Emergence of Epidemic Multidrug-Resistant Enterococcus faecium from Animal and Commensal Strains

Lebreton, Francois

2013

http://hdl.handle.net/10138/166982
https://doi.org/10.1128/mBio.00534-13

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.
Emergence of Epidemic Multidrug-Resistant Enterococcus faecium from Animal and Commensal Strains

François Lebreton, Willem van Schaik, Abigail Manson McGuire, Paul Godfrey, Allison Griggs, Varun Mazumdar, Jukka Corander, Lu Cheng, Sakina Saif, Sarah Young, Qiandong Zeng, Jennifer Wortman, Bruce Birren, Rob J. L. Willems, Ashlee M. Earl, Michael S. Gilmore

Departments of Ophthalmology, Microbiology and Immunobiology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA; The Broad Institute, Cambridge, Massachusetts, USA; Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland

ABSTRACT Enterococcus faecium, natively a gut commensal organism, emerged as a leading cause of multidrug-resistant hospital-acquired infection in the 1980s. As the living record of its adaptation to changes in habitat, we sequenced the genomes of 51 strains, isolated from various ecological environments, to understand how E. faecium emerged as a leading hospital pathogen. Because of the scale and diversity of the sampled strains, we were able to resolve the lineage responsible for epidemic, multidrug-resistant human infection from other strains and to measure the evolutionary distances between groups. We found that the epidemic hospital-adapted lineage is rapidly evolving and emerged approximately 75 years ago, concomitant with the introduction of antibiotics, from a population that included the majority of animal strains, and not from human commensal lines. We further found that the lineage that included most strains of animal origin diverged from the main human commensal line approximately 3,000 years ago, a time that corresponds to increasing urbanization of humans, development of hygienic practices, and domestication of animals, which we speculate contributed to their ecological separation. Each bifurcation was accompanied by the acquisition of new metabolic capabilities and colonization traits on mobile elements and the loss of function and genome remodeling associated with mobile element insertion and movement. As a result, diversity within the species, in terms of sequence divergence as well as gene content, spans a range usually associated with speciation.

IMPORTANCE Enterococci, in particular vancomycin-resistant Enterococcus faecium, recently emerged as a leading cause of hospital-acquired infection worldwide. In this study, we examined genome sequence data to understand the bacterial adaptations that accompanied this transformation from microbes that existed for eons as members of host microbiota. We observed changes in the genomes that paralleled changes in human behavior. An initial bifurcation within the species appears to have occurred at a time that corresponds to the urbanization of humans and domestication of animals, and a more recent bifurcation parallels the introduction of antibiotics in medicine and agriculture. In response to the opportunity to fill niches associated with changes in human activity, a rapidly evolving lineage emerged, a lineage responsible for the vast majority of multidrug-resistant E. faecium infections.

Antibiotic resistance is a leading threat to human health worldwide that substantially increases the cost of health care (1). Enterococci emerged in the 1970s and 1980s as leading causes of antibiotic-resistant infection of the bloodstream, urinary tract, and surgical wounds (1), contributing to 10,000 to 25,000 deaths per year in the USA (2). Resistance to antibiotics is common among enterococci (1), and vancomycin-resistant Enterococcus faecium now represents up to 80% of E. faecium isolates in some hospitals (3). Agricultural practices have promoted the emergence of antibiotic resistance (4–6). The use of avoparcin in animal feed in Europe and elsewhere appears to have contributed to the proliferation of vancomycin resistance (7–11), and enterococci have begun to transmit vancomycin resistance to methicillin-resistant Staphylococcus aureus (12).

Previously, we examined a limited sampling of human commensal and hospital isolates of E. faecium and found that by average nucleotide identity analysis (ANI), some differed by more than 5%, crossing the threshold used for species identity (13). Since variation was noted among hospital strains (13–16) and since little was known about strains from the gastrointestinal (GI) tracts of domestic and other animals, it was of interest to determine the scope of diversity within the species and to precisely define these populations and their origins. We therefore characterized the breadth of the species by sequencing and comparing...
RESULTS
Phylogenomic reconstruction of *E. faecium* divergence. We determined the nucleotide sequences of the genomes of 51 *E. faecium* strains of different MLST types (see Table S1 in the supplemental material), which were obtained from diverse ecological environments (see Fig. S1 in the supplemental material) on five continents, and isolated over the last 60 years (Fig. S1). A single nucleotide polymorphism (SNP)-based phylogenetic tree, which compared these strains to each other and to an additional 22 strains from GenBank (Table S1), was generated based on variation in 1,344 shared single-copy orthologous groups (orthogroups) (Fig. 2). This tree confirmed the deep divide between clades (clades A and B) (13, 16). Most (5/7) strains isolated from the feces of nonhospitalized humans cluster in clade B. We were able to resolve the epidemic hospital strains (clade A1) from a mixed group of animal strains and sporadic human infection isolates (clade A2). This clade structure was independently recapitulated based on cluster analysis of (i) shared gene content (Fig. S2) and (ii) gene synteny (Fig. S3).

Clade A1 strains account for the vast majority of human infection (Fig. 2) and include sequence types (STs) from the clonal complex 17 (CC17) genogroup (e.g., sequence type 17 [ST17], ST117, and ST78 [18]) associated with hospital ward outbreaks around the globe (see Table S1 in the supplemental material). Interestingly, the three clade A1 strains of animal origin are from pet dogs, consistent with known links between hospital strains and household pets (19). Two strains (EnGen0002 and 1_231_408) possess hybrid genomes, consisting of a background genome of clade A1, into which 195 kb to 740 kb DNA from a clade B donor have recombined (Fig. S4).

To determine whether the calculated mutation rate differences reflected historic events or whether they are still experimentally detectable, the rate of mutation to fosfomycin resistance was measured for 10 randomly selected strains from each clade. Resistance was verified for stability by passage in the absence of selection, followed by retesting. Clade A1 strains yielded spontaneous fosfomycin-resistant variants at a rate about an order of magnitude higher than strains of either clade A2 or clade B (Fig. 3), paralleling the results of BEAST analysis. Therefore, mutation
rates for each clade inferred by BEAST were used to estimate the time of divergence between clades A1, A2, and B. This placed the time of the initial split between clade A and clade B at 2,776 +/− 818 years ago and that between clade A1 and clade A2 at 74 +/− 30 years ago (Fig. 2).

Gene content differences. Gene gain and loss make fundamental contributions to new habitat adaptation and the emergence of new lineages (24). Strains from clade A1 were found to have significantly larger overall average genome size (2,843 ± 159 genes; 2.98 ± 0.15 Mb) than strains of either clade A2 (2,597 ± 153 genes; 2.75 ± 0.14 Mb) or clade B (2,718 ± 120 genes; 2.84 ± 0.1 Mb) (Fig. 4A), indicating that perpetuating cycles of infection and survival in the hospital are associated with acquisition of new functions. Clade A1 strains also have larger core genomes (1,945 genes) than strains of clade A2 (1,724 genes) or clade B (1,805 genes), which is consistent with a very recent emergence of this
lineage (i.e., little time for divergence between strains to occur) (Fig. 4C). In contrast, the pan-genome of clade A2 is larger (6,343 genes) than those of clade A1 and B (5,663 and 5,551 genes, respectively) (Fig. 4B), which is consistent with the diverse origins of strains from this clade. In comparison to other opportunists, the E. faecium genome is relatively open (see Fig. S5 in the supplemental material).

Previously, the genomes of hospital strains of the sister species, Enterococcus faecalis, were found to differ from commensal organisms largely as the result of mobile element acquisition (13), which was associated with the absence of CRISPR (clustered regularly interspaced short palindromic repeat) protection (25). It was, therefore, of interest to determine the extent to which mobile elements drove the divergence of E. faecium clades. Mobile elements were identified using PHAST (26) for phages, SIGI-HMM (27) for genomic islands, and BLAST for repA orthologs in plasmid-related contigs (28). Clade A1 was found to be enriched in mobile elements, including plasmids (5.4 ± 1.9 plasmids/genome in clade A1, compared to 2.7 ± 2.2 and 1.5 ± 1.1 plasmids/genome in clade A2 and B strains, respectively), integrated phages (1.6 ± 0.9 phages/genome, compared to 0.7 ± 0.7 and 0.9 ± 0.8 phages/genome in clade A2 and B strains, respectively) and other genomic islands (36 ± 26 kb of island-associated sequence/genome, compared to 14 ± 10 and 17 ± 11 kb of island-associated sequence/genome in clade A2 and B strains, respectively) (Fig. 4D). Because the genome sequences generated in the present study were of high quality, yielding a small number of scaffolds
individual genes showing an enrichment in clade A versus clade B that may relate to colonization and niche selection (30). Intercocin (29), and an LPXTG-anchored collagen adhesin in cluster 17 that likely confers resistance to a cognate bac-

trase in cluster 17 that likely confers resistance to a cognate bac-

trase in cluster 17 that likely confers resistance to a cognate bac-

trase in cluster 17 that likely confers resistance to a cognate bac-

trase in cluster 17 that likely confers resistance to a cognate bac-

trase in cluster 17 that likely confers resistance to a cognate bac-

trase in cluster 17 that likely confers resistance to a cognate bac-

trase in cluster 17 that likely confers resistance to a cognate bac-

trase in cluster 17 that likely confers resistance to a cognate bac-

trase in cluster 17 that likely confers resistance to a cognate bac-

trase in cluster 17 that likely confers resistance to a cognate bac-

trase in cluster 17 that likely confers resistance to a cognate bac-

trase in cluster 17 that likely confers resistance to a cognate bac-

trase in cluster 17 that likely confers resistance to a cognate bac-

trase in cluster 17 that likely confers resistance to a cognate bac-

trase in cluster 17 that likely confers resistance to a cognate bac-

trase in cluster 17 that likely confers resistance to a cognate bac-

trase in cluster 17 that likely confers resistance to a cognate bac-

trase in cluster 17 that likely confers resistance to a cognate bac-

trase in cluster 17 that likely confers resistance to a cognate bac-

trase in cluster 17 that likely confers resistance to a cognate bac-

trase in cluster 17 that likely confers resistance to a cognate bac-

trase in cluster 17 that likely confers resistance to a cognate bac-

trase in cluster 17 that likely confers resistance to a cognate bac-

To identify functional differences and remaining differences in gene content not restricted to mobile elements, we next identified orthogroups present in \(\geq 80\% \) of genomes of one clade but in \(\leq 20\% \) of strains from a comparator (see Table S2 in the supplemental material). Contiguous groups of genes were identified and associated with the mobile elements identified above where possible. To begin to understand the ecological forces that led to the initial bifurcation between clades A and B, we identified genes occurring in most clade A (A1 plus A2) strains but that were rare in clade B and vice versa. We found 66 orthogroups enriched at the level of \(\geq 80\% \) in clade A and \(\leq 20\% \) in clade B and 138 orthogroups enriched in clade B versus clade A (Table S2). Genes enriched in clade A strains largely occurred in 12 clusters of contiguous genes (cluster 2 [C2], C8, C10, C11, C12, C17, C19, C20, C21, C22, C23, and C24), with 8 clusters occurring in identifiable mobile elements. Cluster 10, 11, 12, and 24 genes encode functions related to altered carbohydrate utilization (Table 1 and Table S2). Cluster 19 genes include ABC transporters putatively related to antibiotic transport. Other genes enriched in clade A strains, with predicted roles in adapting to different habitats, include genes encoding a putative membrane-bound metallopro-
tase in cluster 17 that likely confers resistance to a cognate bac-
teriocin (29), and an LPXTG-anchored collagen adhesin in cluster 21 that may relate to colonization and niche selection (30). Indi-

\(\text{FIG 5} \) Summary of clade-specific antibiotic resistance genes, insertion sequences (IS), and select defenses against horizontal gene transfer. Each box represents a strain, arranged by clade as shown in Fig. 2. The “X” symbol in a box indicates genome sequence with an assembly quality that precluded identification of the indicated feature. An asterisk in a box indicates hybrid genomes that contain CRISPR-cas on recombined fragments. CRISPR and type IV restriction-modification (RM) systems are included in the miscellaneous (Misc.) category.

strains include a putative choloylglycine bile hydrolase related to that known to be important in the pathogenesis of Listeria infection (31), which may enable \textit{E. faecium} to colonize regions of the intestine more proximal to the bile duct.

Genes representing 138 orthogroups were found to be enriched in clade B strains compared to clade A strains. These largely occur in 24 clusters of contiguous genes but this time with few signatures of mobile elements. Gene groups C33, C35, C37, C43, C44, C45, C51, and C54 and a single gene (EfmE980_2866) have predicted roles in carbon metabolism, highlighting the differential use of carbohydrates by strains of each clade (Table 1; see Table S2 in the supplemental material). Cluster 50 encodes a cysteine-containing DnaJ-like chaperone, adjacent to a putative metallo-

\(\beta \)-lactamase class protein that is likely to be involved in the homeostasis of glutathione pools (since these commensal strains of \textit{E. faecium} do not inactivate \(\beta \)-lactams), involved in maintenance of protein structure. A main driver of clade divergence, therefore, appears to stem from residence in different ecological environments that have selected for the systematic exchange of phospho-
transferase system (PTS) systems, with strains of clade A acquiring new PTS systems on mobile elements and deleting obsolete PTS systems from the clade B chromosome.

Interestingly, cluster 39, which is enriched in clade B, contains four genes that are predicted to form an \(\text{agr} \)-like quorum-sensing system (32), along with another Mga-type regulator that may connect quorum sensing to carbohydrate utilization (Table 1; see Table S2 in the supplemental material) (33). Unexpectedly, cluster 53, with an apparent 98-amino-acid secretion target (EfmE980_2510), which also is enriched in clade B, appears to encode a type VII secretion system. Both \(\text{agr} \) (32) and type VII secretion systems (34, 35) have been studied for their contribution to infection pathogenesis, but the pattern of differential presence observed here highlights potentially important roles in commensalism as well.

It was also of interest to examine differential gene presence in clades A1 and A2. In hospital epidemic clade A1, 48 genes were identified as differentially present, with 37 genes occurring in 6
distinct clusters associated with mobile elements (Table 1; see Table S2 in the supplemental material). Interestingly, the split between clades A1 and A2 is also associated with the gain of pathways for carbohydrate utilization. Clade A1 strains acquired an apparent mobile element of 13 genes (C6 [Table 1]) encoding enzymes for uptake and utilization of fructose, sorbose, and mannose. This appears to be functionally related to a cluster (C36) that earlier was lost from clade B by strains of clade A. C6 is known to play an important role in GI tract colonization following antibiotic treatment (36). It is interesting that clade A1 recovered this ability, and this observation suggests that it may relate to human colonization.

Cluster C16 is also differentially enriched in clade A1 and contributes to carbohydrate utilization. No orthogroups were enriched in clade A2 versus clade A1.

TABLE 1 Enrichment of functional gene clusters in *E. faecium* clades

<table>
<thead>
<tr>
<th>Cluster</th>
<th>A vs B</th>
<th>A1 vs B</th>
<th>A2 vs B</th>
<th>B vs A</th>
<th>A1 vs A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Differentially occurring clusters of genes associated with chromosomal DNA (black), putative ICE elements (integrative and conjugative elements) (dark gray), plasmids (medium gray), or phages (light gray). Clusters functionally associated with carbohydrate uptake and utilization are indicated in blue type. No genes are differentially enriched in the genomes of strains in clade A2 compared to clade A1. HTH, helix-turn-helix.
We identified additional genes that show enrichment in clade A1 compared to clade A2. Gene clusters 1, 3, and 27 putatively encode proteins for PTS systems and enzymes for the interconversion and metabolism of lactose/cellobiose, glucose, mannose, N-acetylneuraminic acid, N-acetylmannosamine, and other sialic acids. Clusters 1 and 27 are associated with mobile elements. Cluster 18 (C18), which is also enriched in clade A1 compared to clade B, encodes a three-gene operon for a class II bacteriocin that may be a colonization factor (Table 1; see Table S2 in the supplemental material).

Bifurcation of clade A parallels the proliferation of resistance. To understand the role that antibiotics played as a driver of clade formation, we examined the differential presence of resistance genes (see Table S3 in the supplemental material). Two resistance genes \([\text{aac}(6')-\text{IIa}]\) conferring resistance to kanamycin and \(\text{bacA}\) conferring bacitracin resistance are part of the core \(E.\ faecium\) genome. The ubiquitous presence of \(\text{aac}(6')-\text{IIa}\) has been observed before and contributes to the intrinsic resistance of \(E.\ faecium\) to several aminoglycosides (37). The \(\text{bacA}\) gene may be responsible for intrinsic resistance to bacitracin observed among \(E.\ faecium\) (38). Seven strains analyzed were isolated in the 1950s and 1960s, allowing for the identification of genes associated with some of the earliest known acquired resistances to occur in \(E.\ faecium\). Strains EnGen0025, EnGen0027, EnGen0031, EnGen0032, and E1636 were isolated between 1957 and 1965; these strains fall into clade A2. Each of these strains also possesses the \(\text{fusA}\) fusidic acid resistance gene. Additionally, strains EnGen0025, EnGen0027, EnGen0031, and E1636 possess the \(\text{msrC}\) gene, which confers erythromycin resistance. Strain EnGen0025 additionally acquired the aminoglycoside resistance genes \(\text{ant}(6')-\text{la}\) (conferring resistance to streptomycin) and \(\text{aph}(3')-\text{III}\) (conferring resistance to several aminoglycosides, including neomycin and gentamicin B), \(\text{ermB}\), and \(\text{tetM}\). As shown in Fig. 2, this strain (the fifth strain from the top of clade A2) is closely related to the clade A1 branch point and presumably the clade A1 founder.

Other resistances exhibit clear clade specificity (Fig. 5; see Table S3 in the supplemental material). Vancomycin resistance is completely absent from clade B. Vancomycin resistance occurs mainly in clade A1 but also occurs in clade A2. Aminoglycoside resistance genes \(\text{ant}(6')-\text{la}\) and \(\text{aph}(3')-\text{III}\) are completely absent from clade B strains, but they occur in most clade A1 isolates. Interestingly, in clade B, the \(\text{msrC}\) resistance gene correlates perfectly with the presence of a CRISPR element. We have not found prior mention of the occurrence of several resistance genes in \(E.\ faecium\), including the \(\text{aadD}\) cassette, which confers resistance to tobramycin and kanamycin, in a single genome (strain EnGen0035). We also observed genes \(\text{hupB}, \text{ermG}\), and \(\text{ermT}\) (that likely confer various degrees of resistance to the macrolides-lincosamides-streptogramin B [MLS] class of antibiotics), \(\text{tetC}\) (conferring resistance to tetracycline), and \(\text{fosB}\) (conferring resistance to fosfomycin) in \(E.\ faecium\).
A1, a penicillin binding protein transpeptidase and the d-alanyl-
D-alanine ligase were under differential positive selection com-
pared to strains of both clades A2 and clade B (Table S4B). Finally,
an MFS transporter involved in carbohydrate transport and met-
abolism in clade A1 and an N-acetylglucosamine transferase in
clad A2 were found to be under positive selection pressure, pro-
viding independent support for the importance of differential car-
bohydrate utilization as a determinant of clade structure, as in-
ferred from gene gain/loss patterns described above.

DISCUSSION
Speciation results from expansion into new ecological niches and
subsequent isolation from the founder population (42) and is ac-
companied by changes in the genome stemming from mutation,
recombination (43), and horizontal gene transfer (44). All of these
processes have contributed to the current population structure of
E. faecium and its emergence as a leading multidrug-resistant hos-
pital pathogen.

Quantification of mutation rates for strains in each E. faecium
clade allowed us to estimate that the first bifurcation in the E. faec-
cium population took place approximately 3,000 years ago, sub-
stantially sooner than previously suggested (16). Although it is
difficult to know the ecological drivers of this split with precision,
the timing suggests that it relates to increasing insulation between
the flora of humans and animals, which likely stemmed from in-
creased urbanization, increased domestication of animals provid-
ing restricted and specialized diets (45, 46), and increasing use of
hygienic measures (47, 48). This bifurcation was associated with a
wholesale loss and replacement of carbohydrate utilization path-
ways, mediated largely by acquisition on mobile elements by
strains of clade A. Many of the clade B pathways lost by clade A
strains relate to the utilization of complex carbohydrates from
dietary sources, and the pathways lost were replaced by pathways
on mobile elements associated with the utilization of amino sug-
ars, such as those occurring on epithelial cell surfaces and in mu-
cin, suggesting a possible shift from a lifestyle dependent mainly
on host diet (clade B) to one increasingly dependent on host se-
cretions (clade A). In addition to carbohydrate utilization path-
ways, there was a substantial shift in genes encoding Mga-type
helix-turn-helix regulators, which in Streptococcus pyogenes con-
ect expression of niche-specific genes with carbohydrate metab-
olism (33).

The second split in the E. faecium population, the split between
clade A1 and clade A2, appears to have occurred approximately
75 years ago, coinciding precisely with the introduction of antibi-
otics in both clinical medicine and agriculture. However, this split
may not have been directly driven by the usage of antibiotics, as
antibiotics are used both in farming and in human medicine. The
ability to rapidly acquire new traits on mobile elements, including
carbohydrate utilization pathways as well as resistance to antibiot-
ics, appears to be an intrinsic trait of clade A1 and clade A2.
Although clade A1 strains now cause the vast majority of infec-
tions (Fig. 2), early clinical isolates from the 1950s and 1960s do
not cluster in clade A1. The earliest isolation of a strain associated
with an MLST type occurring in clade A1, occurred in 1982 (49).
That isolate already possessed high-level resistance to gentamicin
and carried the esp gene.

Interestingly, we found that the recently emergent hospital-
adapted clade A1 is hypermutable, as reflected in the inferred rate
of mutation in the genomes, and experimentally. Hypermutation
in Gram-negative bacteria has been linked to the emergence of
antibiotic-resistant lineages that are pathogenic to humans (50–
52). In Gram-positive bacteria, hypermutating populations of
pathogenic Streptococcus pneumoniae and Staphylococcus aureus
have been observed (53, 54). In E. faecium, polymorphisms in
mutS and mutL (which encode DNA mismatch repair proteins)
have been noted (55), but the polymorphisms are not associated
with differential mutation rates in different clades. Higher muta-
tion rates have been associated with microbes recently experienc-
ing a host switch (e.g., Mycoplasma gallisepticum, 0.8 × 10⁻⁷ to 1.2
× 10⁻⁴ substitutions per site per year [61]) and with the emer-
gence of pathogenic lineages (52), possibly including E. faecium
strains of the CC17 genogroup (56). It appears that the epidemic
hospital clade A1 emerged because of its ability to acquire mobile
elements, its ability to utilize carbohydrates of nondietary origin,
and its hypermutability.

Previously, the average nucleotide identity of eight E. faecium
strains was determined to range between 93.5 and 95.6% when
comparing strains from clades A and B (13), and clade A and B
strains would be considered to be distinct species by existing cri-
terias (57, 58). The identification of hybrid clade A1/B strains
(strains EnGen0002 and 1_231_408) show that the ecological
niches of human-infecting hospital strains and human commen-
sal strains do occasionally overlap. The emergence of the distinct
clade structure in E. faecium parallels anthropogenic changes in
urbanization and animal domestication and, more recently, the
introduction of antibiotics into agriculture and medicine. The net
effect of these forces is the emergence of a rapidly evolving lineage,
which has crossed a degree of divergence usually associated with
speciation.

MATERIALS AND METHODS
Bacterial strains. Strains selected for genome analysis were drawn from
those representing diverse points within the known phylogenic structure,
as determined by MLST (Fig. 1), and are listed in Table S1 in the supple-
mental material. DNA was purified from each E. faecium strain as de-
scribed before (13) for DNA sequence analysis. Methods for DNA se-
quencing, genome assembly, and bioinformatic analysis are provided in
Supplemental Methods at https://olive.broadinstitute.org/projects/work
_package_1/downloads, along with details of the genome sequences.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://mbio.asm.org

Figure S1, JPG file, 0.5 MB.
Figure S2, JPG file, 1.4 MB.
Figure S3, JPG file, 1.5 MB.
Figure S4, JPG file, 2.6 MB.
Figure S5, JPG file, 0.7 MB.
Figure S6, JPG file, 6.2 MB.
Table S1, DOCX file, 0.1 MB.
Table S2, PDF file, 0.6 MB.
Table S3, PDF file, 0.1 MB.
Table S4, DOCX file, 0.1 MB.

ACKNOWLEDGMENTS
This project was funded in part by the National Institute of Allergy and
Infectious Diseases, National Institutes of Health, Department of Health
and Human Services, under contract HHSN27200900018C. Portions of
this work were also supported by NIH/NIAID grants AI083214 (Harvard-
wide Program on Antibiotic Resistance), and AI107260. W.V.S. and
R.J.L.W. were supported by the European Union Seventh Framework
Programme (FP7-HEALTH-2011-single-stage) “Evolution and Transfer
Emergence of Multidrug-Resistant *Enterococcus faecium*

De Regt MJ, van Schaik W, van Luit-Aasbroek M, Dekker HAT, van Duikeren E, Koning CJM, Bonten MJM, Willems RJL. 2012. Hospital and community ampicillin-resistant *Enterococcus faecium* are evolutionarily closely linked but have diversified through niche adaptation. PLOS One 7:e30319. doi: 10.1371/journal.pone.0030319.

