Genome-Wide Analysis of Evolutionary Markers of Human Influenza A(H1N1)pdm09 and A(H3N2) Viruses May Guide Selection of Vaccine Strain Candidates

Belanov, Sergei S.

2015-12

http://hdl.handle.net/10138/165111
https://doi.org/10.1093/gbe/evv240

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.
Here we analyzed whole-genome sequences of 3,969 influenza A(H1N1)pdm09 and 4,774 A(H3N2) strains that circulated during 2009–2015 in the world. The analysis revealed changes at 481 and 533 amino acid sites in proteins of influenza A(H1N1)pdm09 and A(H3N2) strains, respectively. Many of these changes were introduced as a result of random drift. However, there were 61 and 68 changes that were present in relatively large number of A(H1N1)pdm09 and A(H3N2) strains, respectively, that circulated during relatively long time. We named these amino acid substitutions evolutionary markers, as they seemed to contain valuable information regarding the viral evolution. Interestingly, influenza A(H1N1)pdm09 and A(H3N2) viruses acquired non-overlapping sets of evolutionary markers. We next analyzed these characteristic markers in vaccine strains recommended by the World Health Organization for the past five years. Our analysis revealed that vaccine strains carried only few evolutionary markers at antigenic sites of viral hemagglutinin (HA) and neuraminidase (NA). The absence of these markers at antigenic sites could affect the recognition of HA and NA by human antibodies generated in response to vaccinations. This could, in part, explain moderate efficacy of influenza vaccines during 2009–2014. Finally, we identified influenza A(H1N1)pdm09 and A(H3N2) strains, which contain all the evolutionary markers of influenza A strains circulated in 2015, and which could be used as vaccine candidates for the 2015/2016 season. Thus, genome-wide analysis of evolutionary markers of influenza A(H1N1)pdm09 and A(H3N2) viruses may guide selection of vaccine strain candidates.
The complete sets of influenza A(H1N1)pdm09 and A(H3N2) virus genome segments were retrieved from the Influenza Virus Resource (IVR, http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html) and the Global Initiative on Sharing Avian Influenza Data (GISAID; http://platform.gisaid.org/) databases.

Nucleotide sequences were translated into protein sequences. Protein sequences of each strain were concatenated. To construct a reference-free multiple sequence protein alignment, the sequences were aligned using Muscle v3.7 software under default parameters (Edgar 2004). Distances were calculated using the Jukes–Cantor algorithm, and phylogenetic trees were constructed using the neighbor-joining method in Geneious 8.0 software (Kearse et al. 2012). Sequences of vaccine A/California/07/2009(H1N1) and A/Brisbane/10/2007(H3N2) strains were included in the alignments and phylogenetic trees.

Sites for amino acids changes were identified in concatenated protein sequences, and frequencies (F) of substitutions at these sites were calculated for 2009–2015 using A/California/07/2009 and A/Brisbane/10/2007 as references for A(H1N1)pdm09 and A(H3N2) influenza strains, respectively. Frequencies of changes were also calculated yearly (1.7.20xx–31.6.20xy). Substitutions that have difference in frequencies (ΔFs) of more than 0.1 were selected and named evolutionary markers. These markers were also analyzed every three months in viral sub-populations and ΔFs were calculated. We also estimated false discovery rates for these changes, as described previously (Storey 2002).

We also compared evolutionary markers in circulating influenza viruses and vaccine strains recommended by the WHO for corresponding seasons focusing on markers, which had F > 0.5 during season covered by vaccine. We also analyzed evolutionary markers that were prevalent (F > 0.5) in A(H1N1)pdm09 and A(H3N2) viral populations in 2015, in influenza vaccine strains recommended by the WHO for 2015/2016 season. In addition, we identified influenza A strains, which possess all the identified markers of circulating influenza strains from 2015 and could be included in the vaccine for 2015/2016. References to influenza vaccine strain candidates were retrieved from the WHO Web site (www.who.int/influenza/vaccines/recommendations/en).

The sites for evolution markers were mapped onto available influenza A virus protein structures, retrieved from the Protein Data Bank (PDB; supplementary table S1). PyMol was used to visualize the sites on the protein structures and generate structural images (www.pymol.org).
The mutation rates of influenza A viruses were calculated by dividing the average number of substitutions in viral proteins occurring every year, by the total number of amino acids in the concatenated protein sequences. The resulting numbers were multiplied by 100 to express mutation rates in percentages.

Results

Evolutionary Markers of Influenza A(H1N1)pdm09 Viruses

We retrieved 3,969 whole-genome sequences of human influenza A(H1N1)pdm09 viruses, which circulated in the world from 1.5.2009 to 30.9.2015. We translated nucleotide sequences into viral HA, M1, M2, NA, NP, NS1, NS2, PA, PA-X, PB1, and PB2 protein sequences. Protein sequences of each strain were concatenated, and concatenated sequences were aligned. The concatenated protein sequence of vaccine influenza A/California/07/2009 strain, which is one of the earliest A(H1N1)pdm09 isolates, was used as a reference in the alignment (fig. 1A). Analysis of aligned sequences revealed 481 sites for amino acid changes in 4,807-amino acid-long protein sequences, indicating that approximately 0.18% of the amino acids of influenza A(H1N1)pdm09 virus changed every year.

We calculated frequencies of different amino acids changes at 481 sites. The frequency of each change was plotted against its position in concatenated protein sequences (fig. 1B). We then calculated frequencies of these changes yearly (supplementary table S2), and computed differences between maximal and minimal frequencies, taking into account the number of available sequences for each year. The majority of changes had $\Delta F \leq 0.1$, suggesting that these changes were introduced as a result of random drift, and, therefore, they were discarded from further analysis. However, there were 61 changes with $\Delta F > 0.1$, indicating that these changes were subjected to selective evolution pressure. We defined these changes as evolutionary markers. Interestingly, these markers were found in 11 influenza proteins, in contrast to random changes, which resided mainly in HA and NA. The contribution of these markers into global mutation rate of A(H1N1)pdm09 viruses was as low as 13%.

We next analyzed the dynamics of acquisition of evolutionary markers by influenza A(H1N1)pdm09 viruses using three-month intervals, taking into account the number of available sequences for each period. We found that some of these markers showed similar evolutionary patterns. For example, the I354L mutation of PB2 was acquired in April and the V344M mutation of PB2 was acquired in May 2009 in the United States (fig. 1C). Strains with both mutations were detected in June 2010, in Singapore. Since August 2010, both mutations were found in viruses circulating in Thailand, Australia, and, later on, in Russia, Canada, Denmark, Greece, China, and the United Kingdom. Since October 2011, more than 90% of A(H1N1)pdm09 strains carried these mutations. The similar evolutionary pattern of these two mutations could be explained by structural and functional constraints: sites for both mutations are located in PB2 cap-binding domain, and both markers can participate in formation of hydrophobic interactions between two antiparallel β-strands, which are involved in cap binding (fig. 1D) (Pautus et al. 2013; Reich et al. 2014). We also mapped these markers on phylogenetic trees that were generated using concatenated protein sequences of selected A(H1N1)pdm09 strains (fig. 1E). Thus, the acquisition of these and other markers or their combinations could be beneficial for global evolution of influenza A(H1N1)pdm09 viruses. Interestingly, 29 of 62 identified mutations or their combinations were associated previously with viral fitness or virulence (Uraki et al. 2013; Elderfield et al. 2014; Sun et al. 2014; Mishel et al. 2015).

Evolutionary Markers of Influenza A(H3N2) Virus

We analyzed 4,774 whole-genome sequences of human influenza A(H3N2) viruses that circulated in the world from 1.1.2009 to 30.9.2015. We translated the nucleotide sequences into viral HA, M1, M2, NA, NP, NS1, NS2, PA, PB1, and PB2 proteins. We concatenated the protein sequences and aligned them. We calculated the total number of mutation sites using a sequence of the vaccine A/Brisbane/10/2007 strain as a reference (fig. 2A). We found 533 sites for amino acid substitutions in 4,465-amino acid-long concatenated protein sequences, indicating that approximately 0.21% of the amino acids of influenza A(H3N2) virus changed annually.

We calculated frequencies of different changes at 533 sites. The frequency of each change was plotted against its position in concatenated protein sequences (fig. 2B). We also calculated frequencies of these changes for each analyzed year (supplementary table S3). We compared mutation frequencies between different years and found that 68 substitutions had $\Delta F > 0.1$. These substitutions were found in 10 protein sequences, in contrast to random changes, which resided mainly in HA and NA protein sequences. Moreover, the contribution of these markers into global mutation rate of A(H3N2) viruses can be calculated at 13%, which is similar to that of A(H1N1)pdm09 viruses.

Many influenza A(H3N2) markers had similar evolutionary patterns (fig. 2C). For example, D53N and Y94H in HA (numbering is based on the protein sequence without the signal peptide) were identified already in influenza A(H3N2) strains circulated in 2009, and their prevalence in the viral population increased up to and through July 2010 and then gradually decreased (numbering of mutations is based on the HA protein without the signal peptide). Interestingly, these markers are located in HA epitope that is recognized by stem-specific CR8020 antibody. Therefore, they could compromise CR8020 binding to HA and promote virus escape from host immune
responses (fig. 2D) (Tharakaraman et al. 2014). We further highlighted these markers on a phylogenetic tree that was constructed using concatenated protein sequences of selected influenza A(H3N2) strains representing different geographic regions and different epidemics (fig. 2E). Altogether, these indicate that the acquisition of these and other markers or their combinations could be beneficial for the viruses’ evolution. Interestingly, at least three identified mutations or their combinations were previously associated with viral fitness, virulence, or pathogenicity (Memoli et al. 2009; Forbes et al. 2012, 2013; Job et al. 2014).

Comparison of Evolutionary Markers of Influenza A(H1N1)pdm09 and A(H3N2) Viruses

We next compared evolutionary markers of A(H1N1)pdm09 and A(H3N2) viruses. We found that both viral subtypes have their own sets of evolutionary markers (supplementary tables S2 and S3). To simplify interpretation of the results, we mapped the marker sites on available influenza A virus protein structures (fig. 3). Our analysis revealed no overlap between the sites. Thus, influenza A(H1N1)pdm09 and A(H3N2) viruses evolved in parallel during 2009–2015, which is in agreement with previous studies. Interestingly,
many mutation sites resided on the surface of the viral proteins, suggesting that they could be involved in virus–host interactions, such as antigen–antibody interplay depicted on fig. 2D and described in literature (Ekiert et al. 2009, 2011, 2012; Corti et al. 2011; Koel et al. 2013).

Analysis of Evolutionary Markers in Vaccine Strains Recommended by WHO for 2010–2014

We searched for identified evolutionary markers in influenza A(H1N1)pdm09 and A(H3N2) vaccine strains recommended by the WHO for past five influenza seasons (supplementary tables S4 and S5). For example, we searched for markers (with \(F > 0.5 \)) of live influenza strains isolated during 2013–2014 in vaccine strains recommended by WHO for 2013/2014 season.

It appeared that only 0–2 of 50 and 19 of 24 evolutionary markers were identified in influenza A(H1N1)pdm09 and A(H3N2) vaccine strains, respectively (table 1). We also found substantial mismatches between evolutionary markers of circulated influenza viruses and vaccine strains recommended for other four seasons. Most importantly, many of these mismatches were located in antibody-binding sites of
Mapping evolutionary markers of human influenza A(H1N1)pdm09 and A(H3N2) viruses on available virus protein structures. Available three-dimensional structures of individual proteins and the polymerase protein complex of influenza A viruses were used to map the positions of sites for evolutionary markers (PDB IDs: HA – 3LZG and 4FNK, NA – 1IVG, M2 – 2LY0, M1 – 3MD2, pol – 4WSB, NP – 4IRY, and NS1 – 3F5T). Sites of influenza A(H1N1)pdm09 virus are shown in orange, whereas sites of influenza A(H3N2) virus are shown in blue. Numbering starts from Met1 for all proteins except HA. Numbering of markers in HA is based on the protein sequence without the signal peptide. The schematic structure of the influenza A virion is also shown. One monomer in NA tetramer and one monomer in HA trimmer are highlighted with light-blue.
Fig. 4.—The prevalence of evolutionary markers of live A(H1N1)pdm09 viruses isolated during 2015 in A(H1N1)pdm09 vaccine strains recommended by the WHO and by the authors for 2015/2016 influenza season. (A) Frequencies of 40 selected evolutionary markers of live viruses were plotted against their positions in corresponding viral proteins. The distribution of these markers was analyzed in A(H1N1)pdm09 vaccine strains recommended by the WHO and by the authors (encircled) for 2015/2016 influenza season. Evolutionary markers are shown as black dots. Antibodies that recognize regions of viral proteins where evolutionary markers are located are also shown. (B) Mapping sites for evolutionary markers found in HA of A(H1N1)pdm09 viruses from 2015 on H1 structure (PDB ID: H1-3LZG). Mutation sites and antibodies that recognize corresponding regions on HA are shown (PDB IDs: HA:C05 – 4FP8; HA:S139/1 – 4GMS; HA:CH65 – 3SM5; HA:2D1 – 3LZG; HA:HC45 – 1QFU; HA:HC45 – 1QFU; HA:HC45 – 1QFU; HA:FHB80.4 – 4EEF; HA:C179 – 5COR; HA:F6V3 – 3ZTN; HA:CR6261 – 3GBN; HA:F10 – 3FKU). One monomer in HA trimmer is highlighted with light-blue. Numbering of markers in HA is based on the protein sequence without the signal peptide. (C) Mapping sites of evolutionary markers found in NA of A(H1N1)pdm09 viruses from 2015 on N1 structure (PDB ID: N1 – 4B7N). Mutation sites and antibodies that recognize corresponding regions of NA are shown (PDB IDs: NA:NC41 – 1NMB, NA:Mem5 – 2AEP). One monomer in NA tetramer is highlighted with light-blue.
HA and NA, thereby compromising recognition of circulating influenza strains by antibodies generated in response to corresponding vaccine strains. Thus, the absence of the evolutionary markers in vaccine strains could decrease vaccine efficacy by affecting recognition of circulating viruses by host antibodies developed in response to corresponding vaccine strains.

Analysis of Emerging A(H1N1)pdm09 Evolutionary Markers in Corresponding Vaccine Strains Recommended by WHO for 2015/2016, and Identification of Vaccine Strain Candidate for 2015/2016 That Contains all the Evolutionary Markers

We identified 40 evolutionary markers with $F > 0.5$ in influenza A(H1N1)pdm09 strains circulated during 2015 (fig. 4A). We searched for these markers and found 0 to 2 in vaccine strains recommended by the WHO for 2015/2016 epidemic season. Many of these markers were located at the surface of HA and NA proteins. Moreover, some of them were found at the interfaces between viral glycoproteins and host antibodies (fig. 4B and C). This result indicates that mismatches between evolutionary markers in live viruses and amino acids in vaccine strains could alter recognition of HA and NA of live viruses by anti-HA and anti-NA antibodies generated against vaccine strains. For example, amino acid substitutions at position 375 of HA may alter binding of HB36.3-, HB80.4-, CR6261-, F10-, F6V3-, and C179-like antibodies, and mismatch at position 353 of NA may interfere with binding of NC41-like antibodies. Thus, we found substantial differences in evolutionary markers between influenza A(H1N1)pdm09 strains circulated in 2015 and vaccine A(H1N1)pdm09 strains recommended by the WHO for 2015/2016 influenza season.

We also searched for influenza strains that contain all 40 evolutionary markers of 2015 live A(H1N1)pdm09 viruses. We identified A/Hawaii/64/2014(H1N1) strain (fig. 4A). This indicates that A/Hawaii/64/2014(H1N1)-like strains could be used as a vaccine candidate for 2015/2016. Importantly, six evolutionary markers of A/Hawaii/64/2014(H1N1) reside in known antibody-binding regions of HA and NA, suggesting that such vaccine candidates could induce better protective immunity against live viruses than the strains recommended by the WHO.

Table 1

<table>
<thead>
<tr>
<th>Time interval</th>
<th>A(H1N1)pdm09 vaccine strain</th>
<th>No. of markers</th>
<th>A(H3N2) vaccine strain</th>
<th>No. of markers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>A/Wisconsin/15/2009</td>
<td>0 (9)</td>
</tr>
<tr>
<td>2011/2012</td>
<td>A/California/07/2009</td>
<td>0 (14)</td>
<td>A/Perth/16/2009</td>
<td>0 (10)</td>
</tr>
<tr>
<td>2012/2013</td>
<td>A/California/07/2009</td>
<td>0 (31)</td>
<td>A/Victoria/361/2011</td>
<td>16 (22)</td>
</tr>
<tr>
<td></td>
<td>A/Christchurch/16/2010</td>
<td>2 (31)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A/Brisbane/10/2010</td>
<td>2 (31)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A/California/04/2009</td>
<td>0 (31)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A/Texas/05/2009</td>
<td>1 (31)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A/England/195/2009</td>
<td>1 (31)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A/New York/18/2009</td>
<td>1 (31)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013/2014</td>
<td>A/California/07/2009</td>
<td>0 (50)</td>
<td>A/Texas/50/2012</td>
<td>19 (24)</td>
</tr>
<tr>
<td></td>
<td>A/Christchurch/16/2010</td>
<td>2 (50)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A/Brisbane/10/2010</td>
<td>2 (50)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A/California/04/2009</td>
<td>0 (50)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A/Texas/05/2009</td>
<td>1 (50)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A/England/195/2009</td>
<td>1 (50)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A/New York/18/2009</td>
<td>1 (50)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A/Christchurch/16/2010</td>
<td>2 (42)</td>
<td>A/Almaty/2958/2013</td>
<td>20 (33)</td>
</tr>
<tr>
<td></td>
<td>A/Brisbane/10/2010</td>
<td>2 (42)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A/California/04/2009</td>
<td>0 (42)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A/Texas/05/2009</td>
<td>1 (42)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A/England/195/2009</td>
<td>1 (42)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A/New York/18/2009</td>
<td>1 (42)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The numbers in brackets refer to markers present in live viruses, and the numbers in front of the brackets refer to markers in corresponding vaccine strain.
FIG. 5.—The prevalence of evolutionary markers of live A(H3N2)pdm09 viruses from 2015 in A(H3N2) vaccine strains recommended by the WHO and by the authors for 2015/2016 influenza season. (A) Frequencies of 32 selected evolutionary markers of live viruses were plotted against their positions in corresponding viral proteins. The distribution of these markers were analyzed in A(H3N2) vaccine strains recommended by the WHO and by the authors (encircled) for 2015/2016 influenza season. Evolutionary markers are shown as black dots. Antibodies that recognize regions of viral proteins where evolutionary markers are located are also shown. (B) Mapping sites for evolutionary markers found in HA of A(H3N2) viruses from 2015 on H3 structure (PDB ID: 4FNK). Mutation sites and antibodies that recognize corresponding regions on HA are shown (PDB IDs: A:F045-92 – 4O58, HA:2D1 – 3LZG, HA:S139/1 – 4GMS, HA:C05 – 4FP8, HA:FLD194 – 5A3I, HA:F16V3 – 3ZTN). One monomer in HA trimer is highlighted with light-blue. Numbering of markers in HA is based on the protein sequence without the signal peptide. (C) Mapping sites of evolutionary markers found in NA of A(H3N2) viruses from 2015 on N2 structure (PDB ID: N1-1IVG). Mutation sites and antibodies that recognize corresponding regions of NA are shown (PDB IDs: NA:CD6 – 4QNP, NA:Mem5 – 2AEP). One monomer in NA tetramer is highlighted with light-blue.
Genome-wide analysis of evolutionary markers of influenza A viruses

Most of the markers were located on the surfaces of HA and NA (fig. S8 and C). Ten mismatches between evolutionary markers and corresponding amino acids of vaccine strains could alter recognition of viral glycoproteins of live viruses by antibodies generated against vaccine HA and NA. For example, mismatches at position 159 and 160 of HA may lower the affinity of F045-92-like and 2D1-like antibodies that target HA head region. Thus, we found substantial differences in evolutionary markers between live influenza A(H3N2) strains circulated in 2015 and corresponding vaccine strains recommended by the WHO for 2015/2016 influenza season.

We also searched for live influenza strain that contain all 32 evolutionary markers. We identified A/Stockholm/17/2014(H3N2) strain (fig. S4). This indicates that A/Stockholm/17/2014(H3N2)-like strains could be used as vaccine candidates for 2015/2016. Importantly, three evolutionary markers of the A/Stockholm/17/2014(H3N2) strain reside in known antibody-binding sites of HA, suggesting that such vaccine candidates could induce better protective immunity against live viruses than the strains recommended by the WHO. However, clinical trials are needed to validate our predictions.

Discussion

There were many studies that have attempted to track the evolution and evolutionary driving sites in influenza viruses, mostly by identifying those sites under selective pressure, using evolution-aware and statistically rigorous codon models that consider separately the non-synonymous and synonymous substitution rates and base/codon frequencies (Plotkin et al. 2002; Smith et al. 2004; Drummond et al. 2006; Streliowa and Lassig 2012; Bhatt et al. 2013; Bedford et al. 2013; Lee et al. 2015a; Tharakaraman and Sasisekharan 2015). Moreover, some of these studies utilized whole-genome sequences of influenza viruses and modern software, such as FUBAR and PAML/CODEML (Holmes et al. 2005; Nelson and Holmes 2007; Nunes et al. 2008; Murrell et al. 2013; Vijaykrishna et al. 2015). Phylogenetic trees have also been used in such studies to help differentiate mutations that are gained by individual events and by inheritance in a lineage, and hence to predict the impact of the mutations to the virus survival (Holmes et al. 2005; Smith et al. 2009; Bhatt et al. 2013; Bedford et al. 2013; Steinbruck et al. 2014).

Here we analyzed available primary and tertiary protein structures of human influenza A viruses to better understand their evolution. In particular, we retrieved whole-genome sequences of influenza viruses and modern software, such as FUBAR and PAML/CODEML (Holmes et al. 2005; Nelson and Holmes 2007; Nunes et al. 2008; Murrell et al. 2013; Vijaykrishna et al. 2015). Phylogenetic trees have also been used in such studies to help differentiate mutations that are gained by individual events and by inheritance in a lineage, and hence to predict the impact of the mutations to the virus survival (Holmes et al. 2005; Smith et al. 2009; Bhatt et al. 2013; Bedford et al. 2013; Steinbruck et al. 2014).

We further clustered the markers into groups based on similarities in their evolution dynamics (amino acid frequency over virus collection time). For example, amino acid changes I354L and V344M of PB2 as well as N321K of PA had similar evolution patterns and therefore can be grouped together (supplementary table S2). Interestingly, I354L and V344M could modulate PB2 activity in snatching caps from host RNAs, whereas N321K of PA was reported to enhance polymerase complex activity in vitro and virus replication in cell culture (Elderfield et al. 2014). Moreover, all three changes could be a part of the adaptation strategy of swine-origin A(H1N1)pdm09 virus to human host, which resulted in virus transition from severe pandemic to mild epidemic mode (Elderfield et al. 2014; Mishel et al. 2015). Also other markers can be divided into groups based on their evolution patterns: D98N and E500K of HA; K166Q and A267T of HA; I34V, K432E of NA, and K361R of PA; N200S of NA, K230R of M1, D21G of M2, and S498N of NP; L90I of NS1 and I397M of PB1; T373A and V425I of NP; E55K of NS1 and N295 of NS2, as well as D195N, R293K, and V731I of PB2. The simultaneous increase and reversions of these changes could be reflections of influenza segments being reasonably well-linked.

Similar co-evolving markers can be found in influenza A(H3N2) strains. For example, amino acid changes D53N and Y94H occurred almost simultaneously in HA. These changes could allow the virus to overcome the immunity developed after previous infections or vaccination. Some other influenza A(H3N2) markers within and outside of HA have similar evolution patterns: Q33R and N278K of PB2; N144 and Q311H of HA; N145S and V223I of HA; K160T and F159Y of HA; T48I, S45N of HA, and K229E of NS1; T267K of NA and N272S of PA; E421D of NP and E331D of PB1; A587T of PB1, I461V and I63V of PB2, S135N and D139G of NS1, and K88R of NS2; as well as D195N, R293K, and V731I of PB2. The simultaneous increase and reversions of these changes could be reflections of influenza segments being reasonably well-linked.

These changes could allow the virus to overcome the immunity developed after previous infections or vaccination. Some other influenza A(H3N2) markers within and outside of HA have similar evolution patterns: Q33R and N278K of PB2; N144 and Q311H of HA; N145S and V223I of HA; K160T and F159Y of HA; T48I, S45N of HA, and K229E of NS1; T267K of NA and N272S of PA; E421D of NP and E331D of PB1; A587T of PB1, I461V and I63V of PB2, S135N and D139G of NS1, and K88R of NS2; as well as D195N, R293K, and V731I of PB2. The simultaneous increase and reversions of these changes could be reflections of influenza segments being reasonably well-linked.

These changes could allow the virus to overcome the immunity developed after previous infections or vaccination. Some other influenza A(H3N2) markers within and outside of HA have similar evolution patterns: Q33R and N278K of PB2; N144 and Q311H of HA; N145S and V223I of HA; K160T and F159Y of HA; T48I, S45N of HA, and K229E of NS1; T267K of NA and N272S of PA; E421D of NP and E331D of PB1; A587T of PB1, I461V and I63V of PB2, S135N and D139G of NS1, and K88R of NS2; as well as D195N, R293K, and V731I of PB2. The simultaneous increase and reversions of these changes could be reflections of influenza segments being reasonably well-linked.

Furthermore, we subdivided the evolutionary markers into drivers and passengers based on their time of appearance within these groups (supplementary tables S2 and S3). For example, PB2 I354L was detected few months before PB2 V344M and PA N321K, and thus, can represent a driver in...
this group of mutations with overall similar evolution dynamics. However, more whole-genome sequences in shorter time intervals would be needed to validate the driver/passenger hypothesis.

We also demonstrated that influenza A(H1N1)pdm09 and A(H3N2) viruses have their own sets of evolutionary markers. But the question remained, whether these viruses can exchange their evolutionary markers via reassortment events. Only a small fraction of the influenza A virus population had reassorted genomes. In particular, A(H1N1)pdm09 viruses acquired PB1 segments from A(H3N2) viruses during 2013 (supplementary fig. S1). But, the ΔF of mutations introduced via reassortment events was less than 0.1; therefore, these mutations should not be considered evolutionary markers. Thus, rare reassortment events did alter the composition of evolutionary markers of influenza A virus subtypes. By contrast, influenza B viruses of Victoria and Yamagata lineages frequently exchange their segments (Matsuzaki et al. 2004; Vijaykrishna et al. 2014; Dudas et al. 2015). The frequent reassortment events complicate genome-wide analysis of evolutionary markers for influenza B virus lineages. Thus, our approach at its current stage is relevant only for influenza A viruses. We were wondering whether our genome-wide analysis of evolutionary markers of influenza A viruses can improve vaccine strain selection. We analyzed evolutionary markers in vaccine strains recommended by the WHO for corresponding influenza seasons and found only few of them in vaccine strains. Many of these markers were located on the surface of major influenza antigens, HA and NA, and the absence of these markers in vaccine strains could compromise the antigenic properties of vaccine strains, and thus lower vaccine efficacy. Also, many of the markers were located in other viral proteins, and could affect their function and interactions. Furthermore, we identified A/Hawaii/64/2014(H1N1) and A/Stockholm/17/2014(H3N2) strains, which contain all the emerging evolutionary markers, and propose to use these or similar viruses as vaccine candidates for 2015/2016. Thus, our genome-wide analysis of evolutionary markers suggested a potential vaccine candidate that can be a close match with most of the circulating strains, hence providing better protection against influenza A virus infections to the population.

In conclusion, recent advances of next-generation sequencing techniques and increasing number of available whole-genomes sequences of influenza A viruses from different geographic regions can be used for tracking and prediction of virus evolution and for selection of vaccine strain candidates. Here, we developed a simple approach for reliable real-time tracking and prediction of viral evolution based on whole-genome sequences of human influenza A(H1N1)pdm09 and A(H3N2)viruses, which could further improve vaccine strain selection process and, thereby, enhance vaccine efficacy. Our approach may also improve diagnostics and personalized treatment of severe influenza infections. It can also be used in drug development programs as well as in virus surveillance studies, which monitor antiviral drug-resistance. Altogether, these may allow us to better control seasonal influenza outbreaks in near future.

Supplementary Material

Supplementary figure S1 and Supplementary tables S1–S5 are available at Genome Biology and Evolution online (http://www.gbe.oxfordjournals.org/).

Acknowledgments

We gratefully acknowledge the authors, originating and submitting laboratories of the sequences from the GISAID and IVR databases on which this research is based. We also thank Sara Kangaspeska, Triin Lakspere, Petri Jalovaara, Laura Kakko, Niina Ikonen, Hannimari Kallo-Kokko, Anu Kantele, and Ilkka Julkunen for critical discussion of the manuscript. This work was supported by the University of Helsinki three-year research project grant (465/51/2014), CIMO Fellowship (TM-15-9787), and Jane and Aatos Erkko Foundation.

Literature Cited

Associate editor: Sabyasachi Das