Mechanistic principles underlying regulation of the actin cytoskeleton by phosphoinositides

Senju, Yosuke

2017-10-24

http://hdl.handle.net/10138/228444
https://doi.org/10.1073/pnas.1705032114

Downloaded from Helda, University of Helsinki institutional repository.
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.
Please cite the original version.
Mechanistic principles underlying regulation of the actin cytoskeleton by phosphoinositides

Yooske Senji, Maria Kalimeri, Essi V. Koskela, Pentti Somerharju, Hongxia Zhao, Ilpo Vattulainen, and Pekka Lappalainen

*Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland; †Department of Physics, Tampere University of Technology, FI-33101 Tampere, Finland; ‡Faculty of Medicine, University of Helsinki, FI-00014 Helsinki, Finland; and §Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland

Edited by Kai Simons, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany, and approved September 14, 2017 (received for review March 29, 2017)

The actin cytoskeleton powers membrane deformation during many cellular processes, such as migration, morphogenesis, and endocytosis. Membrane phosphoinositides, especially phosphatidylinositol 4,5-bisphosphate [PI(4,5)P₂], regulate the activities of many actin-binding proteins (ABPs), including profilin, coloiflin, Dia2, N-WASP, ezrin, and moesin, but the underlying molecular mechanisms have remained elusive. Moreover, because of a lack of available methodology, the dynamics of membrane interactions have not been experimentally determined for any ABP. Here, we applied a combination of biochemical assays, photobleaching/activation approaches, and atomistic molecular dynamics simulations to uncover the molecular principles by which ABPs interact with phosphoinositide-rich membranes. We show that, despite using different domains for lipid binding, these proteins associate with membranes through similar multivalent electrostatic interactions, without specific binding pockets or penetration into the lipid bilayer. Strikingly, our experiments reveal that these proteins display enormous differences in the dynamics of membrane interactions and in the ranges of phosphoinositide densities that they sense. Profilin and cofillin display transient, low-affinity interactions with phosphoinositide-rich membranes, whereas F-actin assembly factors Dia2 and N-WASP reside on phosphoinositide-rich membranes for longer periods to perform their functions. Ezrin and moesin, which link the actin cytoskeleton to the plasma membrane, bind membranes with very high affinity and slow dissociation dynamics. Unlike profilin, cofillin, Dia2, and N-WASP, they do not require high “stimulus-responsive” phosphoinositide density for membrane binding. Moreover, ezrin can limit the lateral diffusion of PI(4,5)P₂ along the lipid bilayer. Together, these findings demonstrate that membrane-interaction mechanisms of ABPs evolved to precisely fulfill their specific functions in cytoskeletal dynamics.

Keywords: actin cytoskeleton | phosphoinositides | protein–lipid interactions | signal transduction | molecular dynamics simulations

Polymerization of actin filament networks against membranes provides forces for many vital cellular processes, including generation of plasma membrane protrusions in cell migration and morphogenesis, as well as the formation of plasma membrane invaginations in endocytosis (1, 2). The dynamics and the 3D organization of actin filament arrays in these processes are precisely controlled by a large array of actin-binding proteins (ABPs), whose activities are in turn regulated by various signaling pathways (3–5). In addition to kinase/phosphatase cascades, which can activate or inhibit central actin-regulatory proteins, membrane phospholipids, especially phosphatidylinositol 4,5-bisphosphate [PI(4,5)P₂] and phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P₃], have emerged as important regulators of actin dynamics. PI(3,4,5)P₃ regulates actin dynamics mainly by regulating the Rho family small GTPases, whereas PI(4,5)P₂ controls cytoskeletal dynamics more directly by regulating ABPs (6).

PI(4,5)P₂, which is the most abundant phosphorylated derivative of phosphatidylinositol at the plasma membrane, interacts with multiple ABPs. PI(4,5)P₂ typically inhibits proteins that catalyze actin filament disassembly [e.g., actin-depolymerizing factor (ADF)/cofilins, gelsolin, and twinfilin] or prevent the assembly of new actin monomers into filament ends (e.g., heterodimeric capping protein) (7–10). Conversely, PI(4,5)P₂ activates proteins that promote actin filament assembly [e.g., N-WASP] or function as linkers between actin filaments and the plasma membrane (e.g., ezrin, moesin, radixin, and talin) (11–15). As a result, an increase in the plasma membrane PI(4,5)P₂ induces actin filament assembly beneath the membrane, whereas decreasing the levels or availability of PI(4,5)P₂ at the plasma membrane diminishes actin filament assembly and enhances filament disassembly (16–19). Cell biological studies have also provided evidence that membrane interactions are critical for the proper in vivo functions of many ABPs, including cofillin, vinculin, forms, and N-WASP (20–25).

Despite the central biological roles of ABPs, the molecular mechanisms by which they interact with cellular membranes remain largely unknown. So far, atomistic details, as derived by a combination of mutagenesis and molecular dynamics simulation approaches, have been reported only for membrane interactions of the heterodimeric capping protein (26, 27), whereas, for other central ABPs, the principles of membrane interactions have remained elusive. Moreover, whether distinct ABPs interact with membranes through similar or different affinities has not been reported. Most importantly, the dynamics of membrane interactions have not been experimentally determined for any ABP. The kinetics of membrane interactions have fundamental consequences for the cellular functions of proteins. This is because the membrane phosphoinositides have emerged as key regulators of the actin cytoskeleton in cell migration, morphogenesis, cytokinesis, and endocytosis. However, the molecular mechanisms by which actin-binding proteins (ABPs) interact with phosphoinositide-rich membranes remain remarkably poorly understood. By applying a combination of biochemical, biophysical, and atomistic molecular dynamics simulation approaches on six central ABPs, we discovered that they employ multivalent electrostatic interactions for membrane binding. Strikingly, our experiments revealed that these proteins display enormous differences in their membrane interaction dynamics and in the ranges of phosphoinositide densities that they sense. These differences precisely correlate with the specific functions of these proteins in cytoskeletal dynamics. These findings uncover molecular principles by which membrane phosphoinositides regulate molecular dynamics and architecture of the actin cytoskeleton in cells.

Significance

Membrane phosphoinositides have emerged as key regulators of the actin cytoskeleton in cell migration, morphogenesis, cytokinesis, and endocytosis. However, the molecular mechanisms by which actin-binding proteins (ABPs) interact with phosphoinositide-rich membranes remain remarkably poorly understood. By applying a combination of biochemical, biophysical, and atomistic molecular dynamics simulation approaches on six central ABPs, we discovered that they employ multivalent electrostatic interactions for membrane binding. Strikingly, our experiments revealed that these proteins display enormous differences in their membrane interaction dynamics and in the ranges of phosphoinositide densities that they sense. These differences precisely correlate with the specific functions of these proteins in cytoskeletal dynamics. These findings uncover molecular principles by which membrane phosphoinositides regulate molecular dynamics and architecture of the actin cytoskeleton in cells.

Author contributions: Y.S., M.K., H.Z., I.V., and P.L. designed research; Y.S., M.K., E.V.K., and P.S. performed research; Y.S. and M.K. analyzed data; and Y.S., M.K., I.V., and P.L. wrote the paper. The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Published under the PNAS license.

†Present address: Department of Bioprodutos and Biosystems, Aalto University, 00076 Aalto, Finland.

‡To whom correspondence should be addressed. Email: pekka.lappalainen@helsinki.fi.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705032114/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1705032114
association and dissociation rates, as well as the lateral mobility of proteins along the membrane plane, determine their subcellular localization, their accessibility to other interaction partners, and the effects of "stimulus-responsive" PI(4,5)P₂ synthesis/hydrolysis on their functions. For example, cell biological studies suggested that cofilin stably binds to the plasma membrane in carcinoma cells and is released only following epidermal growth factor-induced PI(4,5)P₂ hydrolysis (21, 28, 29). Moreover, some animal, plant, and slime mold formins, which promote actin filament nucleation and elongation, were proposed to require the N-terminal phosphoinositide-binding region for proper anchoring to the plasma membrane (20, 30–33). However, such functions would require stable, high-affinity binding of these proteins to the PI(4,5)P₂-rich membranes, which has not been experimentally demonstrated.

Here, we applied a combination of biochemical, biophysical, and atomistic molecular dynamics simulation approaches to reveal how central ABPs cofilin, profilin, Dia2 formin, N-WASP, ezrin, and moesin interact with PI(4,5)P₂-rich membranes. Furthermore, we developed photobleaching and photoactivation-based assays on reconstituted membrane systems to determine the kinetics of ABP–membrane interactions. These studies uncovered that, although these proteins interact with membranes mainly through electrostatic interactions, they display drastic differences in the affinities and dynamics of membrane interactions. Interestingly, these distinct membrane-interaction kinetics correlate with the roles of these proteins in cytoskeletal dynamics.

Results

ABPs Display Drastic Differences in Binding to Phosphoinositide-Rich Membranes. To elucidate the molecular mechanisms by which PI(4,5)P₂ regulates actin dynamics, we focused on the membrane interactions of six conserved ABPs: profilin-1, cofilin-1, Dia2, N-WASP, ezrin, and moesin. We chose these proteins for the study because (i) they represent functionally different classes of actin regulatory proteins, (ii) the effects of phosphoinositides on their activities are well established, and (iii) their membrane-binding regions have been mapped by mutagenesis analyses. Nontagged and sfGFP/mCherry fusions of these proteins were expressed and purified for biochemical and in vitro imaging experiments, respectively (Fig. S1 A and B). ADF/cofilins and profilins are small globular proteins, which interact with phosphoinositides and actin through partially overlapping surfaces (34–37). Thus, full-length proteins of the major mammalian isoforms, profilin-1 and cofilin-1, were purified for our assays. Given that Dia2, N-WASP, ezrin, and moesin are large multidomain proteins that exist as autoinhibited structures, their membrane-binding domains (polybasic regions of Dia2 and N-WASP and the FERM domains of ezrin and moesin) (13, 20, 38, 39) were produced for these experiments (Fig. L4).

We first performed cosedimentation and coflotation assays with vesicles containing 10 mol% PI(4,5)P₂ to determine the membrane-binding affinities of these proteins under physiological salt conditions. Strikingly, we found drastic differences in their interactions with membranes (Fig. 1 B and Fig. S2). The FERM domains of ezrin and moesin bound phosphoinositide-rich vesicles with very high affinity (apparent Kᵣ ≈ 5 μM). The lipid-binding domains of Dia2 and N-WASP displayed intermediate membrane-binding affinities (apparent Kᵣ ≈ 100 μM), whereas profilin-1 and cofilin-1 bound membranes with only very modest affinity that was more than two orders of magnitude less than those of ezrin and moesin (Fig. 1C). We confirmed these results by visualizing the association of mCherry-tagged ABPs with giant unilamellar vesicles (GUVs) by confocal microscopy (Fig. 1D). The mCherry-tagged proteins were added on GUVs containing TopFluo-labeled PI(4,5)P₂, and the fluorescence intensities of mCherry-tagged proteins on GUVs were quantified (Fig. 1E). Consistent with the cosedimentation and coflotation results, the FERM domains of ezrin and moesin bound strongly to the GUVs, the basic domains of Dia2 and N-WASP showed intermediate binding, whereas profilin-1 and cofilin-1 displayed only very weak associations with GUVs.

N-WASP and cofilin-1 were previously shown to function as phosphoinositide density sensors (36, 38). Therefore, we examined whether a local increase in the PI(4,5)P₂ density on the membrane affects the membrane binding of other ABPs as well. Cosedimentation assays revealed that all six proteins exhibited an increase in membrane binding with respect to PI(4,5)P₂ concentration, suggesting that they can sense the local density of PI(4,5)P₂ on the membrane (Fig. S3). The binding curves displayed sigmoidal functions, at least for profilin-1, cofilin-1, Dia2, and N-WASP, and Hill coefficients (nH) were greater than 1 (profilin-1 nH = 3.7; cofilin-1 nH = 4.2; Dia2 basic domain (BD) nH = 3.0; N-WASP polybasic motif and GTase binding domain (B-GBD) nH = 2.3), indicating cooperative membrane binding with respect to the PI(4,5)P₂ density in the membranes. Importantly, whereas binding of the FERM domains of ezrin and moesin saturated at low PI(4,5)P₂ concentrations, specific binding of PI(4,5)P₂ was required for full binding of Dia2 and N-WASP domains, and ~20% PI(4,5)P₂ was required to saturate cofilin-1 and profilin-1 binding to the membrane. Furthermore, only ~50% of cofilin-1 and profilin-1 cosedimented with vesicles even at a very high PI(4,5)P₂ density (40 mol%; Fig. S3). Thus, cofilin-1 and profilin-1 bind membranes with low affinity even at conditions in which the PI(4,5)P₂ density is not limiting. Collectively, these experiments revealed that central ABPs display enormous differences in their affinities to phosphoinositide-mediated membrane sense that PI(4,5)P₂ can act at very different ranges. Cofilin-1 and profilin-1 display only low-affinity interactions with membranes and require very high phosphoinositide density, whereas Dia2, N-WASP, and especially ezrin and moesin bind membranes with much higher affinities and their binding saturates at lower phosphoinositide densities.

ABPs Interact with Membranes Through Electrostatic Interactions. We next examined whether the drastic differences in membrane affinities of ABPs arise from distinct membrane-interaction mechanisms. Whether ABPs associate with phospholipid-rich membranes through electrostatic interactions or specific binding pockets for lipid head groups, and/or interact with the acyl-chain region of the lipid bilayer has not been examined in most cases. Even when this has been experimentally approached, the results have remained contradictory (36, 40). To test the contribution of electrostatic interactions, we performed liposome cosedimentation assays with different NaCl concentrations: 0 mM, 100 mM, and 400 mM. In all cases, the amounts of cosedimenting proteins decreased with increasing NaCl concentration, suggesting that membrane interactions of all six ABPs are electrostatic in nature (Fig. 2 A and B). Furthermore, cosedimentation assays carried out with cofilin-1, N-WASP, and moesin did not reveal clear specificity toward any phosphoinositide (Fig. S4). Instead, their binding appeared to correlate with the net negative charge of the phospholipids, i.e., these proteins preferentially bound to PIP₂ and PIP₃ compared with phosphatidyserine (PS), phosphatidylphilosphatidinositols, or monophosphorylated phosphoinositide.

To examine possible contributions of hydrophobic interactions, we applied a diphenylhexatriene (DPH) anisotropy assay. An increase in DPH anisotropy indicates insertion of proteins into the lipid bilayer (41). Compared with the I-BAR domain of MIM, which inserts an amphipathic helix into the bilayer (42) and was used as a positive control, the values of DPH anisotropy did not significantly increase upon addition of the ABPs examined here, indicating that they do not exhibit deep insertions into the lipid bilayer (Fig. 2C).

Together, these experiments provide evidence that cofilin-1, profilin-1, Dia2, N-WASP, ezrin, and moesin neither harbor binding pockets for specific phosphoinositide head groups nor associate with the acyl-chain region of the lipid bilayer. Instead, they interact with the phosphoinositide head groups through multivalent electrostatic interactions, enabling them to function as sensors of membranes phosphoinositide density.

Molecular Mechanisms of Membrane Interactions of Cofilin and Moesin. To gain insights into the mechanisms underlying different affinities of ABPs to the membrane, and to reveal the nature (Fig. S4). Instead, their binding appeared to correlate with the net negative charge of the phospholipids, i.e., these proteins preferentially bound to PIP₂ and PIP₃ compared with phosphatidyserine (PS), phosphatidylphilosphatidinositols, or monophosphorylated phosphoinositide.

To examine possible contributions of hydrophobic interactions, we applied a diphenylhexatriene (DPH) anisotropy assay. An increase in DPH anisotropy indicates insertion of proteins into the lipid bilayer (41). Compared with the I-BAR domain of MIM, which inserts an amphipathic helix into the bilayer (42) and was used as a positive control, the values of DPH anisotropy did not significantly increase upon addition of the ABPs examined here, indicating that they do not exhibit deep insertions into the lipid bilayer (Fig. 2C).

Together, these experiments provide evidence that cofilin-1, profilin-1, Dia2, N-WASP, ezrin, and moesin neither harbor binding pockets for specific phosphoinositide head groups nor associate with the acyl-chain region of the lipid bilayer. Instead, they interact with the phosphoinositide head groups through multivalent electrostatic interactions, enabling them to function as sensors of membranes phosphoinositide density.

Molecular Mechanisms of Membrane Interactions of Cofilin and Moesin. To gain insights into the mechanisms underlying different affinities of ABPs to the membrane, and to reveal the
principles of ABP-lipid interactions, we performed atomistic molecular dynamics simulations for two extreme cases: cofilin-1 and the FERM domain of moesin, whose structures are available (43, 44). In both cases, residues important for lipid binding have been mapped by mutagenesis (13, 36, 39).

We first performed unbiased 200-ns simulations, in three independent replicates for each protein, to explore the binding of the proteins on a lipid bilayer whose composition matched the one used in experiments (Movies S1 and S2). At the beginning, both proteins were placed slightly above the bilayer (∼0.5 nm) with the known binding surfaces facing the membrane. As confirmed by saturation of the average number of hydrogen bonds between the protein and the lipids, equilibrium behavior was reached within 50–60 ns for cofilin-1, and within 150 ns for the FERM domain of moesin, averaged over the three replicates (Fig. S5). The slower equilibration of the moesin FERM domain compared with cofilin-1 most likely arises from its larger size (radius of gyration) given that increasing protein size slows down diffusion and rotational motion. Fig. 3, Left, shows the time evolution of the number of residues in contact with the bilayer, averaged over the three replicates. Importantly, also the number of positively charged, lipid-bound residues of cofilin-1 (Fig. 3A) was smaller than that for the FERM domain of moesin (Fig. 3B).

Overall, both proteins used a large, relatively flat, positively charged surface to interact simultaneously with several negatively charged lipid head groups (Fig. 3). After equilibration, cofilin-1 interacted with an average of 3.0 ± 0.1 PI(4,5)P2 head groups, whereas the moesin FERM domain bound to an average of 6.0 ± 0.3 PI(4,5)P2 head groups (Fig. 4). In both cases, there was a comparable average number of bound PS lipids, suggesting a nonspecific electrostatic interaction between protein and lipids. It is worth noting that the density of PS was two times higher, yet the interaction with PI(4,5)P2 was pronounced as a result of the stronger negative charge of PI(4,5)P2 and the larger size of the PI(4,5)P2 head group, which allows more effective binding with positive ion pairs in the protein. Please note that, despite the asymmetry in the composition of the bilayer, we did not detect significant effects on membrane curvature for the time scales explored in our simulations.

All simulations reproduced the charged phosphoinositide-binding residues identified in the previous mutagenesis experiments (13, 36, 39). They revealed additional positively charged lipid-binding residues in the moesin FERM domain (Lys53, Lys55, Arg40, Lys72, Arg246, Lys254, Lys258, Lys262, Lys263) in addition to the previously identified residues (Lys53, Lys60, Lys64, Lys63, Lys83, Lys253, Lys278, Arg273, Arg275, Arg279, Arg293). The results of two additional 500-ns simulations, one for each protein, in which the protein started from a larger distance from the bilayer, were in agreement with the shorter simulations (Fig. S6 and Movies S3 and S4). Furthermore, the simulation for cofilin-1 suggested that the
Molecular mechanisms of cofilin-1 and moesin FERM domain interactions with membranes as determined by atomistic molecular dynamics simulations: (A) Cofilin-1 and (B) moesin FERM domain. (Left) Average numbers, over three independent simulations, of protein residues in contact with lipids. Polar, positively charged, and hydrophobic residues are shown with green, blue, and black lines, respectively. Excluding the first 50 ns in each case, the total average numbers of polar protein–lipid contacts were 8.4 ± 0.9 and 17.2 ± 2.0 for cofilin-1 and the FERM domain of moesin, respectively. (Right) Conformation of each protein-bilayer system after 200 ns of unbiased simulation. Positively charged residues that were found to interact with lipids are shown in a blue “licorice” representation. PI(4,5)P₂ and PS molecules are shown in red and cyan, respectively.

binding to the membrane is driven by helix-4 (Leu111-Thr129) given that the anchoring onto the bilayer was initiated by residues Lys112, Lys126, and Lys127 (Movie S3). For both proteins, the residues interacting with the membrane extended over a large surface to mediate dynamic, “unspecific” electrostatic interactions, whereas no specific binding pockets with lipid head groups were observed. The simulations indicated that the moesin residues K83 and R293, which were previously found to lie inside a putative binding pocket (39), showed weak or no interactions with lipids (Movie S1). Moreover, no substantial insertion of the protein into the hydrophobic core of the bilayer was detected in any of the simulations.

Together, these simulation experiments revealed the molecular principles by which cofilin-1 and the FERM domain of moesin associate with phosphoinositide-rich membranes. The atomistic simulation data are consistent with the results from the biochemical experiments described here earlier, and provide an atomistic-scale explanation for the higher membrane-binding affinity of the FERM domain of moesin compared with cofilin-1.

Dynamics of ABP–Membrane Interactions. We next developed in vitro imaging approaches to determine the membrane-binding kinetics of these proteins. For fluorescence recovery after photobleaching (FRAP) experiments, supertfolder GFP (sfGFP)-tagged proteins were expressed and purified (Fig. S1B). Because many ABPs harbor cysteines on the surfaces involved in lipid interactions, we chose to use fluorescent fusion proteins rather than cysteine-conjugated fluorophores in our study; these fluorescent tags did not disturb the membrane binding of ABPs (Fig. S1C). As cofilin-1 and profilin-1 bind membranes only with a very low affinity (Fig. 1 B and C) and associate weakly with GUVs at physiological salt conditions (Fig. 1 D and E), they were excluded from the analysis. Thus, we focused on determining the dynamics of Dia2, N-WASP, and ezrin FERM domain on membranes. In the first set of experiments, sfGFP-tagged proteins were administered to the outside of GUVs, and entire GUVs were photobleached. With this approach, we can exclude the contributions from lateral diffusion, and the fluorescence recovery should thus reflect the combination of protein association/dissociation to/from the membrane (Fig. 6A). Importantly, these experiments revealed that the fluorescence recovery of the FERM domain of ezrin was extremely slow, whereas the lipid-binding domains of Dia2 and N-WASP displayed somewhat more rapid recovery on GUVs (Fig. 6 B and C).

Because FRAP experiments cannot distinguish between membrane association and dissociation, we next employed a photoactivation approach to elucidate whether the slow dynamics of these proteins is because of their slow association with or slow dissociation from the membranes (Fig. 6D). We purified
the lipid-binding domains of Dia2, N-WASP, and ezrin as phototactic GFP (paGFP)-fusion proteins, administered them to the outside of GUVs, and activated entire GUVs with a 405-nm UV laser. The fluorescence decay of paGFP on the GUVs was followed, as this reflects the dissociation rate (k_{off}) of the proteins from the membranes. These experiments revealed that the FERM domain of ezrin displayed extremely slow dissociation from the membrane (fluorescence decay during the 60-s observation period was \sim10%), whereas the dissociation of lipid-binding domains of Dia2 and N-WASP was more rapid characterized by \sim20–30% fluorescence decay during the 60-s observation period (Fig. 6 E and F). The photorelease reactions were consistent with the FRAP data, and the small differences between the rates of fluorescence recoveries and decays in these assays may result from photobleaching during the detection periods. Thus, the slow dynamics of these proteins arise mainly from their slow k_{off} rates from the phosphoinositide-rich membranes.

Lateral Diffusion of ABPs and PI(4,5)P$_2$. In addition to protein association/dissociation at the membrane, lateral diffusion along the membrane may be critical for the functions of membrane-associating proteins. To examine lateral diffusion of ABPs as well as the protein-associated PI(4,5)P$_2$ along the bilayer, we photobleached a segment of the GUVs, and subsequently measured the fluorescence recovery of the mCherry-fusion proteins and TopFluor PI(4,5)P$_2$ (Fig. 7A). Please note that, as a result of the slow dissociation of these proteins from the membrane (Fig. 6), the recovery of the bleached segments is dominated by lateral diffusion of the protein. Moreover, the fluorescence intensities do not recover to the initial level after photobleaching because \sim20% of the fluorescent molecules are bleached on the GUVs. These experiments revealed that lateral diffusion of the FERM domain of ezrin on GUVs was slow compared with that of the lipid-binding domains of Dia2 and N-WASP. Similar results were obtained with GUVs containing 2 mol% PI(4,5)P$_2$ and 10 mol% PI(4,5)P$_2$. This slow diffusion may be a result of protein crowding or assembly of the ezrin FERM domain into large oligomers. Furthermore, lateral diffusion of PI(4,5)P$_2$ diminished in the presence of 10 μM ezrin FERM domain (diffusion coefficient $D = 0.68$ μm2/s) compared with that in the absence of proteins ($D = 2.5$ μm2/s) or in the presence of 10 μM Dia2 or N-WASP (Fig. 7 B and D).

The dynamics of cofilin-1, the lipid-binding domains of N-WASP, and the FERM domain of ezrin were also examined in cells (Fig. S7A). Here, sfGFP-tagged proteins were expressed in B16-F1 cells (Fig. S7A), and FRAP was applied to determine their dynamics at a region close to the cell edge (Fig. S7B). Ezrin FERM domain typically displayed a relatively uniform localization along the cell cortex compared with lamellipodial accumulation of cofilin-1 and Dia2 (20) (Fig. S7 A and B). Moreover, fusing the FERM domain to the actin polymerization-promoting FH1-FH2 fragment of Dia2 resulted in more uniform actin filament assembly at the cell periphery compared with the filopodia-concentrated actin filament assembly by the isolated FH1-FH2 domain (Fig. S7D). Consistent with our in vitro experiments, FRAP analysis revealed that the kinetics of the FERM domain of ezrin were slow at the vicinity of the plasma membrane. The lipid-binding domain of N-WASP displayed intermediate dynamics, and cofilin-1 fluorescence recovered rapidly at the membrane (Fig. S7 B and C). Please note that, in FRAP experiments carried out on cells, it is technically not possible to distinguish between rapid lateral diffusion and rapid dissociation of a protein from the membrane. Hence, the more rapid dynamics of N-WASP and the FERM domain of ezrin in cells compared with the GUVs are likely to arise from their rapid lateral diffusion. In this context, it is important to note that, at lower concentration (1 μM), the ezrin FERM domain also displayed relatively rapid lateral diffusion on GUVs, most likely because of a lack of protein crowding or efficient protein oligomerization at the membrane (Fig. S8 A–D).

Together, our in vitro FRAP and photoactivation experiments revealed that the FERM domain of ezrin exhibits very slow dissociation from the membrane. In addition, it displays slow lateral diffusion along the membrane and can limit the mobility of PI(4,5)P$_2$. The lipid-binding domains of Dia2 and N-WASP display relatively slow dissociation from the membrane, but they undergo rapid lateral diffusion along the membrane plane.

Discussion

The dynamics and 3D architecture of the actin cytoskeleton are controlled by plasma membrane phospholipids, but the underlying mechanisms have remained poorly understood. Here we revealed that, although different actin-regulatory proteins interact with membranes through distinct domains, they bind phosphoinositide-rich membranes by using similar multivalent electrostatic interactions and can thus function as sensors of phosphoinositide density at the membrane. Importantly, our experiments revealed that ABPs display enormous differences in their affinities for membranes and in the ranges of phosphoinositide densities that they sense. By developing photobleaching and photoactivation approaches, we...
revealed that ezrin, N-WASP, and Dia2 display surprisingly stable membrane association, and that ezrin can limit the lateral diffusion of PI(4,5)P2 along the lipid bilayer.

Previous studies on ABPs, including ADF/cofilins, provided controversial data concerning the roles of electrostatic interactions, specific binding pockets, and lipid acyl chains in membrane interactions (36, 40). Our experiments provide strong evidence that all ABPs tested here, including cofilin-1, interact with membranes through electrostatic interactions. DPH anisotropy assays, together with atomistic molecular dynamics simulations performed on cofilin-1 and the FERM domain of moesin, provided no evidence for presence of binding pockets or for interactions with the acyl-chain region of the lipid bilayer. Moreover, the atomistic simulations revealed that cofilin-1 and the moesin FERM domain associate simultaneously with several (n ∼ 3–6) phosphoinositide head groups. The fact that ABPs interact simultaneously with several phosphoinositide head groups also explains why they do not generally bind isolated phosphoinositide head groups (e.g., IP3) (7) and how they can function as sensors of phosphoinositide density (36, 38) (Fig. S3).

Fig. 6. Dynamics of ABPs on PI(4,5)P2-containing membranes. (A) Schematic representation of the membrane association and dissociation of ABPs, as revealed by FRAP experiments. When the entire GUV is photo-bleached, the contribution from lateral diffusion (black) can be excluded, and the fluorescence recovery rate reflects the combination of the k_on and k_off rates (red). (B) Representative examples of FRAP experiments performed with sfGFP-tagged Dia2 (Upper) and sfGFP-tagged ezrin FERM domain-bound GUVs (Lower). The ABPs were applied to the outside of the GUVs, the entire GUVs (dotted line) were photobleached, and fluorescent recovery was subsequently observed. The numbers indicate the time in seconds after photobleaching. The lipid composition of the GUVs was POPC:POPE:POPS:PI(4,5)P2:rhodamine DHPE (50:19.5:20:10:0.5, mol/mol). (Scale bar, 10 μm.) (C) Fluorescence recoveries of sfGFP-tagged ABPs on GUVs. The fluorescence intensities were normalized to prebleaching values, and the data were fitted with exponential curves (n = 10; mean ± SE). (D) Schematic representation of the membrane dissociation of ABPs, as determined by photoactivation experiments. When the protein is photoactivated on the entire GUV, the fluorescence decay should correlate with the k_off rate (red), whereas the k_on rate and lateral diffusion (black) should not contribute to the decay. (E) The paGFP-tagged ABPs (representative examples of Dia2 BD and ezrin FERM domain are shown in the figure) were applied to the outside of GUVs, the entire GUVs (dotted line) were photoactivated, and fluorescence decays were measured. The lipid composition of GUVs was POPC:POPE:POPS:PI(4,5)P2:rhodamine DHPE (50:19.5:20:10:0.5, mol/mol). (Scale bar, 10 μm.) (F) Fluorescence decay of the activated paGFP-tagged ABPs on GUVs were measured and normalized to the initial value obtained immediately after photoactivation. The data were fitted with exponential curves. (n = 10; mean ± SE).
Strikingly, although these ABPs interact with membranes through similar electrostatic mechanisms, their affinities toward phosphoinositide-rich membranes exhibit enormous differences. Interactions between these proteins and membranes are multivalent and simultaneously employ a variable number of head groups; hence, it is not possible to calculate the absolute K_d values for these interactions. However, the apparent K_d values estimated from the cosedimentation experiments carried out at 10 mol% PI(4,5)P$_2$ demonstrate that ezrin and moesin bind lipids with higher affinity, by an order of magnitude, compared with Dia2 and N-WASP. Furthermore, cofilin-1 and profilin-1 display more than 10-fold lower affinity for membranes compared with Dia2 and N-WASP. The low affinities of profilin-1 and cofilin-1 detected here do not seem to arise from the sources of the protein or a specific isoform, because recombinant cofilin-2 as well as profilin-1 purified from bovine spleen displayed similar low-affinity membrane binding. In this context, it is important to note that when the PI(4,5)P$_2$ density was much higher (>20 mol%), cofilin-1 and profilin-1 displayed more pronounced, although still relatively low-affinity, binding to membranes.

Our in vitro imaging approaches uncovered the kinetics of ABP–membrane interactions. These assays revealed an extremely stable interaction of ezrin FERM domain with the membrane. In addition, Dia2 and N-WASP displayed slow dissociation from the membrane, although, based on the photoactivation assay, they dissociate more rapidly from the membrane compared with ezrin.

We could not perform FRAP and photoactivation experiments for cofilin-1 and profilin-1 as a result of their very weak signals on the GUVs (Fig. 1D). However, the low-affinity lipid binding in vitro (Fig. 1) and experiments carried out on cells (45) (Fig. S7) are consistent with highly dynamic, transient interactions of cofilin-1 and profilin-1 with phosphoinositide-rich membranes. Furthermore, the k_{off} rate estimated from the Gibbs free energy of cofilin-1 (Fig. 5) corresponds to an off-rate on the order of 1 s$^{-1}$, which agrees satisfactorily with the apparent K_d value obtained from cosedimentation assays (Fig. 1), and thus provides further evidence for the rapid turnover of cofilin-1 on the membrane.

It is also interesting to note that the FERM domain of ezrin displayed very slow lateral diffusion along the membrane, and diminished the mobility of PI(4,5)P$_2$ by approximately fourfold. These findings may be a result of oligomerization of the FERM domain on the membrane, as previously shown for membrane-sculpting BAR superfamily domains (41, 46, 47). Oligomerization of the ezrin FERM domain on the membrane is supported by its nonhomogenous distribution on the surfaces of a fraction of GUVs (Fig. S8A and B). It is possible that oligomerization of the FERM domain on the membrane increases its affinity by clustering PI(4,5)P$_2$ and by increasing the local PI(4,5)P$_2$ density, which may explain why the atomistic simulations provided only a few-fold higher binding free energy compared with cofilin-1, whereas the in vitro assays revealed more than two orders of magnitude higher affinity for the FERM domain with the...
membrane. However, it remains to be shown whether full-length ezrin can also form oligomers on the membrane or if this property is only specific to the isolated FERM domain.

Our data provide important insights into the cellular functions and regulation of central ABPs (Fig. 8). Ezrin and moesin serve as linkers between the cortical actin cytoskeleton and the plasma membrane (48). Our data revealing very stable, high-affinity interactions of ezrin and moesin with membranes are in good agreement with their cellular function as cytoskeleton-plasma membrane cross-linkers. Furthermore, the interactions of ezrin and moesin with membranes saturate at a low PI(4,5)P₂ density (2 mol%), which is close to the “unstimulated” concentration of this phosphoinositide at the plasma membrane (49). Thus, interactions of ezrin and moesin with the cell cortex do not appear to require stimulus-responsive PI(4,5)P₂ production. In addition, Dia2 and N-WASP, which promote stimulus-responsive actin filament assembly at specific regions of the plasma membrane (50), display relatively high-affinity, stable interactions with membranes. However, in contrast to ezrin and moesin, they exhibit rapid lateral diffusion along the membrane and require a much higher PI(4,5)P₂ density for strong binding. These features agree with their cellular functions. Dia2 and N-WASP promote actin filament assembly on the plasma membrane, and stable association with membranes is therefore beneficial. On the contrary, unrestricted lateral diffusion may be important for their ability to catalyze several cycles of actin filament nucleation at the membrane. Rapid lateral diffusion is also consistent with the rapid dynamics of full-length N-WASP, as examined at the sites of extensive actin filament assembly in cells (51). Furthermore, the requirement of a relatively high PI(4,5)P₂ density (5–10 mol%) for strong binding may ensure that these proteins are activated only at specific cell regions between the cortical actin cortex and PI(4,5)P₂-enriched plasma membrane (52). Finally, our experiments provide evidence that ADF/cofilins and profilin-1 display only very transient, low-affinity interactions with membranes. At least in the case of ADF/cofilins, this is in good agreement with the cellular function, because ADF/cofilins promote severing of “aged” actin filaments that are likely positioned away from the membrane (53, 54). Thus, our data suggest that, rather than serving as a reservoir for ADF/cofilins, phosphoinositide-dense domains of the plasma membrane may serve as regions where actin filament disassembly is inhibited through transient interactions of ADF/cofilins with the membrane.

Collectively, our study uncovers the molecular principles by which central ABPs associate with phosphoinositide-rich membranes. However, it is important to note that the situation in cells is much more complex because, in addition to lipids, these proteins interact with actin and other proteins, and their activities can be controlled through signal-responsive protein-protein interactions and posttranslational modifications. Moreover, because these proteins may affect each other’s mobility on the membrane and they compete with each other for phosphoinositide binding (Fig. S8 E and F), the membrane interactions of these and other phosphoinositide-associating proteins are interconnected in cells. Thus, in the future, it will be important to develop approaches that enable determining the membrane-interaction kinetics of ABPs in the complex environment of cells.

Materials and Methods
Subcloning. Sequences encoding mouse profilin-1, mouse cofillin-1, mouse cofillin-2, mouse Dia2 BD (20), rat N-WASP B-GBD (38), human ezrin FERM domain, and human moesin FERM domain were subcloned into the pGEK6P6-1 vector (GE Life Sciences) with or without N-terminal sfGFP, mCherry, or paGFP tags. sfGFP is the monomeric form of GFP, and efficient folding produces a brighter signal than does EGFP (55). For mammalian expression, mouse cofillin-1, rat N-WASP B-GBD, and human ezrin FERM domain were subcloned into the sfGFP-C1 vector (Thermo Fisher Scientific). sfGFP-C1 was a gift from Michael Davidson, Florida State University, Tallahassee, FL (plasmid no. 54579; Addgene). For domain swap experiments, the sequences encoding Dia2 FH1-FH2-DAD or moesin FERM domain fused Dia2 FH1-FH2-DAD were subcloned into the pCDNA3.1(+) vector (Thermo Fisher Scientific) containing a C-terminal HA-tag sequence.

Protein Purification. Plasmids were transformed into BL21(DE3)-competent cells, and protein expression was induced with isopropyl-β-1-thiogalactopyranoside. After collecting the cells, the pellets were sonicated in a buffer containing 20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM PMSF, and 1 mM DTT, followed by affinity purification with Glutathione Sepharose 4B (GE Life Sciences). The GST-tag was removed with PreScission protease (GE Life Sciences). Cofilin-1, cofillin-2, and profilin-1 were further purified with a Superdex 75 gel filtration column (GE Life Sciences) with the AKTA FPLC system, depending on their theoretical pl. Proteins were concentrated using Amicon Ultra Centrifugal Filters (EMD Millipore) by replacing the buffer with 20 mM Tris-HCl (pH 7.5), 150 mM NaCl, and 1 mM DTT. Purified proteins were frozen with liquid nitrogen and stored at −80 °C.

Lipids. We purchased 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-serine (sodium salt; POPS), TopFluc PI(4,5)P₂, 1,4-phosphatidylinositol-4,5-bisphosphate [brain, porcine; ammonium salt; brain PI(4,5)P₂], and other phosphoinositides from Avanti Polar Lipids. Lissamine rhodamine B 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine, triethylammonium salt (rhodamine DHPE), and 1,4-(trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene p-toluenesulfonate were purchased from Thermo-Fisher Scientific. The concentration of the PI(4,5)P₂ stock solution was determined based on a phosphate assay (56).

Liposome Codensation/Coflotation Assays. Multilamellar vesicles (MLVs) were prepared as previously described (41). Briefly, a 1-mM lipid solution of POPC:POPE:POPS:PI(4,5)P₂:rhodamine DHPE (50:19.5:20:10:0.5, mol/mol) was prepared, dried under a stream of nitrogen gas, and hydrated in 20 mM Hepes (pH 7.5) with 100 mM NaCl. Other lipid compositions are indicated in the relevant figure legends. The addition of phosphoinositides was countered by the reduction of an equal molar concentration of POPC. Liposome codensation and coflotation assays were performed as previously described (41, 57) with concentrations of 1 mM lipids and 1 μM ABPs unless otherwise indicated in the figure legends. ABPs were precleared with spinning at 100,000 rpm for 10 min at 4°C with an Optima MAX Ultracentrifuge.
equipped with a TLA-100 rotor (Beckman Coulter) to remove aggregates. The data obtained from the liposome cosedimentation assays were fitted with the model least-squares algorithm. Sanburn et al. computed $\chi^2/\chi^2_{\text{rms}}$ to estimate the equilibrium dissociation constant K_d or the Hill equation $\gamma = V_{\text{max}} \times [(K_d + [x])^{nH}]$ to estimate nH. Because the proteins are accessible to only the outer leaflet of the membrane, the lipid concentration was reduced by half to calculate the K_d.

DPH Anisotropy Assay. DPH anisotropy was measured with an LS-55 fluorometer (PerkinElmer) as previously described (41) with a 40-μM lipid solution with the composition of POPC:POPE:POPS:PI(4,5)P2:DPH (50:20:20:10:0.002, mol/mol). To obtain LUVs, the MLVs were extruded through a polycarbonate filter (100-nm pore size) by using a minieuxtruder (Avanti Polar Lipids). The buffer was composed of 20 mM Hepes and 100 mM NaCl (pH 7.5).

Atomistic Molecular Dynamics Simulations. All molecular dynamics simulations were performed by using the CHARMM36 force field for proteins and lipids (58, 59) and the TIP3P-CHARMM model for water (60). Protein structures for cofilin-1 and the moesin FERM domain were taken from the Protein Data Bank (ID codes 1Q8G and 1E5W). We used several 10 × 10 nm2 square lipid bilayers (61), in which the upper leaflet interacting with the protein had a lipid composition of POPC:POPE:POPS:PI(4,5)P2:DPH (50:20:20:10, mol/mol) matched the lipid content of membranes studied in experiments (except for rhodamine, which was not included in the simulation models). The lower leaflet was composed purely of POPC to avoid an excess negative charge in the system. The unbiased simulations were conducted with 100 mM NaCl to be consistent with conditions in experiments. The free energy calculations were carried out at a slightly lower NaCl concentration (50 mM) to avoid excessive screening to speed up the equilibration, which was always well solvated as a result of the large dimension in the direction perpendicular to the membrane plane, as required for the potential of mean force (i.e., free energy) calculations (114 and 133 water molecules per lipid for cofilin-1 and the FERM domain of moesin, respectively).

The simulations were performed in the NPT ensemble by using Gromacs 5.0.4 (62). The reference temperature for all systems was kept constant at 300 K by using the Nose–Hoover thermostat (63, 64) with a time constant of 1 ps. The temperature of the protein, lipids, and solvent molecules were controlled independently. The pressure coupling was achieved with a Parrinello–Rahman semi-isotropic barostat (65) with a coupling constant of 1 ps and a reference pressure of 1 bar. The equations of motion were integrated with a time step of 2 fs. The LINCS algorithm (66) constrained all bonds involving hydrogens. A cutoff radius of 1.2 nm was used to switch off van der Waals forces for cofilin-1 and the moesin FERM domain, starting from a conformation where the residues known to be important in lipid interactions were facing the membrane and the distance between this lipid-binding patch and the membrane was ~20 Å. For both systems, one 500-ns simulation conducted in a similar manner but with a distance of ~1.5 nm from the membrane. At the setup of every new replicate, the lipids underneath the protein were randomly shuffled, providing a different initial lipid distribution each time.

Protein–Lipid Contacts. A contact between a protein residue and a lipid was considered to be established (i) for hydrophobic residues when any carbon atom of the residue was within 0.4 nm from any carbon atom of the lipid and (ii) for polar/charged residues when any nitrogen or oxygen atom of the residue was within 0.35 nm from any nitrogen or oxygen atom of the lipid to account for a possible hydrogen bond. A hydrogen bond was considered to be established when the distance between donor and acceptor was 0.32 nm or less and the deviation of the donor hydrogen acceptor from linearity was ~20° or less. Nitrogens and oxygens were considered as potential donors if they were bound to a hydrogen atom or as acceptors if not. For each simulation, results were computed for the equilibrated part of the trajectory and then averaged. For each model, the error bars are the SE based on averages given by the three independent simulations.

Free Energy Calculations. The calculations for the potential of mean force followed the same protocol as in ref. 68. First, an unbiased 200-ns simulation was performed for each protein to allow them to adsorb to the membrane surface and to equilibrate the binding site on the bilayer surface. When the protein had equilibrated in an appropriate orientation at the membrane surface, corresponding to its free energy minimum bound to the membrane surface, the protein was slowly pulled away from the bilayer to the water phase. By using the trajectory generated during the pulling process, the initial configurations were generated for the umbrella sampling simulations. The umbrella sampling calculation was based on a total of 62 and 57 windows for cofilin-1 and the FERM domain of moesin, respectively, with the windows separated from each other by 0.04-0.05 nm (the initial separation was 0.5 nm with later additions of extra intermediate windows to improve the umbrella histogram). Each window was simulated for 50 ns, of which the leading 10 ns was used for equilibration and the second 40 ns was used for the analysis. We used the weighted histogram analysis method (69) as implemented in Gromacs 5.0.4. The errors were estimated by bootstrap analysis.

FRAP and Photoactivation Experiments. GUVs at a physiological salt concentration were prepared as previously described (70). The lipid composition was POPC:POPE:POPS:PI(4,5)P2:rhodamine DHPE (50:19.5:20:10:0.5, mol/mol) or POPC:POPE:POPS:PI(4,5)P2:Topfluor PI(4,5)P2 (58.20:10:1.1, mol/mol). The buffer composition outside of the GUVs was 5 mM Hepes (pH 7.5), 100 mM NaCl, and 200 mM sucrose. The osmolarities of the buffers (inside and outside of the GUVs) were adjusted by using an osmometer. The coverslips were coated with j-casine (Sigma-Aldrich) to avoid nonspecific protein binding.

The FRAP assay was performed with a TCS SP confocal microscope (Leica) in a region of interest (ROI) with 488-nm or 561-nm ROIs. To measure the lateral diffusion of proteins and PI(4,5)P2, we photoactivated 5.0 × 2.5-μm ROIs. The time course of changes in the fluorescence intensity in the ROI after photoactivation was followed by using excitation light at the minimum intensity possible to minimize subsequent photobleaching. After background subtraction, the data were fitted with the nonlinear least-squares method using the equation $y = A(1 - \exp(-t/\tau)) + B$, where A is the area bleached, B the fluorescence after bleaching. Because the lateral diffusion of the lipid molecules is constrained to the 2D plane of the membrane, the circular area on the top of the GUVs was bleached, and the diffusion coefficient D was calculated by using the relationship $D = 0.888\omega^2/\langle r^2(t)\rangle$, where ω is the radius of the area bleached and $\langle r^2(t)\rangle = \langle\Delta x^2(t)\rangle + \langle\Delta y^2(t)\rangle$ is the half-time of the recovery.

For the photoactivation experiments, GUVs were prepared according to the same procedure as described above, but with a lipid composition of POPC:POPE:POPS:PI(4,5)P2:rhodamine DHPE (50:19.5:20:10:0.5, mol/mol). Photoactivation was performed by using a TCS SP confocal microscope (Leica) with a 405-nm laser, and the subsequent activated fluorescence was observed with a 488-nm laser.

Cell Culture and FRAP. B16-F1 cells were cultured in DMEM supplemented with 10% FBS (Invitrogen), -glutamine (Sigma-Aldrich), and penicillin/streptomycin (Sigma-Aldrich). Transfections were performed with FuGENE HD (Promega) using DMEM (Invitrogen) in the absence of antibiotics according to the manufacturer’s protocol. Anti-HA antibody produced in rabbit (Sigma-Aldrich), Alexa 488 goat anti-rabbit IgG (heavy and light chains) highly cross-adsorbed secondary antibody (Thermo Fisher Scientific), and Alexa Fluor 588 phalloidin (Thermo Fisher Scientific) were used for general immunofluorescence protocol. Images were acquired by using an LSM 700 laser scanning confocal microscope (Carl Zeiss) with objective LCI Plan-Neofluar 63×/1.3 Imm Dior DIC.

For the FRAP experiments performed with an SP confocal microscope (Leica) with Leica objective (HC PL APO 63×/1.20 W CORR CS2), the cells were cultured on glass-bottom dishes (Greiner Bio-One) coated with laminin (Sigma-Aldrich). The FRAP experiments were performed with a 488-nm Ar laser at 37 °C and 5% CO2. After photobleaching, the laser power was decreased to as low as possible to minimize the extent of photobleaching during the observation period. The time course of changes in the fluorescence intensity in the ROI after photobleaching was quantified by using ImageJ software (National Institutes of Health).

ACKNOWLEDGMENTS. We thank Patricia Bassereau, Feng-Ching Tsai (Institut Curie, France), Elina Ikonen, and Maarit Neuvonen (Faculty of Medicine, University of Helsinki) for their helpful discussions and technical advice. The authors also thank the Light Microscopy Unit (Institute of Biotechnology, University of Helsinki), Lotta Gustavsson, Aleksi Ainoen, Markus Korpela, and Anna Liisa Nyfors for technical assistance. The Dia2 and N-WASP cDNAs were kind gifts from Tatyana Svitkina (University of Pennsylvania) and Jack Tauc (University of California, San Francisco), respectively. The cDNAs for the ezrin and moesin were provided by the Genome Biology Unit (Biocenter Finland, University of Helsinki). This work was supported by the Academy of Finland (Center of Excellence program; Y.S., M.K., I.V., and P.L.), the Japan Science and the Promotion Foundation (Y.S.), and Eurostars Research Couqy, Advanced Grant CROWDED-PRO-LIPIDS (to I.V.). We acknowledge the Finnish CSC-IT Centre for Science (Espoo, Finland) for computer resources.

