Heart and Lung Institute, Imperial College London, UK. 37Division of Epidemiology, Imperial College London, UK. 38Cardiovascular Research Institute, MedStar Health Research Institute, Washington Hospital Center, Washington, District of Columbia, USA. 39Centre for Population Health Sciences, University of Edinburgh, UK. 40The Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA. 41The Institute for Translational Medicine and Therapeutics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA. 42Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA. 43The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA. 44Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany. 45Istituto di Neurogenetica e Neurofarmacologia, CNR, Monserrato, Cagliari, Italy. 46National Institute on Aging, Baltimore, Maryland, USA. 47Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA. 48Department of Mental Health, University of Aberdeen, Aberdeen, UK. 49Department of Psychiatry, University of Halle, Halle, Germany. 50Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA. 51Department of Psychiatry and Psychotherapy, University of Greifswald, Greifswald, Germany. 52Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany. 53Institute of Clinical Chemistry and Laboratory Medicine, University of Greifswald, Greifswald, Germany. 54Department of Social Medicine and Epidemiology, University of Greifswald, Greifswald, Germany. 55Department of Health Sciences, University of Leicester, Leicester, UK. 56Multidisciplinary Cardiovascular Research Centre (MCRC), Leeds Institute of Genetics, Health and Therapeutics (LIGHT), University of Leeds, Leeds, UK. 57Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, UK. 58Peninsula College of Medicine and Dentistry, Exeter, UK. 59Department of Medical and Molecular Genetics, King’s College London School of Medicine, Guy’s Hospital, London, UK. 60Gastroenterology Research Unit, Addenbrooke’s Hospital, Cambridge, UK. 61Gastrointestinal Unit, Molecular Medicine Centre, University of Edinburgh, Western General Hospital, Edinburgh, UK. 62Clinical Pharmacology and Barts and the London Genome Centre, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK. 63Department of Cardiovascular Medicine, University of Oxford, Wellcome Trust Centre for Human Genetics, Oxford, UK. 64BHF Glasgow Cardiovascular Research Centre, Division of Cardiovascular and Medical Sciences, University of Glasgow, Western Infirmary, Glasgow, UK. 65Arthritis Research UK Epidemiology Unit, Musculoskeletal Research Group, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK. 66NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester NHS Foundation Trust, Manchester, UK. 67Department of Pathology and Laboratory Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland. 68Max Planck Institute for Psycholinguistics.

URLS