Generation of iPSC line HEL47.2 from healthy human adult fibroblasts

Trokovic, Ras

2015-07

Trokovic, R, Weltner, J & Otonkoski, T 2015, 'Generation of iPSC line HEL47.2 from healthy human adult fibroblasts' Stem Cell Research, vol. 15, no. 1, pp. 263-265. DOI: 10.1016/j.scr.2015.05.013

http://hdl.handle.net/10138/217904
https://doi.org/10.1016/j.scr.2015.05.013

Downloaded from Helda, University of Helsinki institutional repository.
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.
Please cite the original version.
Lab Resource: Stem Cell Line

Generation of iPSC line HEL47.2 from healthy human adult fibroblasts

Ras Trokovic,⁎ Jere Weltner, Timo Otonkoski

Research Programs Unit, Molecular Neurology, Biomedicum Stem Cell Centre, University of Helsinki, Helsinki, Finland
Children's Hospital, Helsinki University Central Hospital, Helsinki, Finland

Received 12 May 2015; accepted 26 May 2015
Available online 2 June 2015

Abstract
Human iPSC line HEL47.2 was generated from healthy 83-year old male dermal fibroblasts using non-integrative reprogramming method. Reprogramming factors Oct3/4, Sox2, Klf4, and cMyc were delivered using Sendai viruses.

© 2015 Elsevier B.V. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Resource details
Primary fibroblasts were grown from the skin biopsy donated by a healthy 83-year old male volunteer donor.

To generate HEL47.2 we have used four Yamanaka reprogramming factors: Oct3/4, Sox2, Klf4, and cMyc.

To deliver reprogramming factors into fibroblasts we have used integration-free method using Sendai virus particles. The absence of reprogramming vectors has been confirmed using quantitative PCR and immunostaining against Sendai virus (SeV) epitope.

We did conduct chromosomal G-band analysis on HEL47.2 and its donor fibroblast, and found the same karyotype 46,XY,abn(Y), showing that both lines are genetically identical.

Expression of pluripotent stem cell markers OCT4, SOX2, NANOG, and TDGF1 has been demonstrated using quantitative PCR. Expression at a single cell resolution has been demonstrated using antibodies against NANOG, TRA-1-60, OCT4, and SSEA3.

Teratoma assay was used to demonstrate HEL47.2 potential to differentiate into derivatives of all three germ layers.

DOIs of original article: http://dx.doi.org/10.1016/j.scr.2015.05.001, http://dx.doi.org/10.1016/j.scr.2015.05.012.
* Corresponding author.
E-mail address: ras.trokovic@helsinki.fi (R. Trokovic).
Materials and methods

Cell culture and reprogramming. Dermal fibroblasts from healthy 83-year old male donor were derived from a skin biopsy and cultured in DMEM (Sigma) supplemented with 10% FBS (Life Technologies) and GlutaMAX (Life Technologies). Protocol for fibroblast derivation can be found http://research.med.helsinki.fi/neuro/Otonkoski/protocols. Fibroblasts were reprogrammed using CytoTuneTM-iPS Sendai Reprogramming Kit (https://www.lifetechnologies.com/order/catalog/product/A1378001) using the method described (Trokovic et al., in press-a,b). To enhance the reprogramming of fibroblasts 0.25 mM sodium butyrate (NaB; Sigma, B5887) was added to all reprogramming experiments. HEL47.2 was cultured in hESC medium: DMEM/F12 with GlutaMAX (Life Technologies), 10% Knock-Out Serum Replacement (Life Technologies), 0.1 mM 2-mercaptoethanol (Life Technologies), 1× Non-Essential Amino Acids (Life Technologies), and 6 ng/ml bFGF (Sigma) and routinely propagated with combination of collagenase IV treatment and mechanic dissociation. HEL47.2 was subsequently adapted and culture in a feeder free conditions on matrigel in the presence of E8 medium (Life Technologies). iPSC lines were routinely split using 0.5 mM EDTA and thawed in the presence of Rho-kinase inhibitor (Y-27632, Sigma) during 24 h after thawing.

Immunocytochemistry. Cells were fixed at room temperature with 4% paraformaldehyde for 10 min. Non-specific proteins were blocked by ultra V block (Thermo). The cells were then treated with primary antibodies overnight at 4 °C. Primary antibodies were against TRA-1-60 (1:500, MA1-023, Thermo Fisher), OCT4 (1:500, C30A3, Cell Signalling), and SSEA3 (1:100, MAB4303, Millipore). After washing with PBS, the cells were incubated with fluorescence-conjugated secondary antibody AlexaFluor 488: donkey anti-goat (1:500, A11055, Life Technologies), goat anti-mouse (1:500, A21042, Life Technologies), goat anti-rat (1:500, A21212, Life Technologies) for 45 min, and finally mounted to cover-slip with Vectashield mounting medium with DAPI (Vectorlabs).

Quantitative polymerase chain reaction (qPCR). Total RNA was extracted using RNA Spin II (Macherey-Nagel) by following the manufacturer's instructions. Briefly, first-strand cDNA was synthesized from 2 μg total RNA by SuperScript III reverse transcriptase (Invitrogen) with oligo dT primer (Invitrogen) in 20 μl volume. 1% of above cDNA was used for each qPCR
reaction in a 20 μl mixture containing 10 μl of SYBR green-Taq mixed solution (Sigma) and 5 μl of 2 μM-primer mix. PCR reactions were carried out in a Corbette thermal cycler (Qiagen) for 40 cycles and each cycle contained 95 °C for 15 s, 60 °C for 30 s and 72 °C for 30 s. RNA without reverse transcription was used as a negative control. The relative expression level of genes was calculated by calibrating their CT values with that of the housekeeping gene Cyclophilin G. Primer sequences (5’ → 3’) were as follows: OCT4_endoF: TTGGGCTCGAGAAGGATGTG; OCT4_endoR: TCCTCTCGGTTGTGCATAGTCG; SOX2_endoF: GCCCTGCTGCGAGTAGGA; NANOG-F: CTCAG CCTCCAGCGATGC; NANOG-R: TAGATTGCATTCTCTGG TCTGG; TDGF1-F: TCAAGATGACGAGCATTGGGC; TDGF1-R: TCTAGGCAGCGAGTTCTGTTTA; SeV-F: GATCAGCTAGG TATCGAGC; SeV-R: ACCAGACAAGGTTTTAAGATATG TAC; GAPDH-F: GGTCATCCATGACAATTTGG; GAPDH-R: TGAGCTCCGTTACGTC.

Demonstration of three germ layer differentiation capacity. About 200,000 morphologically intact iPSC were intratesticularly injected into male NMRI nude mice (Scanbur). The resulting tumors were collected 8 weeks after injection, fixed with 10% formalin, and hematoxylin and eosin stained. The experimental animal welfare committee of the District Government of Southern Finland approved the animal experiments.

Verification and authentication. Chromosomal G-band analyses were performed at the Yhtyneet Medix Laboratoriot, Finland (http://www.yml.fi/). Authentications, HEL47.2 and its parental fibroblast line (M83) showed the same 46,X, abn (Y) karyotype.

References
