Complexity of Propositional Logics in Team Semantics

Hannula, Miika

2018-01

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.
Please cite the original version.
Complexity of Propositional Logics in Team Semantic

MIKA HANNULA*, University of Helsinki
JUHA KONTINEN, University of Helsinki
JONNI VIRTEMA†, Leibniz Universität Hannover and University of Helsinki
HERIBERT VOLLMER, Leibniz Universität Hannover

We classify the computational complexity of the satisfiability, validity and model-checking problems for propositional independence, inclusion, and team logic. Our main result shows that the satisfiability and validity problems for propositional team logic are complete for alternating exponential-time with polynomially many alternations.

CCS Concepts: • Theory of computation → Complexity theory and logic; Logic;

Additional Key Words and Phrases: Propositional logic, team semantics, dependence, independence, inclusion, satisfiability, validity, model-checking

https://doi.org/0000001.0000001

1 INTRODUCTION

Dependence logic [30] is a logical framework for formalising and studying various notions of dependence and independence that are important in many scientific disciplines such as mathematics, quantum physics, social choice theory, computer science, and statistics (see, e.g., [1, 6, 13, 27, 28]). Dependence logic extends first-order logic by dependence atoms

\[\text{dep}(x_1, \ldots, x_n, y) \]

expressing that the value of the variable \(y \) is functionally determined on the values of \(x_1, \ldots, x_n \).

Satisfaction for formulas of dependence logic is defined using sets of assignments (teams) and not in terms of single assignments as in first-order logic. Whereas dependence logic studies the notion of functional dependence, independence and inclusion logic (introduced in [10] and [9], respectively) formalize the concepts of independence and inclusion. Independence logic (inclusion logic) is obtained from dependence logic by replacing dependence atoms by the so-called independence atoms \(\mathbf{x} \perp \mathbf{y} \mathbf{z} \) (inclusion atoms \(\mathbf{x} \subseteq \mathbf{y} \)). The intuitive meaning of the independence atom is that the variables of the tuples \(\mathbf{x} \) and \(\mathbf{z} \) are independent of each other for any fixed value of the variables in \(\mathbf{y} \), whereas the inclusion atom declares that all values of the tuple \(\mathbf{x} \) appear also as values of \(\mathbf{y} \).

In database theory these atoms correspond to embedded multivalued dependencies and inclusion

*Current affiliation: University of Auckland
†Current affiliation: Hasselt University

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2009 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing Machinery.
1529-3785/2010/3-ART39 $15.00
https://doi.org/0000001.0000001

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39. Publication date: March 2010.
dependencies (see, e.g., [12]). Independence atoms have also a close connection to conditional independence in statistics.

The topic of this article is complexity of logics in propositional team semantics. As opposed to modal team semantics, propositional team semantics has received relatively little attention so far. Since the propositional logics studied in the article are fragments of the corresponding modal logics, some upper bounds trivially transfer to the propositional setting. The study of propositional team semantics as a subject of independent interest was initiated after surprising connections were discovered between propositional team semantics and inquisitive semantics (see [32] for details). The first systematic studies on the expressive power of propositional dependence logic and many of its variants is due to [32, 33]. In the same works natural deduction type inference systems for these logics are also developed, whereas in [29] a complete Hilbert-style axiomatisation and a labeled tableaux calculus for propositional dependence logic is presented. Very recently Hilbert-style proof systems for related logics that incorporate the classical negation (denoted by ~ in this article) have been introduced by Lück, see [23].

The computational aspects of (first-order) dependence logic and its variants have been actively studied, and are now quite well understood (see [7]). On the other hand, prior to the conference version of the current article (15) the complexity of the propositional versions of these logics had not been systematically studied. The study was initiated in [31] where the validity problem of propositional dependence logic was shown to be NEXPTIME-complete, followed by [11] where both entailment and validity were analyzed for propositional and modal dependence logics. Propositional inclusion logic in turn (PL[⊆]) was studied in the articles [17] and [16]. The former focuses on the satisfiability problem of propositional inclusion logic which is shown to be EXPTIME-complete. The latter article studies validity and model checking problems showing, e.g., that the model checking problem of propositional and modal inclusion logic is P-complete. In this article we study the complexity of satisfiability, validity and model-checking of propositional independence (PL[⊥c]), inclusion and team logic (PL[∼]); the latter is the extension of propositional logic by the classical negation. The classical negation has turned out to be an interesting connective in the first-order and modal team semantics contexts. Most of the logics studied in these areas are not closed under classical negation and hence adding it may lead to a considerable increase in expressive power. For example, whereas (first-order) dependence logic is equi-expressive with existential second-order logic, its extension by the classical negation corresponds to full second-order logic [20]. In the modal setting, all of the logics studied so far in the area can be embedded into the extension of modal logic with the classical negation [18].

Our results (see Table 1) show that the addition of classical negation in the propositional setting has interesting and profound consequences also in the complexity landscape. We show, e.g., that the validity problem VAL(PL[⊆]) of propositional inclusion logic is coNP-complete but if extended by the classical negation the problem becomes complete for alternating exponential time with polynomially many alternations (ATIME-ALT(exp, poly)). This is a corollary of our main result showing that the satisfiability and validity problems of team logic are ATIME-ALT(exp, poly)-complete. Recently levels of the exponential hierarchy have been logically characterised in the context of propositional team semantics [14, 24]. The article [14] also discusses the close relationship between PL[∼] and propositional logic SO₂, which is essentially second-order logic over the Boolean domain.

2 PRELIMINARIES

In this section we define the basic concepts and results relevant to team-based propositional logics. We assume that the reader is familiar with propositional logic.

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39. Publication date: March 2010.
We write Var. We denote by 2. The semantics for the propositional dependence atoms are defined as follows: PD. The next proposition is very useful when determining the complexity of X by the rule of the so-called independence or inclusion atoms: The syntax of propositional dependence logic PD. Proposition 2.2 ([30]). Next proposition shows that the team semantics and the ordinary semantics for propositional logic defined via assignments coincide. Let X be propositional logic X. Then X does not satisfy the law of excluded middle. Next proposition shows that the team semantics and the ordinary satisfaction relation of propositional logic defined via assignments in the standard way. Next we give team semantics for propositional logic.

Definition 2.1. Let X be a set of proposition symbols and let X be a team. The satisfaction relation $X \models \varphi$ is defined as follows.

\[
X \models \varphi \iff \forall s \in X : s(p) = 1.
X \models \neg \varphi \iff \forall s \in X : s(p) = 0.
X \models (\varphi \land \psi) \iff X \models \varphi \text{ and } X \models \psi.
X \models (\varphi \lor \psi) \iff Y \models \varphi \text{ and } Z \models \psi, \text{ for some } Y, Z \text{ such that } Y \cup Z = X.
\]

Note that in team semantics \neg is not the classical negation \sim but a so-called dual negation that does not satisfy the law of excluded middle. Next proposition shows that the team semantics and the ordinary semantics for propositional logic defined via assignments coincide.

Proposition 2.2 ([30]). Let φ be a formula of propositional logic and let X be a propositional team. Then $X \models \varphi$ iff $\forall s \in X : s \models_{PL} \varphi$.

The syntax of propositional dependence logic $PD(\Phi)$ is obtained by extending the syntax of $PL(\Phi)$ by the rule $\varphi ::= dep(p_1, \ldots, p_n, q)$, where $p_1, \ldots, p_n, q \in \Phi$. The semantics for the propositional dependence atoms are defined as follows:

\[
X \models dep(p_1, \ldots, p_n, q) \iff \forall s, t \in X : s(p_1) = t(p_1), \ldots, s(p_n) = t(p_n) \text{ implies that } s(q) = t(q).
\]

The next proposition is very useful when determining the complexity of PD, and it is proved analogously as for first-order dependence logic [30].

Proposition 2.3 (Downwards closure). Let φ be a PD-formula and let $Y \subseteq X$ be propositional teams. Then $X \models \varphi$ implies $Y \models \varphi$.

In this article we study the variants of PD obtained by replacing dependence atoms in terms of the so-called independence or inclusion atoms: The syntax of propositional independence logic.

Table 1. Overview of the results (completeness results if not stated otherwise)

<table>
<thead>
<tr>
<th></th>
<th>SAT</th>
<th>VAL</th>
<th>MC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$PL[\bot_c]$</td>
<td>NP</td>
<td>in coNEXPTIMENP</td>
<td>NP</td>
</tr>
<tr>
<td>$PL[\subseteq]$</td>
<td>EXPTIME $^{[17]}$</td>
<td>coNP</td>
<td>P $^{[16]}$</td>
</tr>
<tr>
<td>$PL[\sim], PL[\bot_c, \subseteq, \sim]$</td>
<td>ATIME-ALT(exp, poly)</td>
<td>ATIME-ALT(exp, poly)</td>
<td>$\text{PSPACE}^{[25]}$</td>
</tr>
</tbody>
</table>
where \(\vec{p}, \vec{q},\) and \(\vec{r}\) are finite tuples of proposition symbols (not necessarily of the same length). The syntax of *propositional inclusion logic* \(\text{PL}[\subseteq](\Phi)\) is obtained by extending the syntax of \(\text{PL}(\Phi)\) by the rule
\[
\varphi ::= \vec{q} \subseteq \vec{r},
\]
where \(\vec{p}\) and \(\vec{q}\) are finite tuples of proposition symbols with the same length. Satisfaction for these atoms is defined as follows. If \(\vec{p} = (p_1, \ldots, p_n)\) and \(s\) is an assignment, we write \(s(\vec{p})\) for \((s(p_1), \ldots, s(p_n))\).

\[
X \models \vec{q} \subseteq \vec{r} \iff \forall s, t \in X : \text{if } s(\vec{p}) = t(\vec{p}) \text{ then there exists } u \in X : u(\vec{pq}) = s(\vec{pq}) \text{ and } u(\vec{r}) = t(\vec{r}).
\]

It is easy to check that neither \(\text{PL}[\isin]\) nor \(\text{PL}[\subseteq]\) is a downward closed logic (cf. Proposition 2.3). However, analogously to first-order inclusion logic [9], the formulas of \(\text{PL}[\subseteq]\) have the following closure property.

Proposition 2.4 (Closure under unions). Let \(\varphi \in \text{PL}[\subseteq]\) and let \(X_i\), for \(i \in I\), be teams. Suppose that \(X_i \models \varphi\), for each \(i \in I\). Then \(\bigcup_{i \in I} X_i \models \varphi\).

We will also consider the extensions of \(\text{PL}\), \(\text{PL}[\isin]\) and \(\text{PL}[\subseteq]\), by the classical negation \(\sim\) with the standard semantics:
\[
X \models \sim \varphi \iff X \not\models \varphi.
\]
These extensions are denoted by \(\text{PL}[\sim]\) (propositional team logic), \(\text{PL}[\isin, \sim]\) and \(\text{PL}[\subseteq, \sim]\), respectively.

A general notion of a *generalised dependency atom* expressing a property of a propositional team has also been studied in the literature. For the purposes of this article precise definitions are not required and are thus omitted, for a detailed exposition for generalised dependency atoms see, e.g., [14]. We say that a generalised dependency atom \(A\) has a polynomial time checkable semantics if \(X \models A(\vec{p})\) can be decided in polynomial time with respect to the combined size of \(X\) and \(\vec{p}\). Each of the atoms defined above are examples of generalised dependency atoms. It is easy to see that each of these atoms has a polynomial time checkable semantics.

2.2 Auxiliary operators

The following additional operators will be used in this paper:
\[
\begin{align*}
X \models \varphi \otimes \psi & \iff X \models \varphi \text{ or } X \models \psi, \\
X \models \varphi \otimes \psi & \iff \forall Y, Z \subseteq X : \text{if } Y \cup Z = X, \text{ then } Y \models \varphi \text{ or } Z \models \psi, \\
X \models \varphi \ominus \psi & \iff \forall Y \subseteq X : \text{if } Y \models \varphi, \text{ then } Y \models \psi, \\
X \models \max(x_1, \ldots, x_n) & \iff \{ (s(x_1), \ldots, s(x_n)) \mid s \in X \} = \{0, 1\}^n.
\end{align*}
\]
If \(X \models \max(\bar{x})\), we say that \(X\) is *maximal* over \(\bar{x}\). If tuples \(\bar{x}\) and \(\bar{y}\) are pairwise disjoint and \(X \models \max(\bar{x}) \land \bar{x} \subseteq \bar{y}\), then we say that \(X\) is *maximal* over \(\bar{x}\) for all \(\bar{y}\).

Note that atomic operators such as dependence atoms \(\text{dep}(\cdot)\) and \(\text{max}(\cdot)\) are in fact collections of operators; one operator for each arity.

We will next show that the above operators can be efficiently implemented in the logic \(\text{PL}[\sim]\), i.e., that substituting occurrences of an operator by its defining \(\text{PL}[\sim]\)-formula cannot cause an
exponential blow-up in the formula size. For the atomic operators, say $\text{dep}(\cdot)$, we require the mapping $x \mapsto \phi(x)$ to be polynomial-time computable, where $\phi(x) \in \text{PL}[\sim]$ and $\text{dep}(x)$ and $\phi(x)$ are logically equivalent. For the connectives, e.g., $\phi \otimes \psi$, a crucial property is that both ϕ and ψ have only one occurrence in the $\text{PL}[\sim]$-definition.

Proposition 2.5. The operators $\text{dep}(\cdot)$, \otimes, \otimes, \sim, and $\text{max}(\cdot)$ can be efficiently implemented in $\text{PL}[\sim]$.

Proof. We present the following translations of which item 3 is due to [25] and item 4 uses the idea of [2].

1. The connective \otimes is actually the dual of \lor, and hence $\phi \otimes \psi$ can be written as $\sim(\sim\phi \lor \sim\psi)$.
2. Intuitionistic disjunction $\phi \otimes \psi$ can be written as $\sim(\sim\phi \land \sim\psi)$.
3. Intuitionistic implication $\phi \sim \psi$ can be expressed as $(\sim\phi \otimes \psi) \otimes (\sim\psi \lor \sim\phi)$.
4. First note that $\text{dep}(x)$ can be written as $x \otimes \sim x$. Using this we can write $\text{dep}(x_1, \ldots, x_n, y)$ as $\land_{i=1}^n \text{dep}(x_i) \sim \text{dep}(y)$.
5. We show that $\max(x_1, \ldots, x_n)$ is equivalent to $\sim \lor_{i=1}^n \text{dep}(x_i)$. Assume first that $X \models \lor_{i=1}^n \text{dep}(x_i)$, we show that $X \not\models \max(x_1, \ldots, x_n)$. By the assumption, we find $Y_1, \ldots, Y_n \in X$, $\bigcup_{i=1}^n Y_i = X$, such that $Y_i \models (=x_i)$. Now for all i there exists a $b_i \in \{0, 1\}$ such that if $Y_i \neq \emptyset$, then for all $s \in Y_i$, $s(x_i) \neq b_i$. Since the assignment $x_i \mapsto b_i$ is not in X, we obtain that $X \not\models \max(x_1, \ldots, x_n)$.

Assume then that $X \not\models \max(x_1, \ldots, x_n)$, we show that $X \models \lor_{i=1}^n \text{dep}(x_i)$. By the assumption there exists a boolean sequence (b_1, \ldots, b_n) such that for no $s \in X$ we have $s(x_i) = b_i$ for all $i = 1, \ldots, n$. Let $Y_i := \{s \in X \mid s(x_i) \neq b_i\}$. Since then $X = \bigcup_{i=1}^n Y_i$ and $Y_i \models (=x_i)$, we obtain that $X \models \lor_{i=1}^n \text{dep}(x_i)$.

\square

2.3 Satisfiability, validity, and model checking in team semantics

Next we define satisfiability and validity in the context of team semantics. Let L be a logic with team semantics. A formula $\phi \in L$ is **satisfiable**, if there exists a non-empty team X such that $X \models \phi$. A formula $\phi \in L$ is **valid**, if $X \models \phi$ holds for every non-empty team X such that the proposition symbols that occur in ϕ are in the domain of X.

Note that when the team is empty, satisfaction becomes easy to decide, see Proposition 2.6 below.

The satisfiability problem $\text{SAT}(L)$ and the validity problem $\text{VAL}(L)$ are then defined in the obvious manner: Given a formula $\phi \in L$, decide whether the formula is satisfiable (valid, respectively). The variant of the model checking problem that we are concerned with in this article is the following:

Given a formula $\phi \in L$ and a team X, decide whether $X \models \phi$. See Table 2 for known complexity results on PL and PD.

Proposition 2.6. Checking whether $\emptyset \models \phi$, for $\phi \in \text{PL}[\bot \subseteq, \sim]$, can be done in P. Furthermore, $\emptyset \models \phi$ for all $\phi \in \text{PL}[\bot \subseteq]$

Proof. Define a function $\pi : \text{PL}[\bot \subseteq, \sim] \rightarrow \{0, 1\}$ recursively as follows. Note that addition is mod 2.

- If $\phi \in \{p, \sim p, q, \sim q \mid p \subseteq q\}$, then $\pi(\phi) = 1$.
- If $\phi = \psi_0 \land \psi_1$, then $\pi(\phi) = \pi(\psi_0) \cdot \pi(\psi_1)$.
- If $\phi = \psi_0 \lor \psi_1$, then $\pi(\phi) = \pi(\psi_0) \cdot \pi(\psi_1)$.
- If $\phi = \sim \psi$, then $\pi(\phi) = \pi(\psi) + 1$.

1. It is easy to show that all of the logics considered in this article have the so-called locality property, i.e., satisfaction of a formula depends only on the values of the proposition symbols that occur in the formula [9].
We start by collecting some loose ends related to the model checking problems of our logics. We first focus on logics without the classical negation. The complexity of MC(PL[\subseteq]) was recently determined by Hella et al.

Theorem 3.1 ([16]). MC(PL[\subseteq]) is P-complete.

Since PL[⊥_c] lies between propositional dependence logic and modal independence logic we obtain the following.

Theorem 3.2. MC(PL[⊥_c]) is complete for NP.

Proof. The upper bound follows since the model checking problem for modal independence logic is NP-complete [19]. Since the dependence atom dep(x, y) is equivalent to the independence atom y \perp x y, the lower bound follows from the NP-completeness of MC(PD) (see Table 2). □

The following result can also be found in the PhD thesis of Müller [25].

Theorem 3.3. MC(PL[¬]) is complete for PSPACE.

Proof. We show first the upper bound. To this end, as PSPACE = APTIME [4], it suffices to present an APTIME algorithm that, given a Boolean team T, a formula \varphi \in PL[¬], and I \in \{0, 1\}, returns \text{MC}(T, \varphi, I) true iff either T \models \varphi and I = 1, or T \not\models \varphi and I = 0. In the following we describe the computation of \text{MC}(T, \varphi, I) for all combinations of \varphi and I.

- If \varphi = \psi_1 \land \psi_2 and I = 1 (I = 0), then universally (existentially) choose i \in \{1, 2\} and return MC(T, \psi_i, I).
- If \varphi = \psi_1 \lor \psi_2 and I = 1 (I = 0), then existentially (universally) choose T_1 \cup T_2, universally (existentially) choose i \in \{1, 2\}, and return MC(T_i, \psi_i, I).
- If \varphi = ¬\psi, return MC(T, \psi, 1 - I).

It is evident that the (negated) atomic clauses can be correctly returned in deterministic polynomial time. Therefore, as the resulting procedure runs in APTIME, the upper bound follows.

For the lower bound, we reduce from TQBF which is known to be PSPACE-complete. In the reduction we write \(\vec{y} = \vec{b} \) for the following formula

\[
\bigwedge_{1 \leq i \leq k} y_i^{b_i}, \text{ where } y_i^1 = y_i \text{ and } y_i^0 = \neg y_i,
\]

where \(\vec{y} = (y_1, \ldots, y_k) \) and \(\vec{b} = (b_1, \ldots, b_k) \) is a tuple of variables and a string of bits, respectively.

Let \(Q_1x_1 \ldots Q_nx_n \theta \) be a quantified boolean formula and \(r \) a sequence of propositional symbols of length \(\log(n) + 1 \). Define \(T := \{s_1, \ldots, s_n\} \) to be a team, where \(s_i(r) \) encodes the binary representation \(\text{bin}(i) \) of i. We now define inductively a formula \(\varphi \in PL[¬] \) such that

\[
Q_1x_1 \ldots Q_nx_n \theta \text{ is true iff } T \models \varphi. \tag{2}
\]
Let $\phi := \phi_1$, and for $1 \leq i \leq n$, depending on whether x_i is existentially or universally quantified we let

$$\exists: \phi_i := \tilde{r} = \text{bin}(i) \lor \phi_{i+1},$$

$$\forall: \phi_i := \neg \tilde{r} = \text{bin}(i) \otimes \phi_{i+1}.$$

Finally, we let ϕ_{n+1} denote the formula obtained from θ by first substituting each $\neg x_i$ by $\neg \tilde{r} = \text{bin}(i)$ and then x_i by $\tilde{r} = \text{bin}(i)$, for each i. Note that the meaning $\neg \tilde{r} = \text{bin}(i)$ is that the assignment s_i is not in the team, whereas $\tilde{r} = \text{bin}(i)$ states that s_i is in the team. It is now straightforward to establish that (2) holds. Also T and ϕ can be constructed in polynomial time, and hence we obtain the result.

Since the decision procedure described in the previous proof clearly extends to independence and inclusion atoms, and to any atoms in general whose model checking is in polynomial time, we obtain the following corollary.

Corollary 3.4. $MC(PL[\subseteq, \subseteq, \neg])$ and $MC(PL[C, \neg])$, where C is a finite collection of polynomial time computable dependency atoms, are complete for PSPACE.

4 Complexity of Satisfiability and Validity

In this section we consider the complexity of the satisfiability and validity problems for propositional independence, inclusion and team logic.

4.1 The logics $PL[\subseteq]$ and $PL[\perp_c]$

We consider first the satisfiability problem. For inclusion logic the following result was established by Hella et al.

Theorem 4.1 ([17]). $SAT(PL[\subseteq])$ is complete for EXPTIME.

For pinpointing the complexity of $SAT(PL[\perp_c])$, the following simple lemma turns out to be very useful.

Lemma 4.2. Let $\phi \in PL[\perp_c]$ and X a team such that $X \models \phi$. Then $\{s\} \models \phi$, for all $s \in X$.

Proof. The claim is proved using induction on the construction of ϕ. It is easy to check that a singleton team satisfies all independence atoms, and the cases corresponding to disjunction and conjunction are straightforward.

Theorem 4.3. $SAT(PL[\perp_c])$ is complete for NP.

Proof. Note first that since $SAT(PL)$ is NP-complete, it follows by Proposition 2.2 that $SAT(PL[\perp_c])$ is NP-hard. For containment in NP, note that by Lemma 4.2, a formula $\phi \in PL[\perp_c]$ is satisfiable iff it is satisfied by some singleton team $\{s\}$. It is immediate that for any s, $\{s\} \models \phi$ iff ϕ^T, where $\phi^T \in PL$ is acquired from ϕ by replacing all independence atoms by $(p \lor \neg p)$. Thus it follows that ϕ is satisfiable iff ϕ^T is satisfiable. Therefore, the claim follows.

We now turn to the validity problems of $PL[\subseteq]$ and $PL[\perp_c]$.

Theorem 4.4. $VAL(PL[\subseteq])$ is complete for coNP.

Proof. Recall that PL is a sub-logic of $PL[\subseteq]$, and hence $VAL(PL[\subseteq])$ is hard for coNP. Therefore, it suffices to show $VAL(PL[\subseteq]) \in$ coNP. It is easy to check that, by Proposition 2.4, a formula $\phi \in PL[\subseteq]$ is valid iff it is satisfied by all singleton teams $\{s\}$. Note also that, over a singleton team $\{s\}$, an inclusion atom $(p_1, \ldots, p_n) \subseteq (q_1, \ldots, q_n)$ is equivalent to the PL-formula

$$\bigwedge_{1 \leq i \leq n} p_i \leftrightarrow q_i.$$
Denote by φ^* the PL-formula acquired by replacing all inclusion atoms in φ by their PL-translations. By the above, φ is valid iff φ^* is valid. Since $\text{VAL}(\text{PL})$ is in \coNP the claim follows.

Theorem 4.5. $\text{VAL}(\text{PL}[\bot])$ is hard for NEXPTIME and is in $\text{coNEXPTIME}^{\text{NP}}$.

Proof. Since the dependence atom $\text{dep}(x, y)$ is equivalent to the independence atom $y \perp x$ and $\text{VAL}(\text{PD})$ is NEXPTIME-complete [31], hardness for NEXPTIME follows. Theorem 3.2 established that the model checking problem for $\text{PL}[\bot]$ is complete for NP. It then follows that the complement of the problem $\text{VAL}(\text{PL}[\bot])$ is in $\text{NEXPTIME}^{\text{NP}}$: the question whether φ is in the complement of $\text{VAL}(\text{PL}[\bot])$ can be decided by guessing a subset X of $2^{|D|}$, where D contains the set of proposition symbols appearing in φ, and checking whether $X \not\models \varphi$. Therefore $\text{VAL}(\text{PL}[\bot]) \in \text{coNEXPTIME}^{\text{NP}}$. □ □

The precise complexity of $\text{VAL}(\text{PL}[\bot])$ remains open. However we believe $\text{coNEXPTIME}^{\text{NP}}$-completeness to be more plausible than NEXPTIME-completeness. As a first step, we suggest to study $\text{VAL}(\text{PL}[\bot, \subseteq])$ and to show that it is $\text{coNEXPTIME}^{\text{NP}}$-complete.

4.2 Logics with the classical negation

Next we incorporate classical negation in our logics. The main result of this section shows that the satisfiability and validity problems for $\text{PL}[-]$ are complete for ATIME-$\text{ALT}(\text{exp}, \text{poly})$. The result holds also for $\text{PL}[^{\circ}C, \sim]$ where C is any finite collection of dependency atoms with polynomial-time checkable semantics. This covers the standard dependency notions considered in the team semantics literature. The upper bound follows by an exponential-time alternating algorithm where alternation is bounded by formula depth. For the lower bound we first relate ATIME-$\text{ALT}(\text{exp}, \text{poly})$ to polynomial-time alternating Turing machines that query to oracles obtained from a quantifier prefix of polynomial length. We then show how to simulate such computations in $\text{PL}[-]$.

First we observe that the classical negation gives rise to polynomial-time reductions between the validity and the satisfiability problems. Hence, we restrict our attention to satisfiability hereafter.

Proposition 4.6. Let $\varphi \in \text{PL}[C, \sim]$ where $C \subseteq \{\text{dep}(\cdot), \bot, \subseteq\}$. Then one can construct in polynomial time formulae $\psi, \theta \in \text{PL}[C, \sim]$ such that

(i) φ is satisfiable iff ψ is valid, and

(ii) φ is valid iff θ is satisfiable.

Proof. We define

\[
\psi := \max(\vec{x}) \rightarrow ((p \lor \neg p) \lor (\varphi \land (p \land \neg p))),
\]

\[
\theta := \max(\vec{x}) \land (\neg (p \land \neg p) \rightarrow \varphi),
\]

where \vec{x} lists $\text{Var}(\varphi)$. Note that $X \models \neg (p \land \neg p)$ iff X is non-empty. It is straightforward to show that (i) and (ii) hold. Also by Proposition 2.5, ψ and θ can be constructed in polynomial time from φ. □ □

Next we show the upper bound for the satisfiability problem of propositional logic with the classical negation, and the independence and inclusion atoms.

Theorem 4.7. $\text{SAT}(\text{PL}[\bot, \subseteq, \sim]) \in \text{ATIME}$-$\text{ALT}(\text{exp}, \text{poly})$.

Proof. Let $\varphi \in \text{PL}[\bot, \subseteq, \sim]$. First existentially guess a possibly exponential-size team T with domain $\text{Var}(\varphi)$. Then implement the APTIME algorithm of Theorem 3.3 and Corollary 3.4 for checking whether $T \models \varphi$. The result follows since the algorithm runs in polynomial time w.r.t the combined size of T and φ and its alternation is bounded by the size of φ. □ □
Let us then turn to the lower bound. We show that the satisfiability problem of PL[¬] is hard for ATIME-ALT(exp, poly). For this, we first relate ATIME-ALT(exp, poly) to oracle quantification for polynomial-time oracle Turing machines. This approach is originally due to Orponen in [26], where the classes \(\Sigma^\text{EXP}_k \) and \(\Pi^\text{EXP}_k \) of the exponential-time hierarchy were characterised. Recall that the exponential-time hierarchy corresponds to the class of problems that can be recognised by an exponential-time alternating Turing machine with constantly many alternations. In the next theorem we generalise Orponen’s characterisation to exponential-time alternating Turing machines with polynomially many alternations (i.e. the class ATIME-ALT(exp, poly)) by allowing quantification of polynomially many oracles.

By \((A_1, \ldots, A_k)\) we denote an efficient disjoint union of sets \(A_1, \ldots, A_k\), e.g., \((A_1, \ldots, A_k) = \{(i, x) : x \in A_i, 1 \leq i \leq k\}\).

Theorem 4.8. A set \(A\) belongs to the class ATIME-ALT(exp, poly) iff there exist a polynomial \(f\) and a polynomial-time alternating oracle Turing machine \(M\) such that, for all \(x\),

\[
 x \in A \iff Q_1A_1 \ldots Q_f(n)A_f(n)(M \text{ accepts } x \text{ with oracles } (A_1, \ldots, A_f(n))),
\]

where \(n\) is the length of \(x\) and \(Q_1, \ldots, Q_f(n)\) alternate between \(\exists\) and \(\forall\), i.e., \(Q_{i+1} \in \{\forall, \exists\} \setminus \{Q_i\}\).

Proof. The proof is a straightforward generalisation of the proof of Theorem 5.2. in [26]:

If-part. Let \(M\) be a polynomial-time alternating oracle Turing machine, and let \(f\) and \(p\) be polynomials that bound the length of the oracle quantification and the running time of \(M\), respectively. We describe the behaviour of an alternating Turing machine \(M'\) such that for all \(x\),

\[
 M' \text{ accepts } x \iff Q_1A_1 \ldots Q_f(n)A_f(n)(M \text{ accepts } x \text{ with oracle } (A_1, \ldots, A_f(n))).
\]

At first, \(M'\) simulates the quantifier block \(Q_1A_1 \ldots Q_f(n)A_f(n)\) in \(f(n)\) consecutive steps. Namely, for \(1 \leq k \leq f(n)\) where \(Q_k = \exists\) (or \(Q_k = \forall\)), \(M'\) existentially (universally) chooses a set \(A_k\) that consists of strings \(i\) of length at most \(p(n)\). Then \(M'\) evaluates the computation tree associated with the Turing machine \(M\), the input \(x\), and the selected oracle \((A_1, \ldots, A_f(n))\). In this evaluation queries to \(A_k\) are replaced with investigations of the corresponding selection. We notice that \(M'\) constructed in this way satisfies (3), alternates \(f(n)\) many times, and runs in time \(2^{O(n)}\) for some polynomial \(h\).

Only-if part. Let \(M'\) be an alternating exponential-time Turing machine with polynomially many alternations. We show how to construct an alternating polynomial-time oracle Turing machine \(M\) satisfying (3). W.l.o.g. we find polynomials \(f\) and \(g\) such that \(M'\) runs in time at least \(n\) and at most \(2^{f(n)} - 2\) and has at most \(g(n)\) many alternations.

Let \(#\) be a symbol that is not in the alphabet and denote \(2^{f(n)} - 1\) by \(m\). Each configuration of \(M'\) can be represented as a string

\[
\alpha = uqv\ldots #, |\alpha| = m,
\]

with the meaning that \(M'\) is in state \(q\), has string \(uv\) on its tape, and reads the first symbol of string \(v\). The symbol \(#\) is only used to pad configurations to the same length. A computation of \(M'\) over \(x\) may be represented as a sequence of configurations \(a_0, a_1, \ldots, a_m\) such that \(a_0 = q_0x\#\ldots #\) where \(q_0\) is the initial state, \(a_m = uqv\ldots #\) where \(q\) is some final state, and for \(i \leq m - 1\) either \(a_{i+1}\) is reachable from \(a_i\) with one step or \(a_i = a_{i+1} = a_m\). Each oracle \(A_k\) can encode a computation sequence \(\alpha^k_0, \alpha^k_1, \ldots, \alpha^k_m\) with triples \((i, j, \alpha^k_{i, j})\) where \(|i|, |j| \leq f(n)\) and \(\alpha^k_{i, j}\) is the \(j\)th symbol of configuration \(\alpha^k_i\). Determining whether \(k, i, j\) generate a unique \(\alpha^k_{i, j}\) can be done with a bounded number of \(A_k\) queries since there are only finitely many alphabet and state symbols in \(M'\).

Next we describe the behaviour of the alternating polynomial-time oracle Turing machine \(M\). The idea is to simulate the computation of \(M'\) using the above succinct encoding. \(M\) proceeds in \(g(n)\) consecutive steps, and below we present step \(k\) for \(1 \leq k \leq g(n)\) and \(Q^k = \exists\). Notice that we
use \(v \) to indicate the last alternation point of \(M' \), i.e., \(v \) is a binary string that is initially set to 0 and has always length at most \(f(n) \). Notice also that by \(a_{0,j}^\beta \) we refer to the \(j \)th symbol of configuration \(a_0 = q_0 x^# \ldots # \).

step k:

1. universally guess \(i,j \) such that \(|i|, |j| \leq f(n) \) and \(v \leq i \);
 (1a) if \(\alpha_{i,j}^{k−1} = \alpha_{i,j}^k \) and \(\alpha_{i,j−1}^k, \alpha_{i,j}^k, \alpha_{i,j+1}^k, \alpha_{i,j+2}^k \) correctly determine \(\alpha_{i+1,j}^k \) then proceed to (2);
 (1b) otherwise return false;

2. existentially guess \(w \) such that \(|w| \leq f(n) \) and \(v < w \);

3. universally guess \(i,j \) such that \(|i|, |j| \leq f(n) \) and \(v < i < w \);
 (3a) if \(\alpha_{i,j}^k \) is not a universal state then proceed to (4);
 (3b) otherwise return false;

4. existentially guess \(j \) such that \(|j| \leq f(n) \);
 (4a) if \(w < m \) and \(\alpha_{w,j}^k \) is a universal state then set \(v = w \) and proceed to step \(k + 1 \);
 (4b) else if \(w = m \) and \(\alpha_{w,j}^k \) is an accepting state then return true;
 (4c) otherwise return false.

For \(1 \leq k \leq g(n) \) and \(Q^k = \forall \), step \(k \) is described as the dual of the above procedure. Namely, it is obtained by replacing in item (1) universal guessing with existential one, in item (1b) false with true, and in items (3a) and (4a) universal state with existential state. It is now straightforward to check that \(M \) runs in polynomial time and satisfies (3). \(\square \)

Using this theorem we now prove Theorem 4.9. For the quantification over oracles \(A_i \), we use repetitively \(\forall \) and \(\sim \).

Theorem 4.9. SAT(PL[\(\sim \)]) is hard for ATIME-ALT(exp, poly).

Proof. Let \(A \in \text{ATIME-ALT}(\exp, \poly) \). From Theorem 4.8 we obtain a polynomial \(f \) and an alternating oracle Turing machine \(M \) with running time bounded by \(g \). By [4], the alternating machine can be replaced by a sequence of word quantifiers over a deterministic Turing machine. (Strictly speaking, [4] speaks only about a bounded number of alternations, but the generalisation to the unbounded case is straightforward.) W.l.o.g. we may assume that each configuration of \(M \) has at most two configurations reachable in one step. It then follows by Theorem 4.8 that one can construct a polynomial-time deterministic oracle Turing machine \(M^* \) such that \(x \in A \) iff

\[
Q_1 A_1 \ldots Q_{f(n)} A_{f(n)} Q_1' \bar{y}_1 \ldots Q'_{g(n)} \bar{y}_{g(n)}
\]

\((M^* \text{ accepts } (x, \bar{y}_1, \ldots, \bar{y}_{g(n)}) \text{ with oracle } (A_1, \ldots, A_{f(n)})) \),

where \(Q_1, \ldots, Q_{f(n)} \) and \(Q_1', \ldots, Q'_{g(n)} \) are alternating sequences of quantifiers \(\exists \) and \(\forall \), and each \(\bar{y}_i \) is a \(g(n) \)-ary sequence of propositional symbols where \(n \) is the length of \(x \). Note that \(M^* \) runs in polynomial time also with respect to \(n \). Using this characterisation we now show how to reduce in polynomial time any \(x \) to a formula \(\varphi \) in PL[\(\sim \)] such that \(x \in A \) iff \(\varphi \) is satisfiable. We construct \(\varphi \) inductively. As a first step, we let

\[
\varphi := \max(\bar{q}\bar{r}\bar{y}) \land p_t \land \neg p_f \land \varphi_1
\]

where

- \(\bar{q} \) and \(\bar{r} \) list propositional symbols that are used for encoding oracles;
- \(\bar{y} \) lists propositional symbols that occur in \(\bar{y}_1, \ldots, \bar{y}_{g(n)} \) and in \(\bar{z}_t \) that are used to simulate configurations of \(M^* \) (see phase (3) below);

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39. Publication date: March 2010.
\(p_t \) and \(p_f \) are propositional symbols that do not occur in \(\overline{q} r y \).

(1) Quantification over oracles. Next we show how to simulate quantification over oracles. W.l.o.g. we may assume that \(M^* \) queries binary strings that are of length \(h(n) \) for some polynomial \(h \). Let \(\overline{q} \) be a sequence of length \(h(n) \) and \(r \) a sequence of length \(f(n) \). Our intention is that \(\overline{q} \) with \(r_i \) encodes the content of the oracle \(A_i \); in fact \(\overline{q} \) and \(r_i \) encode the characteristic function of the relation that corresponds to the oracle \(A_i \). For a string of bits \(\overline{b} = b_1 \ldots b_k \) and a sequence \(\overline{s} = (s_1, \ldots, s_k) \) of proposition symbols, we write \(\overline{s} = \overline{b} \) for \(\bigwedge_{i=1}^{k} s_i^{b_i} \), where \(s_i^1 := s_i \) and \(s_i^0 := \neg s_i \).

The idea is that, given a team \(X \) over \(\overline{q} r \), an oracle \(A_i \), and a binary string \(\overline{a} = a_1 \ldots a_{h(n)} \), the membership of \(\overline{a} \) in \(A_i \) is expressed by \(X \models \neg \overline{q} = \overline{a} \wedge r_i \). Note that the latter indicates that there exists \(s \in X \) mapping \(\overline{q} \mapsto \overline{a} \) and \(r_i \mapsto 1 \). Following this idea we next show how to simulate quantification over oracles \(A_i \). We define \(\varphi_i \), for \(1 \leq i \leq f(n) \), inductively from root to leaves. Depending on whether \(A_i \) is existentially or universally quantified, we let

\[
\exists \varphi_i := \text{dep}(\overline{q}, r_i) \lor (\text{dep}(\overline{q}, r_i) \land \varphi_{i+1}), \\
\forall \varphi_i := \neg\text{dep}(\overline{q}, r_i) \otimes (\neg \text{dep}(\overline{q}, r_i) \otimes \varphi_{i+1}).
\]

The formula \(\varphi_{f(n)+1} \) will be \(\psi_1 \) defined in step (2) below. Let us explain the idea behind the definitions of \(\varphi_i \), first in the case of existential quantification. Assume that \(X \) is a team such that

\[
X \models \text{dep}(\overline{q}, r_i) \lor (\text{dep}(\overline{q}, r_i) \land \varphi_{i+1}),
\]

and, for \(j \geq i \), \(X \) is maximal over \(r_j \) for all \(\overline{z}_j \), where \(\overline{z} \) lists all symbols from the domain of \(X \) except \(r_j \). Then by (4) we may choose two subsets \(Y, Z \subseteq X \), \(Y \cup Z = X \), where \(Y \models \text{dep}(\overline{q}, r_i) \) and \(Z \models \text{dep}(\overline{q}, r_i) \land \varphi_{i+1} \). Note that since especially \(X \) was maximal over \(r_i \) for all \(\overline{q} \), the selection of the partition \(Y \cup Z = X \) essentially quantifies over the characteristic functions of the oracle \(A_i \).

Universal quantification is simulated analogously. This time we have that

\[
X \models \neg\text{dep}(\overline{q}, r_i) \otimes (\neg \text{dep}(\overline{q}, r_i) \otimes \varphi_{i+1}),
\]

and range over all subsets \(Y, Z \subseteq X \) where \(Y \cup Z = X \). By (5) for all such \(Y \) and \(Z \), we have that if \(Y \models \text{dep}(\overline{q}, r_i) \) and \(Z \models \text{dep}(\overline{q}, r_i) \) then \(Z \models \varphi_{i+1} \) (see Section 2.2 for the definition of \(\otimes \)). Using an analogous argument for \(Z \) as in the existential case, we notice that the selection of \(Z \) corresponds to universal quantification over characteristic functions of \(A_i \).

(2) Quantification over propositional symbols. Next we show how to simulate the quantifier block \(Q_1^* \overline{y}_1 \ldots Q_{f(n)}^* \overline{y}_{f(n)} \exists \overline{z} \) where \(\overline{z} \) lists all propositional symbols that occur in \(\overline{y} \) but not in any \(\overline{y}_i \) (i.e. the remaining symbols that occur when simulating \(M^* \)). Assume that this quantifier block is of the form \(Q_1^* y_1 \ldots Q_l^* y_l \) and let \(\psi_i := \varphi_{f(n)+1} \). We define \(\psi_i \) again top-down inductively. For \(1 \leq i \leq l \), depending on whether \(Q_i^* \) is \(\exists \) or \(\forall \), we let

\[
\exists \psi_i := \text{dep}(y_i) \lor (\text{dep}(y_i) \land \psi_{i+1}), \\
\forall \psi_i := \neg\text{dep}(y_i) \otimes (\neg \text{dep}(y_i) \otimes \psi_{i+1}).
\]

Let us explain the idea behind the two definitions of \(\psi_i \). The idea is essentially the same as in the oracle quantification step. First in the case of existential quantification. Assume that we consider a formula \(\psi_i \) and a team \(X \) where

\[
X \models \psi_i,
\]

and \(X \) is maximal over \(y_1 \ldots y_l \). By (6) we may choose two subsets \(Y, Z \subseteq X \), \(Y \cup Z = X \), where \(Y \models \text{dep}(y_i) \) and \(Z \models \text{dep}(y_i) \land \psi_{i+1} \). There are now two options: either we choose \(Z = \{ s \in X \mid s(y_i) = 0 \} \) or \(Z = \{ s \in X \mid s(y_i) = 1 \} \). Since \(X \) is maximal over \(y_1 \ldots y_l \) for all \(\overline{q} y_1 \ldots y_{l-1} \), we obtain that \(Z \models \overline{q} = X \uparrow \overline{q} r \) and \(Z \) is maximal over \(y_{i+1} \ldots y_l \) for all \(\overline{q} y_1 \ldots y_l \). Hence no information about oracles is lost in this quantifier step.
The case of universal quantification is again analogous to the oracle case. Hence we obtain that (6) holds iff both \(\{ s \in X \mid s(y_i) = 0 \} \) and \(\{ s \in X \mid s(y_i) = 1 \} \) satisfy \(\psi_{i+1} \).

(3) Simulation of computations. Next we define \(\psi_{i+1} \) that simulates the polynomial-time deterministic oracle Turing machine \(M^* \). Note that this formula is evaluated over a subteam \(X \) such that \(X \models \text{dep}(y_i) \), for each \(y_i \in \vec{y} \), and \(\vec{a} \in A_i \) iff \(X \models \neg \bigl(\bigwedge_q (\vec{q} = \vec{a} \land r_i) \bigr) \). Using this it is now straightforward to construct a propositional formula \(\theta \) such that \(X \models \theta \) if and only if \(M^* \) accepts \((x, \vec{b}_1, \ldots, \vec{b}_t(n)) \) with oracle \((A_1, \ldots, A_t(n)) \), where \(\vec{b}_j \) denotes the unique value of \(\vec{y}_i \) in \(X \). Each configuration of \(M^* \) can be encoded with a binary sequence \(\vec{z}_i \) of length \(O(t(n)) \) where \(t \) is a polynomial bounding the running time of \(M^* \). Then it suffices to define \(\psi_{i+1} \) as a conjunction of formulae \(\theta_{\text{start}}(\vec{z}_0), \theta_{\text{move}}(\vec{z}_i, \vec{z}_{i+1}), \theta_{\text{final}}(\vec{z}_{t(n)}) \) describing that \(\vec{z}_0 \) corresponds to the initial configuration, \(\vec{z}_i \) determines \(\vec{z}_{i+1} \), and \(\vec{z}_{t(n)} \) is in accepting state. Note that the formulae \(\theta_{\text{start}}(\vec{z}_0), \theta_{\text{move}}(\vec{z}_i, \vec{z}_{i+1}), \) and \(\theta_{\text{final}}(\vec{z}_{t(n)}) \) can be written exactly as in the classical setting, except that all disjunctions \(\lor \) are replaced by the intuitionistic disjunction \(\circ \).

Finally note that, by Proposition 2.5, all occurrences of dependence atoms, the shorthand \(\mathord{\bigcirc} \) and the connectives \(\boxtimes \) and \(\otimes \) can be eliminated from the above formulae by a polynomial overhead. Thus the constructed formula \(\varphi \) is a \(\text{PL[\sim]} \)-formula as required.

By Proposition 4.6, and Theorems 4.7 and 4.9 we now obtain the following.

Theorem 4.10. Satisfiability and validity problems of \(\text{PL[\perp, \subseteq, \sim]} \) and \(\text{PL[\sim]} \) are complete for \(\text{ATIME-ALT(exp, poly)} \).

The following corollary now follows by a direct generalisation of Theorem 4.7.

Corollary 4.11. Let \(C \) be a finite collection of dependency atoms with polynomial-time checkable semantics. Satisfiability and validity of \(\text{PL[C, \sim]} \) is complete for \(\text{ATIME-ALT(exp, poly)} \).

5 CONCLUSION

In this article we have initiated a systematic study of the complexity theoretic properties of team based propositional logics. Regarding the logics considered in this paper, an interesting open question is to determine the exact complexity of \(\text{VAL(PL[\perp, C])} \) for which membership in \(\text{coNEXPTIME^{NP}} \) was shown in this paper. Propositional team semantics is a very rich framework in which many interesting connectives and operators can be studied such as the intuitionistic implication \(\neg\circ \) applied in the area of inquisitive semantics. It is an interesting question to extend this study to cover a wider range of team based logics.

ACKNOWLEDGMENTS

This work was supported by Jenny and Antti Wihuri Foundation and, by grants 292767 and 308712, the Academy of Finland. This work was supported in part by the joint grant by the DAAD (57348395) and the Academy of Finland (308099).

REFERENCES

Received February 2007; revised March 2009; accepted June 2009