Comparison of Representations of Named Entities for Multi-label Document Classification with Convolutional Neural Networks

Lidia Pivovarova and Roman Yangarber
University of Helsinki, Finland
Department of Computer Science
first.last@cs.helsinki.fi

Abstract

We explore representations for multi-token names in the context of the Reuters topic and sector classification tasks (RCV1). We find that: the best way to treat names is to split them into tokens and use each token as a separate feature; NEs have more impact on sector classification than on topic classification; replacing all NEs with special entity-type tokens is not an effective strategy; representing tokens by different embeddings for proper names vs. common nouns does not improve results. We highlight the improvements over state-of-the-art results that our CNN models yield.

1 Introduction

This paper addresses large-scale multi-class text classification tasks: categorizing articles in the Reuters news corpus (RCV1) according to topic and to industry sectors. A topic is a broad news category, e.g., “Economics,” “Sport,” “Health.” A sector defines a narrower business area, e.g., “Banking,” “Telecommunications,” “Insurance.”

We use convolutional neural networks (CNNs), which take word embeddings as input. Typically word embeddings are built by treating a corpus as a sequence of tokens, where named entities (NEs) receive no special treatment. Yet NEs may be important features in some classification tasks: companies, e.g., are often linked to particular industry sectors, and certain industries are linked to locations. Thus company and location names may be important features for sector classification.

RCV1 is much smaller than corpora typically used to build word embeddings. Thus we utilize external resources—a corpus of approximately 10 million business news articles, collected using the PULS news monitoring system (Pivovarova et al., 2013). While nominally RCV1 contains general news, it is skewed toward business; many of the topic labels are business-related (“Markets”, “Commodities”, “Share Capital,” etc.). Thus, we expect our business corpus to help in learning features for the Reuters classification tasks.

We compare several NE representation to find the most suitable name features for each task. We use the PULS NER system (Grishman et al., 2003; Huttunen et al., 2002a,b) to find NEs and their types—company, location, person, etc. We compare various representations of NEs, by building embeddings, and training CNNs to find the best representation. We also compare building embeddings on the RCV1 corpus vs. using much larger external corpora.

2 Data and Prior Work

RCV1 (Lewis et al., 2004) is a corpus of about 800K Reuters articles from 1996–1997 with manually assigned sector and topic labels. Both classifications are multi-label—each document may have zero or more labels. While all documents have topic labels, only 350K have sector labels.

While RCV1 appears frequently in published research, few authors tackle the full-scale classification problem. Typically they use subsets of the data: (Daniely et al., 2017; Duchi et al., 2011) use only the four most general topic labels; (Dredze et al., 2008) use 6 sector categories to explore binary classification, (Daniels and Metaxas, 2017) use a subset of 6K articles. Even when the entire dataset is used, the training-text split varies across papers, because the “original” split (Lewis et al., 2004) is impractical for most purposes: 23K instances for training, and 780K for testing.

Another problem that complicates comparison is the lack of consistency in evaluation metrics
A US appeals Court revived a civil suit accusing Apple of creating a monopoly.

Figure 1: Architecture of the convolutional neural networks

used to evaluate classifier performance. The most common measures for multi-class classification are macro- and micro-averaged F-measure, which we use in this paper. However, others use other metrics. For example, (Liu et al., 2017) use precision and cumulative gain at top K—measures adopted from information retrieval. This is not comparable with other work, because these metrics are used not only to report results, but also to optimize the algorithms during training. The notion of the best classifier differs depending on which evaluation measure is used. Thus, although RCV1 is frequently used, we find few papers directly comparable to our research, in the sense that they use the entire RCV1 dataset and report micro- and macro-averaged F-measure.

To the best of our knowledge, our previous work (Du et al., 2015) was the only study of the utility of NEs for RCV1 classification. We demonstrated that using a combination of keyword-based and NE-based classifiers works better than either classifier alone. In that paper we applied a rule-based approach for NEs, and did not use NEs as features for machine learning.

3 Model

The architecture of our CNN is shown in Figure 1. The inputs are fed into the network as zero-padded text fragments of fixed size, with each word represented by a fixed-dimensional embedding vector. The inputs are fed into a layer of convolutional filters with multiple widths, optionally followed by deeper convolutional layers. The results of the last convolutional layer are max-pooled, producing a vector with one scalar per filter. This is fed into a fully-connected layer with dropout regularization, with one sigmoid node in the output layer for each of the class labels. For each class label, a cross-entropy loss is computed. Losses are averaged across labels, and the gradient of the loss is back-propagated to update the weights. This is similar to the model (Kim, 2014) used for sentiment analysis. The key differences are that our model uses an arbitrary number of convolutions, and that we use sigmoid rather than softmax on output, since the labels are not mutually exclusive.

To train the model we used a random split: 80% of the data used for training, 10% development set, and 10% test set. The development set is used to determine when to stop training, and to tune a set of optimal thresholds \(\{ \theta_i \} \) for each label \(i \)—if the output probability \(p_i \) is higher than \(\theta_i \), the label is assigned to the instance, otherwise it is not. To find the optimal threshold, we optimize the F-measure for each label. The test set is used to obtain the final, reported performance scores.

Our focus is this paper is data representation, thus we defer the tuning of hyper-parameters for future work. All experiments use the same network structure: 3 convolution layers with filter sizes \{3,11\}, \{3,11\}, and \{3,11\}, with 512, 256 and 256 filters of each size, respectively. The runs differ only in the input embeddings they use.

4 Data Representation

We train the embeddings using GloVe (Pennington et al., 2014). As features we use lower-cased lemmas of all words. The rationale for this is that our
corpora are relatively small, so the data are sparse and not sufficient to build embeddings from surface forms. We tune the embeddings while training the CNN, updating them at each iteration.

We explore several name representations, using our NER system:

- **type**: each entity is represented by a special token denoting its type—C-company, C-person, C-location, etc, and C-name if the type is not determined. The model learns one embedding for each of these tokens.

- **name**: each name gets its own embedding; multi-word names treated as a single token.

- **split-name**: multi-word names are split into tokens, and each token has its own embedding; the motivation is that some company names may contain informative parts—e.g., Air Baltic, Delta Airlines—which may indicate that these companies operate in the same field; these name parts may be more useful than the name as a whole.

- **split-name+common**: similar to the above, but tokens inside names and in common context are distinguished; the motivation is that some words may be used in names without any relation to the company’s line of business—e.g., Apple, Blackberry—and their usage inside names should not be mixed with their usage as common nouns.

In the experiments, we build GloVe embeddings from two corpora: RCV1 only, and RCV1 plus our external corpus. For comparison, we also use 200-dimensional embeddings trained on a 6 billion general corpus (glove-6B), provided by the GloVe project. This corresponds to our split-name representation mode.

To illustrate the effect of the different token representations, Table 1 shows ten words nearest to the sample lemmas: apple and airline. When name representation is used, the token apple is ambiguous, its nearest neighbors are both fruit words (pear) and computer words (apple_computer). In type representation, the “computer” meaning disappears, since all mentions of Apple as company are represented by the special token C-company. When using glove-6B, the fruit meaning is absent, and all neighbors are computer-related words. The token airline does not exhibit such ambiguity, and all representations produce similar nearest neighbors.

In the split-name+common representation mode, each lemma may produce two vectors, one for a common noun and one for a proper noun (inside a name). As the table shows, apple as a common noun has a clear “fruit” meaning; the one company appearing among the neighbors is a juice producer, Odwalla. The nearest neighbors for apple_NE, in name context, include IT companies. The tokens airline and airline_NE have no clear semantic distinction, with similar nearest neighbors. In such cases there is no clear advantage in using two embeddings rather than one.

We test all of the above name representations experimentally, to determine which is more useful in the document classification tasks.

5 Results and Discussion

Experimental results are presented in Tables 2 and 3. We compare our results with those found in related work, described in Section 2, focusing on micro- and macro-averaged F-measure—µ-F1 and M-F1, respectively. The experimental settings differ in the various papers, which makes precise comparison difficult. For example, several previous papers use the “standard split,” (proposed in (Lewis et al., 2004)), which contains only 23K

Table 1: Nearest neighbors for sample words using various word representations.
training instances, which is not sufficient for learning word embeddings.

Compared to the reported state-of-the-art results on Sector Classification (Table 2), our best model yields a 10% gain in μ-F1, (Cisse et al., 2013), and a 6% gain in M-F1 (Du et al., 2015). The best μ-F1 and M-F1 results are obtained by the same model.\footnote{In prior work, state of the art was achieved by different models.}

On Topic Classification (Table 3), our μ-F1 results show a modest improvement of 0.5% in F-measure—or a 3.5% (averaged) error reduction—over state of the art (Johnson and Zhang, 2015).\footnote{Interestingly, the best result for M-F1 on Topics is still in prior work: i.e., these prior models perform better on very infrequent topics. This is to be explored in future work.}

As seen in Table 2, the best data representation for Sector Classification, is split-name, where each token has the same embedding regardless whether it is used in a proper-name or a common-noun context. The worst performing name representation is type, where names are mapped to special “concepts” (C-company, C-person etc.), and each concept has its own embedding. This indicates the importance of the tokens inside the named entities for Sector Classification, and supports the notion that company names mentioned in text correlate with sector labels.

Results for Topic Classification are in Table 3. The best data representation is again split-name, though the difference between representations is less pronounced than in the case of Sector Classification, and using type does not lead to a significant drop in model performance. This suggests that proper names are less important for Topic (event) classification, and supports the intuition that entity names (e.g., companies) are less correlated with the types of events in which the entities participate in business news. However, there may be correlations between industry sectors and topics/events: e.g., mining or petroleum companies rarely launch new products. This may explain why the split-name representation appears to be better for Topic Classification. One possible next step is to build CNNs that jointly model Topics and Sectors; we plan to explore this in future work.

Surprisingly, using external corpora did not improve the models’ performance, as indicated by both Sector and Topic results (Tables 2 and 3, respectively). This may mean that the genre and the time period of the news corpus are more relevant for building embeddings than the size of the corpora. However, other factors may contribute as well, e.g., our hyper-parameter combination may not be optimal for these embeddings. Nevertheless, the results follow the same pattern: the best name representation is split-name and the difference between representations is more pronounced for Sector than for Topic classification.

In conclusion, our contribution is two-fold. On one classic large-scale classification task, sectors, our proposed CNNs yield substantial improvements over state-of-the-art; on topics—a modest improvement in μ-F-measure. Further, to the best of our knowledge, this is the first attempt at a systematic comparison of NE representation for text classification. More effective ways of representing NEs should be explored in future work, given their importance for the classification tasks, as demonstrated by the experiments we present in this paper.

Table 2: Sector classification results on RCV1.

<table>
<thead>
<tr>
<th>Algorithm (prior)</th>
<th>M-F1</th>
<th>μ-F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM (Lewis et al., 2004)</td>
<td>29.7</td>
<td>51.3</td>
</tr>
<tr>
<td>SVM (Zhuang et al., 2005)</td>
<td>30.1</td>
<td>52.0</td>
</tr>
<tr>
<td>Naive Bayes (Puurula, 2012)</td>
<td>—</td>
<td>70.5</td>
</tr>
<tr>
<td>Bloom Filters (Cisse et al., 2013)</td>
<td>47.8</td>
<td>72.4</td>
</tr>
<tr>
<td>SVM + NEs (Du et al., 2015)</td>
<td>57.7</td>
<td>63.8</td>
</tr>
</tbody>
</table>

Table 3: Topic classification results on RCV1.

<table>
<thead>
<tr>
<th>Algorithm (prior)</th>
<th>M-F1</th>
<th>μ-F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM (Lewis et al., 2004)</td>
<td>61.9</td>
<td>81.6</td>
</tr>
<tr>
<td>ANN (Nam et al., 2014)</td>
<td>69.2</td>
<td>85.3</td>
</tr>
<tr>
<td>CNN (Johnson and Zhang, 2015)</td>
<td>67.1</td>
<td>85.7</td>
</tr>
</tbody>
</table>

RCV1 embeddings

CNN type	65.5	85.5
CNN name	66.7	86.2
CNN split-name	66.5	86.2
CNN split-name+common	66.6	86.2

RCV1 + external corpus

CNN type	64.9	85.6
CNN name	66.4	86.2
CNN split-name	65.7	85.9
CNN split-name+common	65.6	85.8
CNN split-name (Glove-6B)	65.8	85.8
References

Dong Zhuang, Benyu Zhang, Qiang Yang, Jun Yan, Zheng Chen, and Ying Chen. 2005. Efficient text classification by weighted proximal SVM. In Fifth IEEE International Conference on Data Mining.