Linking the Modern Distribution of Biogenic Proxies in High Arctic Greenland Shelf Sediments to Sea Ice, Primary Production, and Arctic-Atlantic Inflow

Limoges, Audrey

2018-03

http://hdl.handle.net/10138/234814
https://doi.org/10.1002/2017JG003840

Downloaded from Helda, University of Helsinki institutional repository.
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.
Please cite the original version.
Linking the Modern Distribution of Biogenic Proxies in High Arctic Greenland Shelf Sediments to Sea Ice, Primary Production, and Arctic-Atlantic Inflow

Audrey Limoges1,2, Sofia Ribeiro1, Kaarina Weckström1,3, Maija Heikkilä1,3, Katarzyna Zamelczyk4, Thorbjørn J. Andersen5, Petra Tallberg3, Guillaume Massé6, Søren Rysgaard7,8, Niels Nørgaard-Pedersen9, and Marit-Solveig Seidenkrantz7,10

1Department of Glaciology and Climate, Geological Survey of Denmark and Greenland, Copenhagen, Denmark, 2Now at Department of Earth Sciences, University of New Brunswick, Fredericton, New Brunswick, Canada, 3Department of Environmental Sciences, Environmental Change Research Unit, University of Helsinki, Helsinki, Finland, 4Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, Arctic University of Norway, Tromsø, Norway, 5CENPERM, Department of Geosciences and Natural Resource Management, Copenhagen University, Copenhagen, Denmark, 6UMI3376 TAKUVIK, Department of Biology, CNRS and Université Laval, Quebec City, Quebec, Canada, 7Arctic Research Centre, Aarhus University, Aarhus, Denmark, 8Centre for Earth Observation Science, Department of Environment and Geography, University of Manitoba, Winnipeg, Manitoba, Canada, 9Department of Marine Geology, Geological Survey of Denmark and Greenland, Copenhagen, Denmark, 10Centre for Past Climate Studies, Department of Geoscience, Aarhus University, Aarhus, Denmark

Abstract The eastern north coast of Greenland is considered to be highly sensitive to the ongoing Arctic warming, but there is a general lack of data on modern conditions and in particular on the modern distribution of climate and environmental proxies to provide a baseline and context for studies on past variability. Here we present a detailed investigation of 11 biogenic proxies preserved in surface sediments from the remote High Arctic Wandel Sea shelf, the entrance to the Independence, Hagen, and Danmark fjords. The composition of organic matter (organic carbon, C:N ratios, δ13C, δ15N, biogenic silica, and IP25) and microfossil assemblages revealed an overall low primary production dominated by benthic diatoms, especially at the shallow sites. While the benthic and planktic foraminiferal assemblages underline the intrusion of chilled Atlantic waters into the deeper parts of the study area, the distribution of organic-walled dinoflagellate cysts is controlled by the local bathymetry and sea ice conditions. The distribution of the dinoflagellate cyst Polarella glacialis matches that of seasonal sea ice and the specific biomarker IP25, highlighting the potential of this species for paleo sea ice studies. The information inferred from our multiproxy study has important implications for the interpretation of the biogenic-proxy signal preserved in sediments from circum-Arctic fjords and shelf regions and can serve as a baseline for future studies. This is the first study of its kind in this area.

1. Introduction

As the Arctic warms, the thickness, duration, and extent of the sea ice cover are declining, with significant impacts on both small- and large-scale primary production patterns (Arrigo & van Dijken, 2015; Arrigo et al., 2008; Bélanger et al., 2013; Gradinger, 1995; Kahru et al., 2011; Pabi et al., 2008; Tremblay et al., 2015). Sea ice and snow restrict light transmittance essential for photosynthesis, influence the onset of phytoplankton blooms, and ultimately shape phytoplankton communities. A reduction in the sea ice extent creates more open water habitats for phytoplankton, thus enhancing the length of their growing season. However, regional sea ice loss may alter the convective mixing processes that recycle nutrients into the surface waters during ice formation and naturally trigger algal blooms in spring when the ice breaks up (Niebauer et al., 1990; Stabeno et al., 2010). It is therefore expected that the ongoing warming and associated changes in the sea ice regime will have profound effects on both the abundance and species composition of Arctic algal communities (Arrigo, 2013; Boetius et al., 2013; Loeng et al., 2005; Nöthig et al., 2015; Smetacek & Nicol, 2005; Tremblay et al., 2009), with implications for Arctic ecosystem functioning and biogeochemical cycles.

Another important aspect related to Arctic sea ice melt is the inherent alterations in the freshwater budget at high latitudes (Curry & Mauritzen, 2005; Dickson et al., 2007). Increased export of freshwater and drift ice from the Arctic to the North Atlantic Ocean will impact global ocean circulation and climate through various feedback mechanisms (Aagaard & Carmack, 1989; Clark et al., 2002; Curry et al., 2003; Holland et al., 2007; Jones...
et al., 2008; Mauritzen & Hakkinen, 1997; Peter et al., 2006). Off eastern Greenland, this could translate into strengthened advection of the low salinity Polar surface water carried by the East Greenland Current (EGC) through Fram Strait (Figure 1a) (Dmitrenko et al., 2017; Sejr et al., 2017; Sutherland & Pickart, 2008), the main gateway for Arctic water into the Atlantic Ocean. The sea ice dynamics and local hydrology of Greenlandic fjords and shelf areas further play a critical role for the stability of tidewater outlet glaciers (see Andresen et al., 2012; Bendtsen et al., 2017; Kirillov et al., 2017) and the mass balance of the Greenland ice sheet. Fjord systems located on the eastern North Greenland shelf therefore are key areas for investigating the effects of changing freshwater budgets on the coastal ecosystems.

One way to obtain a retrospective view on the state and change of biological and hydrological parameters in marine settings is to look at the sedimentary remains of various groups of protists (e.g., dinoflagellates, diatoms, and foraminifera). Once settled on the seafloor, the fossil or geochemical remains of the marine protists are incorporated into the sediment, carrying with them the environmental signature of the overlying water masses they inhabited. Diatoms and dinoflagellates constitute two major groups of marine primary producers that thrive in the upper layers of the oceans. Their immediate grazers comprise heterotrophic or mixotrophic dinoflagellates and foraminifera that live at different water-depth intervals within the water column. Accordingly, the fossil remains of diatoms, dinoflagellates, and planktic foraminifera are widely used for investigating past sea surface hydrography, whereas benthic foraminifera are useful proxies for reconstructing subsurface and deep-water mass properties (see Polyak et al., 2010, and references therein).

Since they are at the basis of the marine food chain, their assemblage composition and abundances also provide key information on regional paleo-productivity. Unlike the organic-walled cysts of dinoflagellates, which are generally well preserved in the sediment (see, however, Zonneveld et al., 2008), the calcareous (e.g., foraminifera and ostracods) and siliceous (e.g., diatoms and chrysophyte cysts) microfossils can be susceptible to dissolution at high latitudes (e.g., Koç et al., 1993; Matthiessen et al., 2001; Schroeder-Adams & van Rooyen, 2011; Seidenkrantz et al., 2007; Zamelczyk et al., 2012). The absence of siliceous and calcareous fossils from the sediment can therefore be interpreted either as a result of dissolution or low pelagic productivity. A multiproxy approach is thus preferable for making robust inferences of past primary production and hydrographic parameters from high latitudes.

The composition of organic matter in the sediment also provides information on past primary production and specific environmental parameters. The sea ice proxy IP$_{25}$, a monounsaturated highly branched isoprenoid (HBI) lipid specifically produced by certain sympagic (i.e., ice dwelling) diatom species (Brown et al., 2014), is notably used for reconstructing past trends in Arctic sea ice (Belt et al., 2007; Fahl & Stein, 2012; Hörner et al., 2016; Müller et al., 2009; Stein et al., 2012; Vare et al., 2009, 2010; Xiao et al., 2013). It was recently suggested that studying IP$_{25}$ with its close relative HBI III (triene), likely produced by diatoms blooming in the marginal sea ice zone (Belt et al., 2000), allows for more precise information on past sea ice dynamics (Belt et al., 2015; Smik et al., 2016). However, so far relatively few studies have investigated the use of these proxies in fjord and coastal environments (Brown et al., 2015; Ribeiro et al., 2017).

In this study, we have analyzed a broad suite of biogenic proxies (dinoflagellate cysts, benthic and planktic foraminifera, diatoms, IP$_{25}$, HBI III, biogenic silica, and elemental and isotopic composition of organic matter) from 16 surface sediment samples collected on the Wandel Sea shelf, the entrance to the Independence fjord, Hagen fjord, and Danmark fjord system (hereafter referred to as Independence fjord system), eastern North Greenland (Figure 1), in relation to present-day sea ice and hydrographic data. Our aim was to establish a reference multiproxy data set that can help in assessing past changes in High Arctic coastal environments, with focus on sea ice conditions and primary production. We also intend to refine the interpretation of the studied proxies through an improved understanding of their distribution in relation to modern conditions. Furthermore, we investigate, for the first time, modern primary producers from the Independence fjord system, one of the most poorly studied fjord systems in Greenland.

2. Materials and Methods

2.1. Regional Settings

The Independence fjord system lies between Peary Land and Kronprins Christian Land in eastern North Greenland (between ~ 80°41' and 82°27'N; 16°36' and 32°40'W) (Figure 1b). The fjord system is approximately 150 km long and drains into the Wandel Sea. Two large glaciers, Academy and Hagen, discharge
into the head of the Independence and Hagen fjord branches, respectively. The region also supports the largest peripheral ice cap of Greenland, the Flade Isblink ice cap, which covers an area of ~ 7,500 km² (Kelly & Lowell, 2009) and drains through two outlets (see Figure 1c) at velocities of a few hundred
Limited information is available for the region, but data from the Danish Meteorological Institute indicate that the fjord system was covered by permanent ice from 1950 to 1964 (Rysgaard et al., 2003). It is only in 1978 that open water leads were first reported in the region through aerial photography (Higgins, 1991).

The geological setting is fairly complex, with Archaic to Paleoproterozoic crystalline basement found closest to the present Greenland ice sheet, unconformably overlain by the proterozoic Independence Fjord Group of alluvial clastic deposits that is cut by dolerites and overridden by proterozoic basalts (Jepsen & Kalsbeek, 1998). Younger siliciclastic and calcareous sedimentary deposits from the late Paleozoic, Mesozoic, and early Cenozoic are found at various, but geographically restricted, locations (Henriksen et al., 2000, 2009). The region was repeatedly glaciated during the Quaternary (Funder, 1989). Following the last deglaciation (Funder, 1989; Nørgaard-Pedersen et al., 2008), the fjord system was inundated by marine waters, and during the Holocene Thermal Maximum (circa 8,000–5,000 years ago) warmer than present summer temperatures may have resulted in open, sea ice-free waters in the summer (Funder et al., 2011).

2.1.1. Present-Day Sea Ice and Hydrographic Conditions

Most of the Independence fjord system is covered by semipermanent sea ice. Only the southern branches of the fjord system and the area adjacent to the Villum Research Station (Station Nord), where the surface sediment samples were collected, are consistently partially ice free during late summer. Satellite images (MODIS) from the area adjacent to the Villum Research Station are available for 6 years preceding sampling (2009 to 2014) (Figure 2). They show that during this time window, sea ice typically started to retreat from the coast at the end of July and formed again in early September—leaving only a little more than a month for open water phytoplankton growth. While there was some variability in the maximum open water extent, the general pattern and timing of sea ice melt and freezeup was relatively consistent over this period.

Figure 2. Maximum annual open water extent in the study area based on MODIS imagery (credit: NASA Worldview; https://worldview.earthdata.nasa.gov) for the six years preceding sampling (2009 to 2014). The general outline of the Flade Isblink ice cap front shown in these images is not exactly the same as reported in Figure 1c. Note that we consider the outline presented in Figure 1c to be the most accurate. The sampling sites are illustrated by the yellow circles.
The first oceanographic data from the study area are presented in Bendtsen et al. (2017), Dmitrenko et al. (2017), and Kirillov et al. (2017). Conductivity-temperature-depth (CTD) profiles obtained during spring 2015 revealed the origin of the water masses and the interactions with ambient water in the regions deeper than 10 m of our study area. On the Wandel Sea shelf (Figure 1b), the water column can generally be divided into six layers of distinct water masses: a low-salinity surface layer (~1.5 – 5 m depth) formed by the summer melt of the glaciers and sea ice, a subsurface halocline with a strong vertical salinity gradient down to a depth of 15 m, a Halostad layer of Pacific origin with near freezing temperatures (15 – 65 m), an Atlantic-modified halocline (65 – 100 m), Atlantic-modified Polar Water (100 – 140 m), and relatively warmer and more saline Atlantic bottom waters (>140 m) (Dmitrenko et al., 2017). Accordingly, the deepest sites located North of Princess Dagmar Island (Sites k9 – k6; Figure 1c) are the most affected by halocline disturbance caused by Atlantic water intrusions, whereas the hydrological conditions south of Princess Dagmar Island (Sites k22, k21, and k15) seem to be mainly governed by the fjord’s ambient waters, and no intrusion of outer-shelf waters was observed in this region. The local influence of cold and turbid subglacial meltwaters originating from the Flade Isblink ice cap was also observed directly at the outlet of the glacier. It has been suggested that subglacial meltwater discharges from marine-terminating glaciers could help promote primary productivity through increased nutrient supplies (e.g., Meire et al., 2017). According to the data from Dmitrenko et al. (2017), the influence of the meltwater originating from this glacier only reaches a few kilometers away from the glacial tongue, only directly affecting Site k8 of this study. No CTD data are available for the southern glacier outlet, near our sampling station k14.

2.2. Methods

Surface sediment samples were collected from the area adjacent to the Villum Research Station (~ 20 – 30 km from the station) in spring 2015 (Nørgaard-Pedersen et al., 2016). Sampling was conducted while the study area was covered by ice and could be used as a platform for coring. Sediment samples from a total of 16 locations were retrieved using a Van Veen Grab sampler and a Kajak Corer, along transects of varying depths and sea ice thicknesses, starting near the front of the Flade Isblink glacier outlets and the Villum Research station (Figure 1c and Table 1). The sampling sites were targeted based on georeferenced high-resolution radar satellite images, which were used to distinguish between areas of first and multiyear sea ice cover (see Nørgaard-Pedersen et al., 2016). The sediment sampling and coring devices were deployed through holes made in the sea ice with an ice auger, after snow removal. The topmost sediments (0 – 1 cm) were directly subsampled from the grabs and Kajak cores, subsequently stored at 2 – 4°C at the Villum Research Station, and transported cooled to Copenhagen. Samples were frozen at –20°C and freeze dried before all analyses were conducted. While sediment mass accumulation rates are not known for all sites, 210Pb and 137Cs analyses were carried out for selected cores (k6, k9, k22, see supporting information). The results show a rapid downcore decline in the activity of unsupported 210Pb, which was generally absent below a depth of 4 – 6 cm. This suggest sedimentation rates of the order of 4 – 6 cm/100 years, which must be regarded as

<table>
<thead>
<tr>
<th>Sites</th>
<th>Core numbers</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Water depth (m)</th>
<th>Sea ice thickness (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1G</td>
<td>k9</td>
<td>81.77878</td>
<td>–16.59632</td>
<td>154.5</td>
<td>1.15</td>
</tr>
<tr>
<td>1Fb</td>
<td>k6</td>
<td>81.76615</td>
<td>–16.82502</td>
<td>128</td>
<td>1.25</td>
</tr>
<tr>
<td>1O</td>
<td>k32</td>
<td>81.71694</td>
<td>–16.33982</td>
<td>154</td>
<td>3.10</td>
</tr>
<tr>
<td>1M</td>
<td>k8</td>
<td>81.67112</td>
<td>–16.02637</td>
<td>111</td>
<td>2.50</td>
</tr>
<tr>
<td>1E</td>
<td>k29</td>
<td>81.72030</td>
<td>–17.12090</td>
<td>87</td>
<td>1.30</td>
</tr>
<tr>
<td>1D</td>
<td>k28</td>
<td>81.69560</td>
<td>–17.04250</td>
<td>75</td>
<td>1.33</td>
</tr>
<tr>
<td>1C</td>
<td>k4</td>
<td>81.67298</td>
<td>–16.96524</td>
<td>73</td>
<td>1.01</td>
</tr>
<tr>
<td>1B</td>
<td>k3</td>
<td>81.65198</td>
<td>–16.89640</td>
<td>57</td>
<td>0.99</td>
</tr>
<tr>
<td>1K</td>
<td>k11</td>
<td>81.67753</td>
<td>–16.64113</td>
<td>20.8</td>
<td>0.99</td>
</tr>
<tr>
<td>1A</td>
<td>k33</td>
<td>81.62295</td>
<td>–16.80726</td>
<td>19.6</td>
<td>0.95</td>
</tr>
<tr>
<td>3E</td>
<td>k22</td>
<td>81.53870</td>
<td>–18.05310</td>
<td>115</td>
<td>1.27</td>
</tr>
<tr>
<td>3D</td>
<td>k21</td>
<td>81.50400</td>
<td>–17.83700</td>
<td>135</td>
<td>0.99</td>
</tr>
<tr>
<td>3F</td>
<td>k25</td>
<td>81.51110</td>
<td>–17.48025</td>
<td>61</td>
<td>1.22</td>
</tr>
<tr>
<td>3B</td>
<td>k17</td>
<td>81.51717</td>
<td>–17.21174</td>
<td>54.5</td>
<td>1.22</td>
</tr>
<tr>
<td>3C</td>
<td>k15</td>
<td>81.46380</td>
<td>–17.63130</td>
<td>113</td>
<td>1.00</td>
</tr>
<tr>
<td>3G</td>
<td>k14</td>
<td>81.39508</td>
<td>–17.21150</td>
<td>55</td>
<td>1.20</td>
</tr>
</tbody>
</table>
maximum sedimentation rates since a tendency for covariation of the content of unsupported 210Pb and 137Cs indicates that some sediment mixing takes place at the sites.

2.2.1. Grain Size Analysis
The surface sediment was ultrasonically dispersed (2 min on a Bandelin UW 2200) in a sodium pyrophosphate solution and subsequently wet sieved at 1 mm. Particle size analysis was conducted using a Malvern Mastersizer E/2000. The grain size distribution of the samples is reported as percentages of clay, silt, and sand.

2.2.2. Carbon and Nitrogen Elemental and Isotopic Analyses
The freeze-dried surface sediment samples for total organic carbon (TOC) and total nitrogen (TN) analyses were rinsed with distilled water in order to remove the salt residue. For the TOC analysis, samples were treated with hydrochloric acid (HCl, 10%) for 24 h in order to eliminate the inorganic carbon fraction. These samples were then washed with deionized water until the pH of the supernatant equaled that of the deionized water. The sediment for the TOC analyses was freeze dried again. Samples for TOC and nitrogen concentration analyses were weighed (9–150 mg) in tin cups. Elemental analysis was carried out using a MICRO CUBE Elemental Vario elemental analyzer (Laboratory of Geochemistry, University of Helsinki). Lake sediment material (LKSD-4) was used as a reference material. An uncertainty of ±0.1% on the measurements is estimated from replicate analyses of the samples.

Samples for the isotopic composition of bulk organic carbon (δ13C) and nitrogen (δ15N) were rinsed with deionized water. Prior to δ13C analyses, sediment samples were treated with HCl (10%) to eliminate the carbonate fraction. Samples were weighed into tin cups and analyzed with a ThermoQuest Finnigan DeltaPlus XL Isotope Ratio Mass Spectrometer. Replicate measurements of both the samples and a sediment standard “High Organic Content Standard” indicate reproducibility of ±0.5‰ and ±0.2‰ for the sediment material, for δ13C and δ15N respectively. The isotopic ratios are expressed in the δ notation as deviations per mil (%), so that $\delta_{\text{sample}} = 1000 \times \frac{R_{\text{sample}} - R_{\text{standard}}}{R_{\text{standard}}} - 1$, where R is the ratio of heavy to light isotope (13C/12C or 15N/14N). δ13C values were calibrated to the Vienna PeeDee belemnite scale by using the international reference standards USGS41, IAEA-CH3, and IAEA-CH7. δ15N values are expressed relative to atmospheric nitrogen gas, using the international reference standards USGS01, IAEA-N1, and IAEA-N2.

2.2.3. Biogenic Silica
Biogenic silica measurements were conducted at the University of Helsinki following the wet alkaline extraction technique (e.g., DeMaster, 1981). Known weights of sediment samples (30 ± 2 mg) were added to polyethylene bottles and leached for 5 h in a 85°C water bath using 40 mL 1% sodium carbonate (Na$_2$CO$_3$). After 3, 4, and 5 h, an aliquot of 1 mL was taken from each sample and analyzed for dissolved silica through spectrophotometry (Perkin Elmer Lambda 25 UV/VIS spectrometer) according to the blue ammonium-molybdate method (Mullin & Riley, 1955). Biogenic silica concentrations were calculated using a linear regression. While mineral-derived silica dissolves at a constant rate throughout the extraction, all biogenic silica is assumed to have dissolved after the first 3 h of the extraction (see, e.g., Barão et al., 2015 for further details).

2.2.4. Biomarkers (Highly Branched Isoprenoids)
Samples for highly branched isoprenoid (HBI) analyses were prepared at Laval University, Quebec, following the procedure described by Belt et al. (2007). An internal standard (7-hexynonadecane) was added to ~ 0.5 g of freeze dried and homogenized sediment before analytical treatment. Total lipids were ultrasonically extracted (times 3) using a mixture of dichloromethane (DCM: CH$_2$Cl$_2$) and methanol (MeOH) (2:1, v/v). Extracts were pooled together, and the solvent was removed by evaporation under a slow stream of nitrogen. The total extract was subsequently resuspended in hexane and purified through an open column chromatography (SiO$_2$). Hydrocarbons (including IP$_{25}$ and triene (HBI III)) were eluted using hexane (8 mL). Procedural blanks and standard sediments were analyzed every 15 samples.

Hydrocarbon fractions were analyzed using an Agilent 7890 gas chromatograph (GC) fitted with 30 m fused silica Agilent J&G GC columns (0.25 mm i.d. and 0.25 μm phase thickness) and coupled to an Agilent 5975C Series mass selective detector. Oven temperatures were programmed as follows: 40–300°C at 10°C/min, followed by an isothermal interval at 300°C for 10 min. The data were collected using ChemStation and analyzed using MassHunter quantification software. IP$_{25}$ was identified on the basis of retention time and comparison of mass spectra with authenticated standards. Abundances were obtained by comparison of individual GC-mass spectrometry responses against those of the internal standard. For both IP$_{25}$ and HBI III, data are reported in ng g$^{-1}$ sediment.
2.2.5. Diatoms
Diatom analyses were conducted on ~ 0.2 g of freeze-dried sediment that was prepared following standard methodologies (Battarbee et al., 2001). Sediment was oxidized at 90°C for 6 h using hydrogen peroxide (H$_2$O$_2$, 30%) in order to remove organic material. Carbonates were then dissolved by addition of a few drops of HCl (35%). The test tubes in which samples were treated were subsequently filled with distilled water and left to settle for 12 h. Residues were then washed several times using demineralized water. A known number of microscopic markers (microspheres) were added to each sample for concentration determinations. A few drops of the final suspension were then dried on a coverslip and subsequently mounted in Naphrax® for light microscopy observation. Identification and quantification were performed using an optical microscope (Leica DMLB), equipped with phase contrast, at a magnification of 1000X. Owing to the generally very low diatom concentrations, the relative abundances of individual taxa are based on counts completed over 10 transects per slide (amounting to ~ 580 microspheres on average).

2.2.6. Dinoflagellate Cysts (Dinocysts) and Other Organic-Walled Microfossils
Samples for palynological analyses were prepared at Ghent University, Belgium, following the standard preparation method described in Quaïtaal et al. (2014). A known weight of freeze-dried sediment (~2 – 5 g) was rehydrated with demineralized water. A calibrated tablet of Lycopodium clavatum spores was added to each sample before treatment in order to estimate the absolute dinocyst concentrations (Stockmarr, 1971). The sediment was repeatedly treated with room-temperature hydrochloric acid (HCl, 2 N) and room-temperature hydrofluoric acid (HF, 40%) to remove calcium carbonate and silicate, respectively. Samples were rinsed stepwise with deionized water. The residues were sonicated for 30 s to break up clusters of amorphous organic matter and sieved through a 10 µm nylon mesh to remove the finer particles. The final residues were mixed with glycerin jelly and mounted on microscope slides. The identification of dinocysts and other organic-walled microfossils was carried out using a light microscope at magnifications of 400X and 1000X. In general, a minimum of two slides was counted per sample, but because of very low cyst concentrations, the total number of counted specimens remains below 300 in every sample. Cysts with visible cell contents were noted.

2.2.7. Foraminifera and Ostracods
For quantitative assemblage analyses, known weights (~1 – 2 g) of untreated (wet) surface sediment were soaked in tap water, gently sieved through a 63 µm mesh, and subsequently dried. Calcareous benthic and planktic foraminifera from the >63 µm fraction were counted dry on a square-picking tray and identified to the species level. Agglutinated species were not distinguished, but their counts are included in the sums. With the exception of five sites, at least 300 specimens were counted per sample. Ostracod valves were also counted from the same samples, although these were not identified to species level.

3. Results
3.1. Particle Size Analysis
The surface sediment samples were mainly composed of silt (46–81%), with lower proportions of sand (1–38%) and clay (12–35%). Overall, the samples were relatively similar in terms of their grain size distribution. However, the surface sediments from Sites k11, k21, k25, and k28 had sand contents above 25% (Table 2; supporting information).

3.2. Carbon and Nitrogen Elemental and Isotopic Analyses
The total organic carbon (TOC) contents ranged between 0.40 and 2.37 wt % (Figure 3a and Table 2), and total nitrogen (TN) ranged between 0.09 and 0.18 wt % (Table 2). The C:N ratios, which correspond to the ratio between TOC (wt %) and TN (wt %), varied between 3.33 and 15.86 (Figure 3c and Table 2). The highest values were found at Sites k33, k25, k14, and k8 (~10). The δ13C values ranged from ~26.0 to ~23.5‰ ± 0.5‰ (average = ~24.9‰) (Figure 3c and Table 2). The sedimentary organic matter from sites north of Princess Dagmar Island was more enriched in 13C compared to the region south of Princess Dagmar Island. The δ15N values ranged from 2.6 to 5.8‰ ± 0.2‰ (average = 4.8‰) (Figure 3b and Table 2).

3.3. Biogenic Silica
Biogenic silica in sediments is a widely used indicator of paleoproductivity (primarily of diatoms and also radiolarians, silicoflagellates, plant phytoliths, and sponge spicules). Biogenic Silica (BSi) concentrations varied
between 0.45 and 4.96 mg g\(^{-1}\) dry mass Si (average 1.89 mg g\(^{-1}\)) (Figure 4a and Table 3), corresponding to 0.17 to 1.06 wt % SiO\(_2\) (average 0.40 wt % SiO\(_2\)). These values are low in comparison with measurements from other high-Arctic fjord regions such as the Young Sound-Tyrolerfjord, where the average value is almost 3 times higher (Ribeiro et al., 2017). This can likely be explained by a longer lasting sea ice cover in the study area, with less biogenic silica accumulating on the sea floor as the result of reduced marine productivity.

3.4. Biomarkers (Highly Branched Isoprenoids)

The biomarker IP\(_{25}\) was identified from all sites at low concentrations (from 3.47 to 69.93 ng g\(^{-1}\) dry sediment) and is also shown normalized to TOC (μg IP\(_{25}\)/g TOC) (Figures 4b and 4c and Table 3). The highest TOC-normalized IP\(_{25}\) concentrations were found at the shallow sites with seasonal sea ice cover located in the vicinity of the Villum Research Station (k33 and k11). The lowest concentrations occurred at Sites k9, k6, and sites located south of Princess Dagmar Island (k14, k15, k21, k22, and k25). Triene (HBI III) concentrations were extremely low and ranged from 0 to 0.74 ng g\(^{-1}\) dry sediment (Table 3).

3.5. Diatoms

A total of 39 diatom taxa were identified from the sediment samples. The majority of these were benthic species, most of them belonging to the genera *Diploneis*, *Navicula*, and *Nitzschia* (Plate 1). Resting spores of *Chaetoceros* (and one *Thalassiosira antarctica var. borealis* spore) were the only planktic taxa found in the samples. Overall abundances were very low, and for Sites k4, k9, k14, k15, and k29 no diatoms were encountered along the analyzed transects (Figure 4d, Table 3, and supporting information). Consistent with high biogenic silica content for the shallow area next to the Villum Research Station, considerably higher diatom concentrations were found at Sites k33 and k11, yielding total counts of ~100 valves, whereas only a few valves were found at all other sites. These were also the sites where the majority of species were encountered. Assemblages were dominated by the cosmopolitan marine species *Diploneis nitescens*. Other taxa included the brackish-marine *Diploneis smithii* and *Navicula cf. perminuta*; the marine widespread *Fallaciac litoricola, Nitzschia cf. distans, Nitzschia cf. marginulata*, and *Nitzschia cf. rorida*; and the marine (sub)arctic *Pinnularia quadratarea var. maxima*. Worth noting is the presence of only two sympagic taxa throughout the study area—*Diploneis litoralis var. clathrata* and *Stauroneis cf. radissonii*—at very low abundances (<1%). Resting spores of *Chaetoceros* were included in the sums. The good preservation of the diatom valves indicates the absence of significant diatom dissolution, implying that the low diatom abundance at most sites is not a dissolution artifact.

3.6. Dinocysts and Other Organic-Walled Microfossils

Dinocyst concentrations were relatively low with values ranging from 52 to 717 cysts g\(^{-1}\) dry sediment (Figure 4e and Table 4). While the highest concentrations were found north of Princess Dagmar Island,
sites located south of the island and close to the glacier outlets contained only a few cysts, providing very low counts. Nine dinocyst taxa were identified from the surface samples, with seven of them significantly contributing to the assemblages: Brigantedinium spp. (mainly B. simplex) (6–54%), Islandinium minutum (2–47%), Echinidinium karaense (0–14%), unspecified “spiny brown cysts” (0–10%), Polarella glacialis (0–82%), cf. Biecheleria sp. (2–47%), and a cyst here referred to as “round brown type A” (0–4%) (Figure 5a, Plate 2, and supporting information). The spiny brown cyst category encompasses all specimens that could either belong to the genus Islandinium or Echinidinium, but for which preservation, folding, or orientation did not allow for unequivocal identification. Indeterminate cyst types of probable dinoflagellate affinity were also observed. Although they were not included in the total cyst counts, these taxa are shown in Plate 2.
Figure 4. Distribution and concentrations of the main biogenic proxies studied from the surface sediment: (a) biogenic silica (mg g$^{-1}$); (b) IP$_25$ (ng g$^{-1}$); (c) TOC-normalized IP$_25$ (μg g$^{-1}$); (d) concentrations of diatoms (valves g$^{-1}$), and proportion of benthic (dark blue) and planktic species, including resting spores of Chaetoceros (green); (e) concentrations of dinocysts (cysts g$^{-1}$) and proportions of phototrophic (light blue) over heterotrophic species (dark blue); (f) concentrations of foraminifera (tests g$^{-1}$) and proportions of planktic (green), calcareous benthic (dark blue), and agglutinated benthic (light blue) species; (g) concentrations of the heterotroph dinocyst species Islandinium minutum (cysts g$^{-1}$); (h) concentrations of the dinocyst cf. Biecheleriap. (cysts g$^{-1}$); and (i) concentrations of the phototrophic sea ice dweller dinocyst Polarella glacialis (cysts g$^{-1}$).
Table 3
Biogenic Silica (BSi) (mg g\(^{-1}\)), IP\(_{25}\) (ng g\(^{-1}\)), HBI III (ng g\(^{-1}\)), and Total Diatom Concentrations (valves g\(^{-1}\))

<table>
<thead>
<tr>
<th>Core numbers</th>
<th>Bsi (mg g(^{-1}))</th>
<th>IP(_{25}) (ng g(^{-1}))</th>
<th>HBI III (ng g(^{-1}))</th>
<th>Total diatom concentrations (valves g(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>k9</td>
<td>0.79</td>
<td>7.64</td>
<td>0.04</td>
<td>< 3.91E + 04</td>
</tr>
<tr>
<td>k6</td>
<td>1.51</td>
<td>5.79</td>
<td>0.00</td>
<td>2.96E + 05</td>
</tr>
<tr>
<td>k32</td>
<td>1.21</td>
<td>7.02</td>
<td>0.11</td>
<td>2.52E + 04</td>
</tr>
<tr>
<td>k8</td>
<td>1.15</td>
<td>20.21</td>
<td>0.74</td>
<td>3.89E + 05</td>
</tr>
<tr>
<td>k29</td>
<td>1.29</td>
<td>11.38</td>
<td>0.06</td>
<td>< 5.89E + 04</td>
</tr>
<tr>
<td>k28</td>
<td>1.17</td>
<td>7.27</td>
<td>0.06</td>
<td>1.04E + 05</td>
</tr>
<tr>
<td>k4</td>
<td>2.57</td>
<td>10.79</td>
<td>0.07</td>
<td>2.64E + 04</td>
</tr>
<tr>
<td>k3</td>
<td>1.71</td>
<td>7.61</td>
<td>0.05</td>
<td>9.70E + 04</td>
</tr>
<tr>
<td>k11</td>
<td>4.96</td>
<td>38.49</td>
<td>0.17</td>
<td>1.41E + 06</td>
</tr>
<tr>
<td>k33</td>
<td>4.92</td>
<td>69.93</td>
<td>0.23</td>
<td>2.85E + 06</td>
</tr>
<tr>
<td>k22</td>
<td>1.73</td>
<td>4.26</td>
<td>0.03</td>
<td>5.09E + 04</td>
</tr>
<tr>
<td>k21</td>
<td>1.23</td>
<td>3.47</td>
<td>0.01</td>
<td>6.06E + 04</td>
</tr>
<tr>
<td>k25</td>
<td>1.15</td>
<td>3.84</td>
<td>0.15</td>
<td>8.70E + 04</td>
</tr>
<tr>
<td>k17</td>
<td>2.87</td>
<td>11.03</td>
<td>0.20</td>
<td>8.85E + 04</td>
</tr>
<tr>
<td>k15</td>
<td>1.64</td>
<td>5.03</td>
<td>0.04</td>
<td>< 9.70E + 04</td>
</tr>
<tr>
<td>k14</td>
<td>0.45</td>
<td>3.73</td>
<td>0.11</td>
<td>< 7.99E + 04</td>
</tr>
</tbody>
</table>

Foraminiferal linings were very abundant at the deepest Sites (k9 and k6) and at Sites k4 and k3, where they reached concentrations of ~20,000 linings g\(^{-1}\) (Table 4). The samples also showed a significant presence of the acritarch *Radiosperma corbiferum* and several types of ciliate cysts (Plate 3). While a few reworked cysts were found on most slides, they were particularly abundant at Site k14, which is located directly next to an outlet of the Flade Isblink ice cap (Table 4). Most of these reworked cysts were identified to originate from the Ordovician period, consistent with the bedrock in the fjord, which would indicate input from land rather than in situ reworking of the fjord sediments. Otherwise, a high proportion of the analyzed dinocysts featured visible cellular material, suggesting generally good preservation and/or recent cyst production (see Plate 2).

Important heterogeneities in the spatial distribution and the relative abundances of the dominant species of palynomorphs were recorded. Generally, a fivefold decrease in cyst abundances was observed from the outer to the innermost part of the study area, south of Princess Dagmar Island. This is concomitant with an increase in the proportions of *R. corbiferum* and in the ciliate cysts in the latter region (Figure 5b). With the exception of Site k22, samples from the inner part of the study area yielded very low cyst counts and species’ relative abundances were therefore not used for further interpretations.

Classical cluster analysis using a paired-group clustering algorithm and a Euclidean similarity index was carried on the assemblage data for samples with total cyst counts higher than 60. The resulting dendrogram clearly highlights the important compositional shift in the assemblages for the region north of Princess Dagmar Island (Figure 5a). Sites located at shallow depths (k11 and k33), close to the Villum Research Station, are the most dissimilar of all sites. These sites are characterized by a striking dominance of the phototrophic species *P. glacialis*. It is also at these sites that the highest total cyst concentrations were recorded. On the contrary, heterotrophic species belonging to * Brigantedinium* spp. and spiny brown sensu lato (e.g., *L. minutum, Islandinium? cezare, E. karaense*, and other unspecified spiny brown) were prevalent at the deepest sites (k6, k9, and k32), where the sea ice cover is semipermanent. Intermediate cyst abundances and diversity were found to characterize sites located between these two compositional poles (k29, k28, k3, and k4), where assemblages are still mainly composed of heterotrophic species. Finally, although Site k22 features a bathymetry and general sea ice conditions close to that of the deepest sites located north of Princess Dagmar Island, this sample forms its own group possibly owing to the significant proportion of phototrophic species (mainly cf. *Biecheleria* sp.).

3.7. Foraminifera and Ostracods

Concentrations of total foraminifera varied from 0 to 2,714 tests g\(^{-1}\) (Table 4). Whereas calcareous and agglutinated benthic foraminifera were present at most studied sites, planktic species were only present in significant abundances (>800 tests g\(^{-1}\)) at the deepest sites (k6 and k9) (see Figure 4). In total, 37 species of calcareous benthic and 3 species of planktic foraminifera were identified (Table 5). The main benthic species included *Cassidulina neoteretis* (7 to 53%), *Cassidulina reniforme* (0 to 32%), *Elphidium hallandense* (0–63%), *Elphidium clavatum* (often described as *E. excavatum f. clavata*) (0–46%), *Epistominella arctica* (0–30%), *Stetsonia horvathi* (0–22%), *Cibicides lobatulus* (0–18%), *Buccella frigida* (0–12%), *Elphidium albiumblicitum* (0–9%), *Triloculina trihedra* (0–11%), *Quinqueloculina* sp. (0–10%), *Stainforthia loeblichii* (0–7%), and *Islandiella helenae* (0–6%) (Figure 6, Plate 4, and supporting information). The planktic foraminiferan assemblages are dominated by *Neogloboquadrina pachyderma* sinistral (0–97%) and *Turborotalita quinqueloba* (0–26%), accompanied by lower abundances of *Neogloboquadrina incompta* (0–14%) (Figure 6). Note that all right coiling *N. pachyderma* in all samples with more than 3% of right coiling *N. pachyderma* are identified as *N. incompta* (Sites k1, k3, k21, and k32), and in all samples with less than 3% they are called *N. pachyderma* (the rest of the samples) (cf. Darling et al., 2006).
In the study area, a calcareous fauna prevails at the deepest sites, where total abundances also are at their highest (Figure 4). In contrast, assemblages from the shallowest sites are mostly composed of agglutinated species and yielded very low total concentrations. Owing to the relatively shallow environmental setting

Table 4

<table>
<thead>
<tr>
<th>Core numbers</th>
<th>Modern dinocysts (cysts g⁻¹)</th>
<th>Reworked dinocysts (cysts g⁻¹)</th>
<th>Organic linings of foraminifera (linings g⁻¹)</th>
<th>Foraminifera, including Benthic and Planktic Species (tests g⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>k9</td>
<td>717</td>
<td>9</td>
<td>16136</td>
<td>2714</td>
</tr>
<tr>
<td>k6</td>
<td>705</td>
<td>34</td>
<td>17580</td>
<td>1871</td>
</tr>
<tr>
<td>k32</td>
<td>492</td>
<td>82</td>
<td>7539</td>
<td>1063</td>
</tr>
<tr>
<td>k8</td>
<td>85</td>
<td>43</td>
<td>503</td>
<td><dl</td>
</tr>
<tr>
<td>k29</td>
<td>363</td>
<td>77</td>
<td>4727</td>
<td>1570</td>
</tr>
<tr>
<td>k28</td>
<td>359</td>
<td>17</td>
<td>8943</td>
<td>838</td>
</tr>
<tr>
<td>k4</td>
<td>231</td>
<td>61</td>
<td>20890</td>
<td>n/a</td>
</tr>
<tr>
<td>k3</td>
<td>709</td>
<td>233</td>
<td>13666</td>
<td>1011</td>
</tr>
<tr>
<td>k11</td>
<td>783</td>
<td>42</td>
<td>629</td>
<td>164</td>
</tr>
<tr>
<td>k33</td>
<td>659</td>
<td>62</td>
<td>923</td>
<td>75</td>
</tr>
<tr>
<td>k22</td>
<td>129</td>
<td>0</td>
<td>3867</td>
<td>887</td>
</tr>
<tr>
<td>k21</td>
<td>85</td>
<td>13</td>
<td>3226</td>
<td>388</td>
</tr>
<tr>
<td>k25</td>
<td>52</td>
<td>26</td>
<td>619</td>
<td>23</td>
</tr>
<tr>
<td>k17</td>
<td>76</td>
<td>0</td>
<td>991</td>
<td>129</td>
</tr>
<tr>
<td>k15</td>
<td>93</td>
<td>5</td>
<td>2351</td>
<td><dl</td>
</tr>
<tr>
<td>k14</td>
<td>58</td>
<td>498</td>
<td>16</td>
<td><dl</td>
</tr>
</tbody>
</table>

(20 to 160 m), the low abundance and diversity of planktic foraminifera at most sites is not surprising. Their marked presence (719 individuals g⁻¹) at the deepest sites is however noteworthy.

Ostracods were common in four samples (k6, k9, k29, and k33) and absent to rare in the other samples. Abundances ranged from 0 to 45 individuals g⁻¹.

4. Discussion

4.1. Source of Organic Matter

The organic matter C:N ratios and δ¹³C can be used to discriminate between terrestrial versus marine sources of organic matter (OM) deposited in the sediments. Phytoplankton and zooplankton have atomic C:N ratios ranging between 4 and 10, whereas these are generally above 20 for terrestrial vascular plants (Meyers, 1994). The δ¹³C signature indicates both the dynamics of carbon assimilation during photosynthesis and isotopic composition of the carbon source (Hayes, 1993; Meyers, 1997). In general, aquatic OM (between −22 and −20‰) is more enriched in ¹³C than terrestrial OM (~ −27‰) (Belicka & Harvey, 2009; Meyers, 1994; Naidu et al., 2000). The carbon isotopic signature is, however, more complicated in Arctic environments where high pCO₂ and slow algal growth in cold surface water can lead to depleted δ¹³C values approaching those of terrestrial OM (Pineault et al., 2013; Rau et al., 1989), while enriched ice algal OM (2−10‰ more enriched than pelagic OM; Hobson & Welch, 1992; Søreide et al., 2006) has an opposite influence on the values. Enriched δ¹³C values associated to ice algal OM are due to limited atmospheric CO₂-exchange under sea ice, which eventually results in reduced ¹³C discrimination during photosynthesis as biomass increases and the pool of dissolved inorganic carbon declines (Fischer, 1991; Kerby & Raven, 1985; Rau et al., 1992). Thus, the range of marine δ¹³C values in the Arctic is broad (−34.7 to −18‰) (Goericke & Fry, 1994; Pineault et al., 2013). For example, particulate OM in Northeast Water Polynya, off northeastern Greenland, has δ¹³C values between −28 and −27‰ (Hobson et al., 1995) and ice algae around −18.5‰. These δ¹³C values are comparable to those reported from the Arctic Ocean (Schubert & Calvert, 2001), where pelagic and ice particulate OM δ¹³C values range between −24.2 to −27.6‰ and −18.3 to −20.6‰, respectively.

Carbon isotope values at our stations indicate a mixed input of marine and terrestrial sources. More enriched values (higher than −24‰ δ¹³C) are recorded in the relatively higher productivity region north of the Villum Research Station, while more depleted values are recorded south of Princess Dagmar Island (around −26‰). The OM from terrestrial sources is more clearly distinguished by higher C:N values at stations k25, k14, k33, and k8 (Figure 3). The more enriched δ¹³C at k33 compared to other stations with high C:N values could be due to high ice algal input as indicated by high concentrations of P. glacialis and IP25 (Figure 4). It is also important to note that our C:N ratios were not corrected to remove potential land-derived inorganic nitrogen (ammonium attached to clay minerals), which can lead to underestimated C:N values in Arctic clay-rich sediments (see Kumar et al., 2016). This could affect Site k8 in particular, where the clay content is 34.7%, although this clay content is low in comparison to other Arctic sediments (Stein et al., 1994).

4.2. Environmental Interpretation

The reliability of environmental reconstructions from biogenic proxies strongly relies on existing information about the different species-specific ecological requirements (temperature, salinity, sea ice cover, nutrient and food availability, sediment substrate, etc.), and the chemical properties of their fossil remain. In the study area, we found no evidence for poor preservation of the fossil assemblages. Because the foraminiferal linings counted from palynological slides are likely the remnants of benthic calcareous species (Jennings et al., 2014), a comparison between these and the tests found in the sediment can indicate the degree of carbonate dissolution (De Vernal et al., 1992). At most stations, the relatively similar trends in both records indicate good preservation of calcareous material (R² = 0.75; see supporting information). The differences in their
abundances are likely the result of the different sizes of the analyzed fractions; linings were studied from the palynological residues in the fraction between 10 and 106 μm, while tests were counted in the hand-sieved bulk sediment, from the fraction larger than 63 μm.

Similarly, the generally good state of preservation of the diatom valves does not suggest that the assemblages were affected by dissolution. Consequently, it is assumed that changes in the composition of the fossil assemblages reflect the ecological conditions influencing the living assemblages. Accordingly, the spatial structure in the proxy data fairly closely follows the interplay between the bathymetry, water masses, and sea ice conditions, and four assemblage subdomains were defined:

1. **Subdomain I: Region south of Princess Dagmar Island (Sites k14, k15, k17, k21, k22, and k25).** Surface sediments from this region contained low concentrations of marine microfossils and biomarkers. Furthermore, depleted δ¹⁵N values can be indicative of low nitrate utilization, assuming that the nitrate pool is not limited (Altabet & Francois, 1994). Within the main groups of organic-walled microfossils, *R. corbiferum* dominates over dinocysts, which are almost absent. The biological affinity of *R. corbiferum* is currently unknown, but this acrarch *Radiosperma corbiferum* in dark grey, and the ciliate cysts in light grey. Note the low contribution of dinocysts to the total palynomorph abundances from station k21 onward in parallel with a slight increase in the contribution of *R. corbiferum*.

![Figure 5.](image-url)

Figure 5. (a) Dinocyst assemblage composition diagram and dendrogram resulting from the cluster analysis. The dots indicate sites with very low cyst counts (<30 cysts), which were not included in the cluster analysis. (b) Total abundance of three groups of palynomorphs (g⁻¹ of dry sediment). Dinocysts are shown in black, the acrarch *Radiosperma corbiferum* in dark grey, and the ciliate cysts in light grey. Note the low contribution of dinocysts to the total palynomorph abundances from station k21 onward in parallel with a slight increase in the contribution of *R. corbiferum*.

abundances are likely the result of the different sizes of the analyzed fractions; linings were studied from the palynological residues in the fraction between 10 and 106 μm, while tests were counted in the hand-sieved bulk sediment, from the fraction larger than 63 μm.

Similarly, the generally good state of preservation of the diatom valves does not suggest that the assemblages were affected by dissolution. Consequently, it is assumed that changes in the composition of the fossil assemblages reflect the ecological conditions influencing the living assemblages. Accordingly, the spatial structure in the proxy data fairly closely follows the interplay between the bathymetry, water masses, and sea ice conditions, and four assemblage subdomains were defined:

1. **Subdomain I: Region south of Princess Dagmar Island (Sites k14, k15, k17, k21, k22, and k25).** Surface sediments from this region contained low concentrations of marine microfossils and biomarkers. Furthermore, depleted δ¹⁵N values can be indicative of low nitrate utilization, assuming that the nitrate pool is not limited (Altabet & Francois, 1994). Within the main groups of organic-walled microfossils, *R. corbiferum* dominates over dinocysts, which are almost absent. The biological affinity of *R. corbiferum* is currently unknown, but this acrarch *Radiosperma corbiferum* in dark grey, and the ciliate cysts in light grey. Note the low contribution of dinocysts to the total palynomorph abundances from station k21 onward in parallel with a slight increase in the contribution of *R. corbiferum*.

![Figure 5.](image-url)

Figure 5. (a) Dinocyst assemblage composition diagram and dendrogram resulting from the cluster analysis. The dots indicate sites with very low cyst counts (<30 cysts), which were not included in the cluster analysis. (b) Total abundance of three groups of palynomorphs (g⁻¹ of dry sediment). Dinocysts are shown in black, the acrarch *Radiosperma corbiferum* in dark grey, and the ciliate cysts in light grey. Note the low contribution of dinocysts to the total palynomorph abundances from station k21 onward in parallel with a slight increase in the contribution of *R. corbiferum*.
High Arctic settings (cf. Mueller et al., 2003), the bathymetry and sea ice dynamics south of Princess Dagmar Island possibly create a physically constrained basin that allows pooling of freshwater derived from the southern branch of the fjord drainage basin (Kirillov et al., 2017). This seems consistent with the very low salinity (16–21) recorded from the water layer directly below the ice during the oceanographic campaign of 2015 (Dmitrenko et al., 2017).

2. **Subdomain II: Outermost and deeper sites (Sites k9, k6, and k32).** This subdomain comprises sites from the deepest part of our study area, under the influence of a semipermanent sea ice cover. The nitrogen isotopic signature is the most enriched (δ¹⁵N between 5.5 and 5.8‰), which could reflect high nitrate utilization in sea ice relative to the water column (Fripiat et al., 2014). However, in oligotrophic Arctic
systems nitrate is typically also limited in the water column, leading to overlapping δ¹⁵N ranges in sympagic and pelagic OM (Kohlbach et al., 2016; Pineault et al., 2013). Phototrophic organisms (diatoms and autotrophic dinoflagellates) are nearly absent; this is consistent with limited light penetration. Surprisingly, however, their potential grazers (heterotrophic dinoflagellates, ciliates, and foraminifera) are present in relatively high abundances. Dinocyst assemblages are dominated by species belonging to the Protoperidinium/Archaeperidinium and Diplopsalid groups, notably Brigantedinium simplex, Islandinium minutum, and Echinidinium karaense. These cysts are typically found in sediments from marine settings characterized by prolonged seasonal sea ice cover (de Vernal et al., 2001; Rochon et al., 1999). Their cyst production, however, appears to take place during the open water period (Heikkilä et al., 2016). Similarly, foraminiferal assemblages are diverse and composed of benthic and planktic species, the latter mainly consisting of N. pachyderma (sinistral) and T. quinqueloba. Although some polar species possibly feed on phytodetritus (Cornelius & Gooday, 2004), N. pachyderma is known to feed primarily on diatoms (Hemer et al., 2007; Salvi et al., 2006; Volkman, 2000) and T. quinqueloba is especially abundant in frontal zones and other high-productivity regions (Johannessen et al., 1994; Nørgaard-Pedersen et al., 2007). Considering the sea ice thickness of the order of 1.15–1.25 m for Sites k9 and k6 compared to 3.10 m for Site k32 measured during the field campaign (late April 2015), our data can be interpreted in different ways: (1) The semipermanent sea ice cover restrains in situ primary production, but tests of planktic foraminifera and dinocysts are advected from the productive offshore open waters via subsurface currents. This would explain why the grazers are found in the sediment, while the primary producers are extremely scarce. Following this line of reasoning, however, one might expect more planktic diatom valves since their size and weight make them more prone to lateral transport than the heavy tests of foraminifera (de Vernal et al., 2006). (2) The semipermanent sea ice cover restrains in situ primary production, but food supply is advected from the productive offshore open waters via nutrient-rich subsurface currents. (3) Flaw leads sometimes open in the sea ice, allowing for short-term algal blooms that sustain a relatively broad autochthonous foraminiferal and dinoflagellate community. However, due to efficient grazing, the remains of diatoms and phototrophic

Table 5
List of Dinocyst, Foraminiferal and Diatom Taxa Encountered in the Surface Sediment Samples

<table>
<thead>
<tr>
<th>Phototrophic taxa</th>
<th>Heterotrophic taxa</th>
<th>Calcareous benthic</th>
<th>Planktic</th>
<th>Benthic</th>
<th>Planktic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarella glacialis (Montresor et al., 1999)</td>
<td>Brigantedinium simplex (Wall, 1967; ex Lentin & Williams, 1993)</td>
<td>Neogloboquadrina pachyderma (Ehrenberg, 1861)</td>
<td>Amphora laevis (Gregory, 1857)</td>
<td>Thalassiosira antarctica var. borealis (Fryxell et al., 1981) spore</td>
<td></td>
</tr>
<tr>
<td>Bitectatodinium tepikiense (Wilson, 1973)</td>
<td>Islandinium minutum (Harland & Reid in Harland et al. 1980; Head et al. 2001)</td>
<td>Cassidulina reniforme (Nørvang, 1945)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operculodinium centrocarpum Arctic morphotype sensu (de Vernal et al., 2001)</td>
<td>Islandinium? cezare (de Vernal et al., 1989 ex de Vernal in Rochon et al. 1999; Radi et al., 2013)</td>
<td>Cassidulina laevigata (d’Orbigny, 1826)</td>
<td>Bacillaria paxillifer (Müller, 1786; Marsson, 1901)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- *Note: All taxa are cited with their original sources.*
<table>
<thead>
<tr>
<th>Phototrophic taxa</th>
<th>Dinocyst taxa</th>
<th>Foraminiferal taxa</th>
<th>Diatom taxa</th>
<th>Planktic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonionellina labradorica (Dawson, 1860)</td>
<td>Pyrgo williamsoni (Silvestri, 1923)</td>
<td>Pyrgo williamsoni (Silvestri, 1923)</td>
<td>Pyrgo williamsoni (Silvestri, 1923)</td>
<td>Pyrgo williamsoni (Silvestri, 1923)</td>
</tr>
<tr>
<td>Navicula phyllepta (Kützing, 1844)</td>
<td>Phototrichia irregularis (d'Orbigny, 1839)</td>
<td>Phototrichia irregularis (d'Orbigny, 1839)</td>
<td>Phototrichia irregularis (d'Orbigny, 1839)</td>
<td>Phototrichia irregularis (d'Orbigny, 1839)</td>
</tr>
<tr>
<td>Oolina sp.</td>
<td>Quinqueloculina arctica (Cushman, 1933)</td>
<td>Quinqueloculina arctica (Cushman, 1933)</td>
<td>Quinqueloculina arctica (Cushman, 1933)</td>
<td>Quinqueloculina arctica (Cushman, 1933)</td>
</tr>
<tr>
<td>Patellina corrugata (Dawson, 1860)</td>
<td>Quinqueloculina arctica (Cushman, 1933)</td>
<td>Quinqueloculina arctica (Cushman, 1933)</td>
<td>Quinqueloculina arctica (Cushman, 1933)</td>
<td>Quinqueloculina arctica (Cushman, 1933)</td>
</tr>
<tr>
<td>Stainforthia loeblichi (Feyling-Hanssen, 1954)</td>
<td>Quinqueloculina arctica (Cushman, 1933)</td>
<td>Quinqueloculina arctica (Cushman, 1933)</td>
<td>Quinqueloculina arctica (Cushman, 1933)</td>
<td>Quinqueloculina arctica (Cushman, 1933)</td>
</tr>
<tr>
<td>Stainforthia concava (Höglund, 1947)</td>
<td>Quinqueloculina arctica (Cushman, 1933)</td>
<td>Quinqueloculina arctica (Cushman, 1933)</td>
<td>Quinqueloculina arctica (Cushman, 1933)</td>
<td>Quinqueloculina arctica (Cushman, 1933)</td>
</tr>
<tr>
<td>Pleurosigma spp.</td>
<td>Triloculina trihedra (Loeblich & Tappan, 1953)</td>
</tr>
<tr>
<td>Pleurosigma spp.</td>
<td>Triloculina trihedra (Loeblich & Tappan, 1953)</td>
</tr>
<tr>
<td>Pleurosigma spp.</td>
<td>Triloculina trihedra (Loeblich & Tappan, 1953)</td>
</tr>
<tr>
<td>Pleurosigma spp.</td>
<td>Triloculina trihedra (Loeblich & Tappan, 1953)</td>
</tr>
<tr>
<td>Pleurosigma spp.</td>
<td>Triloculina trihedra (Loeblich & Tappan, 1953)</td>
</tr>
<tr>
<td>Pleurosigma spp.</td>
<td>Triloculina trihedra (Loeblich & Tappan, 1953)</td>
</tr>
<tr>
<td>Pleurosigma spp.</td>
<td>Triloculina trihedra (Loeblich & Tappan, 1953)</td>
</tr>
<tr>
<td>Pleurosigma spp.</td>
<td>Triloculina trihedra (Loeblich & Tappan, 1953)</td>
</tr>
<tr>
<td>Pleurosigma spp.</td>
<td>Triloculina trihedra (Loeblich & Tappan, 1953)</td>
</tr>
<tr>
<td>Pleurosigma spp.</td>
<td>Triloculina trihedra (Loeblich & Tappan, 1953)</td>
</tr>
<tr>
<td>Pleurosigma spp.</td>
<td>Triloculina trihedra (Loeblich & Tappan, 1953)</td>
</tr>
<tr>
<td>Pleurosigma spp.</td>
<td>Triloculina trihedra (Loeblich & Tappan, 1953)</td>
</tr>
<tr>
<td>Pleurosigma spp.</td>
<td>Triloculina trihedra (Loeblich & Tappan, 1953)</td>
</tr>
<tr>
<td>Pleurosigma spp.</td>
<td>Triloculina trihedra (Loeblich & Tappan, 1953)</td>
</tr>
<tr>
<td>Pleurosigma spp.</td>
<td>Triloculina trihedra (Loeblich & Tappan, 1953)</td>
</tr>
</tbody>
</table>
Dinocysts do not settle in the sediment. In all cases, the marine signature of the sedimentary assemblages strongly suggests this area is under marine influence.

3. **Subdomain III. Transect of decreasing depths (Sites k29, k28, k4, and k3)**. Although dinocyst abundances are conspicuously lower in this subdomain than in subdomains II and IV, gradual changes in the total abundances of foraminifera as well as in the ratio of heterotrophic/phototrophic dinocysts are observed with decreasing distance to the coast. This transient proxy signature appears to be primarily linked to (1) varying bathymetry that impacts the structure of the water column, and (2) the dynamics of sea ice retreat, which likely affects the timing of light availability for phytoplankton growth.

4. **Subdomain IV. Shallower sites (Sites k11 and k33)**. This shallow area (below 40 m depth) is located in the region of early seasonal sea ice retreat (July ice edge) and corresponds to the local productivity “hot spot”. With the exception of the foraminifera, all biogenic proxies display their peak abundances here, clearly illustrating that conditions are most favorable for photosynthetic activity. Furthermore, enriched δ¹⁵N values relative to the region south of Princess Dagmar Island reflect higher nitrate utilization. This is however only under the assumption that diagenetic enrichment (Robinson et al., 2012) of δ¹⁵N affects all the study sites similarly. The bathymetry conditions and dynamics of sea ice retreat further suggest that IP25 is locally produced. Together with cf. *Biechelia* sp., the sea ice dwelling *P. glacialis* dominates the dinocyst assemblages. The latter species is known to produce cysts in sea ice brine in the spring (Stoecker et al., 1997) and has been recorded in sediment traps directly after the ice breakup (Heikkilä et al., 2016). Benthic calcareous foraminifera are only present at low concentrations, and their assemblages are dominated by *E. clavatum* and *E. arctica*. The opportunistic species *E. clavatum* is widespread on the Arctic.

Figure 6. Benthic and planktic foraminiferal percentages in the >63 μm fraction. The dots indicate sites with very low planktic foraminiferal counts (<35 tests). Sites k8, k22, and k21 were virtually barren of foraminifera.
shelves, including extreme environments such as near tidewater glacier fronts (Hald et al., 1994; Hald & Korsun, 1997; Korsun & Hald, 1998, 2000; Leslie, 1965; Mudie et al., 1983). The exceptional ability of this species to adapt to harsh environments may be related to its high nutritional and habitat versatility, and its capability to quickly colonize seafloor areas that are temporarily suitable for growth (Alve, 1999; Corliss, 1991; Corliss & Van Weering, 1993; Linke & Lutze, 1993; Wollenburg & Mackensen, 1998). Furthermore, *E. arctica* shows an affinity to areas with both low productivity and high seasonal production (Cornelius & Gooday, 2004; Pawlowski, 1991; Wollenburg & Mackensen, 1998); this suggests that this species is capable of adapting to contrasting conditions (Wollenburg & Kuhnt, 2000). All proxies are indicative of typical glacio-marine conditions that are seasonally favorable for algal blooms in this area.

4.3. Primary Production

Photosynthetic organisms at the base of the food web modulate the amount of fresh organic matter available for the upper trophic levels; this plays a key role in ecosystem functioning. In our study area, notable spatial heterogeneity in primary production can be inferred from the various biogenic tracers. Although the low diatom, dinocyst, TOC, and biogenic silica contents that prevail at most sites suggest overall low primary production—coherent with short periods of photosynthetically favorable light conditions—enhanced production is nonetheless recorded in the subdomain IV (Sites k11 and k33). Despite a clear sedimentary signal from ice-derived algae (e.g., the dinocyst *P. glacialis*), the markedly higher diatom concentrations at these sites dominated by benthic diatoms suggests that the microphytobenthos contributes to a significant fraction of the local primary production. A dominance of benthic over pelagic productivity has been documented from other Arctic fjord regions (Glud et al., 2002, 2009) and was further suggested to predominate in oligotrophic areas (Glud et al., 2009). Sediment-dwelling diatoms have the ability to rapidly adjust to fluctuating light conditions (Kühl et al., 2001, Wulff et al., 2008, 2009; Karsten et al., 2011) and...
efficiently use the nutrients released by mineralization processes in the sediment underneath (Glud et al., 2009; Karsten et al., 2011). A number of species have proven to be able to withstand several months of complete darkness (Wulff et al., 2008). In addition to benefiting from extended growth season, benthic diatoms possess a clear advantage over pelagic organisms when nutrients are limited.

Although our multiproxy approach only allows for investigating the response of a selection of primary producers to their environment, diatoms are often considered the most important functional group within the microphytobenthos in marine coastal regions (MacIntyre et al., 1996; Karsten et al., 2011). Whether dynamic interactions take place between the benthic and sea ice habitats for optimal food acquisition cannot be unraveled from our data, but the fact that the concentrations of benthic diatoms exceed those of planktic and sympagic diatoms in subdomain IV clearly indicates that the benthic community fulfills a significant ecological role in this system, as in other High Arctic fjords.

4.4. Sea Ice Conditions

The only known producers of IP25 are marine benthic diatoms belonging to *Haslea* (*H. spicula* and *H. kjellmanii*) and *Pleurosigma* (*P. stuxbergii* var. *rhomboides*) (Brown et al., 2014; G. Massé and M. Poulin, personal communication, 2017). These species typically flourish on the underside of sea ice, near the ice-water interface (Brown et al., 2011). In addition to other constraining environmental factors (e.g., salinity and nutrients), their growth strongly depends upon a complex interplay between sea ice occurrence and sufficient light availability. The presence of IP25 at all sites suggests the presence of IP25-producing taxa in the ice from the fjord system—although none of the above species were observed from the fossil assemblages (IP25-producing species typically represent ~ 1–5% of Arctic sea ice assemblages (Belt et al., 2013) and their frustules do not preserve in the sediments)—and reflects the regional thinning and melting of the ice cover over the summer months. However, with the exception of Sites k11 and k33, the generally low contents of the biomarker in the sediment suggest that the conditions are probably not optimal for IP25-producing taxa to grow. This is particularly apparent in the region south of Princess Dagmar Island, where sea ice conditions similar to those in the northern region do not lead to comparable sediment IP25 concentrations. A change in the dominant groups of palynomorphs in this region as well as the δ¹³C, δ¹⁵N, and C:N signature of the organic matter also points to a lower salinity. This is consistent with observations from Ribeiro et al. (2017), Xiao et al. (2013), and Hörner et al. (2016), where low sedimentary IP25 concentrations were linked to reduced salinities. IP25 is produced in the ice and released when the sea ice melts, in contrast to HBI III, which is thought to be produced in open waters by diatoms possibly blooming near the marginal ice zone (Belt et al., 2000), although not exclusively (Belt et al., 2017). In our study area, HBI III concentrations are extremely low, supporting a very short period of open water.

Interestingly, the regional patterns of IP25 and cysts belonging to the dinoflagellate *P. glacialis* are very similar (*R²* = 0.80; see supporting information), and for both proxies, peak abundances are found at Sites k11 and k33. *P. glacialis* is a very halotolerant sea ice-dwelling dinoflagellate (Montresor et al., 1999; Zheng et al., 2012). This species was first recorded from land-fast sea ice in McMurdo Sound (Antarctica; Stoecker et al., 1997), and it has since been found to have a circumpolar distribution (Montresor et al., 2003). The tiny cysts (<20 μm) produced by this photosynthetic dinoflagellate have, however, rarely been reported from marine sediment samples. Only Heikkilä et al. (2014, 2016) and Kunz-Pirrung (1998) have reported *P. glacialis* from sediment samples, from the Hudson Bay and Laptev Sea, respectively. Note that Kunz-Pirrung (1998) identified and illustrated *P. glacialis* cysts as “Acritarch type A”. It is difficult to disentangle the possible effects of the poor resistance to degradation in the sediment and/or water column and loss during palynological preparations from its near absence from paleoenvironmental study records (Heikkilä et al., 2016). In the study area *P. glacialis* occurs in all samples, except Sites k25 and k8, where overall cyst abundances are extremely low (<90 cysts g⁻¹). Furthermore, the absolute abundance of *P. glacialis* reaches values in the order of 500 cysts g⁻¹ at the shallow Sites k11 (20.8 m) and k33 (19.6 m), which represent a critical area in terms of local sea ice retreat. *P. glacialis* is the only dinoflagellate species known today to be able to complete its biological cycle in the sea ice and produces potentially fossilizable resting cysts. Cysts of *P. glacialis* further appear to be well preserved in the Independence Fjord system. We therefore recommend a careful consideration of their presence in sedimentary archives as they have the potential to represent an extremely valuable proxy for tracing past sea ice conditions.
The presence of cf. Biecheleria sp. at all studied sites is also noteworthy. These cysts appear to be an important component of the assemblages from High Arctic fjord regions and Hudson Bay (Heikkilä et al., 2016). At present, the ecological preferences of this species and its relation to sea ice cover are poorly known, but its presence is important in the study area, contributing to the diversity of the assemblages.

4.5. Tracing Arctic-Atlantic Inflow

The overall faunal composition and prevalence of benthic foraminifera is typical for East Greenland fjords and shelf margins (Andresen et al., 2013; Jennings & Helgadottir, 1994; Perner et al., 2015). The distribution of the main foraminiferal species further seems to be strongly modulated by the structure of the water column, which is, in turn, partly shaped by the bathymetry of the study area. The highest concentrations of both calcareous benthic and planktic species were found at the deepest sites (k9, k6, k32, and k29), and concentrations dropped considerably with decreasing depth. C. neoteretis and C. reniforme dominate the assemblages from all sites, except for the shallow Sites k11 and k33. Both species are infaunal and generally inhabit shallow shelf to deep-sea environments (150–3000 m) (Hald & Korsun, 1997; Seidenkrantz, 1995). In modern Greenland and Svalbard shelf and fjord environments, C. neoteretis thrives in relatively cool (−1 to 2°C), saline (34.9 practical salinity unit, psu) bottom water conditions, and C. reniforme prefers colder water (<2°C) and also relatively high salinity (>30 psu) environments (Hald & Korsun, 1997; Jennings et al., 2004; Polyak, Korsun, et al., 2002; Polyak, Levitan, et al., 2002; Steinsund et al., 1994). Thus, in Arctic shelf regions, both species are commonly associated with the advection of chilled subsurface Atlantic waters (Bartels et al., 2017; Hald & Korsun, 1997; Jennings et al., 2004; Lubinski et al., 2001; Mackensen & Hald, 1988; Polyak & Mikhailov, 1996; Polyak, Levitan, et al., 2002; Seidenkrantz et al., 2013). The relatively high abundance of N. pachyderma and the presence of heterotrophic dinocyst species in an area characterized by semi-perennial sea ice cover (subdomain II) would further support the advection of Atlantic waters through subsurface currents, as planktic foraminifera likely do not live here and the specimens would all have been carried to the site from the open shelf.

CTD measurements from the outer fjord region (Dmitrenko et al., 2017) show the presence of subsurface freshened waters of Pacific origin (Halostad), which overlie a deeper layer of Atlantic-modified Polar Water. Here an intrusion of relatively saline bottom waters can clearly be inferred from the microfaunal assemblages. Also, since the bottom water masses appear to be associated with relatively high abundances of foraminifera and heterotrophic dinocysts, it is likely that surface conditions supported significant primary productivity. Finally, in line with the observations of Dmitrenko et al. (2017), the area surrounding Site k32 appears to be less influenced by this intrusion. This is underlined by lower foraminiferal and dinocyst total abundances but similar assemblage compositions.

5. Conclusions

Our multiproxy investigation provides a robust foundation for investigating past environmental changes, particularly regarding the interplay of sea ice, primary production, and hydrography along eastern North Greenland, one of the most sensitive regions to the ongoing Arctic warming. Furthermore, this study provides new insights into the distribution of the sea ice species Polarella glacialis and its cysts, which have the potential to become a useful proxy for reconstructing past seasonal sea ice. Further work on their preservation potential in sediment archives and during palynological preparation treatments is needed.

A number of important points can also be made.

1. Microfossil preservation is generally good, providing a strong modern baseline for future studies.
2. Overall modern primary production is low, consistent with limited light availability, and is largely governed by the sea ice conditions and bathymetry.
3. The microphytobenthos contributes to a significant fraction of the local primary production, especially in the shallow parts of the fjord.
4. Based on the microfossil and geochemical signal, the study area could be divided into four ecological subdomains linked to bathymetry, water mass distribution, sea ice cover, and primary production.
5. The distribution of benthic foraminifera generally reflects the major bottom water masses and can be used to trace changes in the Arctic inflow in relation with changes in the Arctic sea ice cover.
Acknowledgments
The raw data obtained in this study are available in the supporting information. This study received financial support from the Villum Foundation, Denmark (grant VRK023454 to SRL). Field work was funded by the Arctic Research Centre, Aarhus University, and the Villum Foundation. The Department of Environmental Science, Aarhus University is acknowledged for providing logistics at Villum Research Station in North Greenland. A. L. was also funded by the Fonds de Recherche du Québec – Nature et technologies (FRQNT grant 188947). M. H. was also funded by the Academy of Finland (grant VKR023454 to SRi.). Field work was also available in the supporting information.

References

