Level of functioning, perceived work ability, and work status among psychiatric patients with major mental disorders

Karpov, B.

2017-07

http://hdl.handle.net/10138/297915
https://doi.org/10.1016/j.eurpsy.2017.03.010

Downloaded from Helda, University of Helsinki institutional repository.
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.
Please cite the original version.
Original article

Level of functioning, perceived work ability, and work status among psychiatric patients with major mental disorders

B. Karpov a, G. Joffe a, K. Aaltonen a, J. Suvisaari b, I. Baryshnikov a, P. Näätänen a, M. Koivisto a, T. Melartin a,1, J. Oksanen b, K. Suominen c, M. Heikkinen a, E. Isometsa a,b,*

a Department of Psychiatry, University of Helsinki and Helsinki University Hospital, P.O. Box 22 (Väiskärinkatu 12 A), 00014 Helsinki, Finland
b National Institute for Health and Welfare, Department of Mental Health and Substance Abuse Services, Mannerheimintie 166, 00271 Helsinki, Finland
c Department of Social Services and Health Care, Nordenskiöldinkatu 20, 15–7, 00250 Helsinki, Finland

Article history:
Received 27 January 2017
Received in revised form 24 March 2017
Accepted 26 March 2017
Available online 7 April 2017

Keywords:
Functional impairment
Disability
Work status
Psychiatric care

ABSTRACT

Background: Major mental disorders are highly disabling conditions that result in substantial socioeconomic burden. Subjective and objective measures of functioning or ability to work, their concordance, or risk factors for them may differ between disorders.

Methods: Self-reported level of functioning, perceived work ability, and current work status were evaluated among psychiatric care patients with schizophrenia or schizoaffective disorder (SSA, n = 113), bipolar disorder (BD, n = 99), or depressive disorder (DD, n = 188) within the Helsinki University Psychiatric Consortium Study. Correlates of functional impairment, subjective work disability, and occupational status were investigated using regression analysis.

Results: DD patients reported the highest and SSA patients the lowest perceived functional impairment. Depressive symptoms in all diagnostic groups and anxiety in SSA and BD groups were significantly associated with disability. Only 5.3% of SSA patients versus 29.3% or 33.0% of BD or DD patients, respectively, were currently working. About half of all patients reported subjective work disability. Objective work status and perceived disability correlated strongly among BD and DD patients, but not among SSA patients. Work status was associated with number of hospitalizations, and perceived work disability with current depressive symptoms.

Conclusions: Psychiatric care patients commonly end up outside the labour force. However, while among patients with mood disorders objective and subjective indicators of ability to work are largely concordant, among those with schizophrenia or schizoaffective disorder they are commonly contradictory. Among all groups, perceived functional impairment and work disability are coloured by current depressive symptoms, but objective work status reflects illness course, particularly preceding psychiatric hospitalizations.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

According to Global Burden of Disease Study, mental disorders (MDs) are highly disabling conditions [1,2]. Moreover, same study demonstrates that poor functioning (measured in years lived with disability and disability-adjusted life years), leading to weak labour engagement of people with MDs [3,4], has resulted in an increased socioeconomic burden of MDs [5]. In addition to generally reduced employment [4], subjects with MDs have more difficulties in returning to work after sick leave [6–8] and tend to retire earlier [9,10] than the general population.

More specifically, major depressive disorder, bipolar disorder, and schizophrenia, along with anxiety disorders, are among the greatest contributors to the global burden of MDs [3]. Furthermore, depression is among the ten most disabling diseases worldwide [1,11]. However, most persons with depression and bipolar disorder manage to maintain employment status [12,13]. The accumulating vocational impairment is more severe in bipolar disorder than in depression, and the difference tends to grow over time [14]. In contrast to mood disorders, only about 20% of subjects with schizophrenia remain employed [15–17]. Interestingly, current labour status is often discordant with perceived work disability. Many authors have demonstrated that subjects with...
depression and, to some extent, bipolar disorder tend to overestimate their impairment in work ability [18–20], while subjects with schizophrenia spectrum disorders may underestimate it [21,22].

In addition to prevalence, the risk factors for MD-related disability have been extensively studied. Many general population and clinical sample studies demonstrate roughly similar associations of functional impairment and work disability in depression, bipolar disorder, and schizophrenia with numerous socio-demographic and clinical factors. These include, for instance, older age [23–25], duration and number of hospitalizations [26,15], educational level [23,25], and severity of current affective symptoms [22,24,27,28]. However, few clinical studies [29] have investigated functional impairment and its predictors concurrently in depression, bipolar disorder, and schizophrenia spectrum disorder within the same sampling frame and with similar methods. Therefore, similarities and differences between risk factors remain partly unclear. Moreover, we are not aware of studies investigating correlations between subjective and objective work disability across different mental disorders. Most studies on predictors of functional impairment in major mental disorders have investigated the impact of disorder-related symptoms (neurocognitive, affective, psychotic) [17,29–31]. Other clinical or psychological traits, e.g., social impairment and borderline personality features and level of self-efficacy, may also considerably influence functioning [32–34].

We aimed, first, to investigate perceived level of functioning and ability to work and objective work status within a cohort of psychiatric care patients with either schizophrenia or schizoaffective disorder, bipolar disorder, or depressive disorder. We expected notable functional impairment in all patients, with the most severe disability in the schizophrenia or schizoaffective disorder group. Second, we investigated associations of functioning and work ability with putative risk factors regarding preceding course (age at onset, number of hospitalizations) and current state of illness (affective symptoms) as well as clinical and psychopathological variables (self-efficacy, borderline personality traits). We hypothesized that correlates of functioning and work disability would be broadly similar across groups, but concordance between subjective and objective measures would be lower among patients with schizophrenia spectrum disorders.

2. Methods

2.1. Setting

The methodology of the Helsinki University Psychiatric Consortium (HUPC) study has been presented in detail in the authors’ previous reports [35–37] and is only briefly outlined below.

The HUPC study was carried out in secondary mental health services, including 10 community mental health centres, in 24 psychiatric inpatient units, in one day-care hospital, and in two residential communities of the Helsinki metropolitan area in 2011–2012. The study was approved by the Ethics Committee of Helsinki University Central Hospital.

2.2. Sampling

Inclusion criteria were age of 18 to 64 years and provision of written informed consent.

Patients were randomly drawn from all eligible patients, stratified by setting. Patients with mental retardation, neurodegenerative disorders, or insufficient Finnish language skills were excluded. We recruited only patients, whose condition was stable enough to allow responding to the questionnaires. Of 1361 eligible patients, 610 declined to participate and 304 were lost for other reasons. The final number of participants was 447, resulting in a response rate of 33%. In addition, 47 patients with a principal diagnosis of anxiety disorder, eating disorder, neuropsychiatric disorder, or substance use disorder were excluded from the current study, leaving 400 participants.

2.3. Diagnostic assessment

The principal clinical diagnoses given by attending psychiatrists were re-examined by the authors (K.A., I.B., M.K., and B.K.) following the criteria of the International Classification of Disease, 10th revision, Diagnostic Criteria for Research [38]. For the current study, patients were divided into three subgroups: schizophrenia or schizoaffective disorder (SSA, n = 113), bipolar disorder (BD, \(n = 99 \)), and depressive disorders (DD, \(n = 188 \)).

2.4. Measure of functional impairment

The Sheehan Disability Scale (SDS) [39,40] is a three-item self-report scale to assess functional impairment on three domains: work, social life or leisure activities, and home life or family responsibilities. Each item is scored from zero to 10. The three items can be summed into a single dimensional scale of global functional impairment ranging from zero (no impairment) to 30 (high impairment). The SDS has no recommended cut-off score. However, a score of five and more on any of the scales is considered to indicate significant functional impairment.

2.5. Other measures

The Beck Depression Inventory (BDI) [41] is a self-report questionnaire for measuring the severity of depression symptoms. The Overall Anxiety Severity and Impairment Scale (OASIS) [42] is a self-report questionnaire to assess severity and impairment associated with anxiety. The General Self-Efficacy Scale (GSE) [43] is a self-report instrument to assess perceived self-efficacy regarding stressful life events. The McLean Screening Instrument for borderline personality disorder (MSI-BPD, hereafter MSI) [44] is a self-report questionnaire for screening for borderline personality disorder. All the scales had at least good internal consistency (Cronbach’s alpha for total SDS 0.80; OASIS 0.84; BDI 0.91; GSE 0.93; MSI 0.92).

2.6. Assessment of work status and ability to work

In Finland, disability pension could be granted after 300 days of sick leave in a two-year period if the person was still considered unable to work or find employment that fits person’s vocational qualifications because of an illness. That also applies to people working in a household. The Social Insurance Institution of Finland or other pension providers grant a pension based on the person’s current and expected functional level presented in medical certificates of the attending physician. The authors collected information from medical records and certificates (for sick leave or disability pension) on a patient’s current work/employment status, creating a three-item nominal variable (working, sick leave, or disability pension/rehabilitation subsidy). For further analyses, this variable was modified to a dichotomous as working and not-working (sick leave and disability pension/rehabilitation subsidy).

Patients were asked about their perceived ability to work, producing ordinal variable: 1 – able to work, 2 – reduced work ability, 3 – unable to work. For further analyses, this variable was transformed into the dichotomous form of able to work (items 1 and 2 combined)/unable to work. This categorization has been used also in previous studies [23,24]. Data on ability to work (work
status) gathered from medical records were designated as “objective” and from patients as “subjective”.

2.7. Statistical analyses

Relationships between nominal variables were tested with Chi² test and between nominal/ordinal and continuous variables with Mann–Whitney U-test or Kruskal–Wallis test. The variables represented domains of demographics (age, gender), societal status (marital status, number of children, education), course of disease (age at onset, number of hospitalizations), and current symptoms (depressive, anxiety, borderline personality symptoms, self-efficacy). In case of skewed distributions, we used non-parametric tests. The relationships between total SDS and other continuous variables (age, age at onset, number of hospitalizations, measurement scales) were tested with Spearman’s bivariate correlation analysis (BCA). Variables associated with SDS and work ability most consistently across all diagnostic groups in univariate analyses were included in regression analyses. Thus, linear regression models were built to estimate the associations between total SDS and measures that correlated with it in BCA. These measures were BDI, OASIS, and GSE. Also, the not correlated but clinically relevant variables of age, age at onset, number of hospitalizations, and duration of treatment were included in the regression analyses. The same logic was applied in logistic regression models to investigate associations between objective and subjective ability to work. Thus, the regression model included age, age at onset, number of hospitalizations, BDI, OASIS, GSE, and SDS. To avoid cross-loading of two different self-report work ability measures, we excluded the work domain from the total SDS variable. Thus, SDS was included in the analysis as a measure of other functioning, not work-related. Relationships of objective (ordinal variable of work status) and subjective work ability (initial ordinal variable) within diagnostic groups were explored with Spearman’s bivariate correlation analysis. Statistical analysis was performed using the Statistical Package for the Social Sciences [45].

3. Results

3.1. Socio-demographic and background data

Patients in all diagnostic groups were middle-aged and, with the exception of the SSA group, mainly women (Table 1). The SSA group had the highest number of unmarried and childless patients across all groups ($P < 0.001$). Most patients had a professional education. Subjects with BD had comorbid alcohol use disorders (AUDs) more often than other patients ($P = 0.012$). The mean age at onset of the principal disorder was seemingly the same across diagnostic groups, being, however, significantly lowest in SSA patients ($P = 0.006$). These patients also had a longer history of treatment and a higher number of hospitalizations than their mood disorder counterparts ($P < 0.001$). DD patients had significantly higher scores on BDI and OASIS and lower scores on GSE scales than BD or SSA patients.

3.2. Self-reported functioning on the Sheehan Disability Scale

Of all diagnostic groups, subjects with DD collected the highest and subjects with SSA the lowest scores on SDS in all three domains (Table 2). The mean scores on each of the three scales exceeded five in all groups (except for “family life” scale in SSA patients), indicating notable perceived functioning impairment. No socio-demographic factor was associated with the SDS distribution in any diagnostic group. However, in all patients, both SDS total scores and subscale scores directly correlated with a broad spectrum of clinical and psychopathological variables such as BDI, OASIS, MSI, and GSE (negative correlation) (data not shown). Associations with total SDS, revealed in linear regression analysis, were nonetheless fewer and showed less congruity (Table 3). Thus, BDI was the only one measure associated with SDS across all diagnostic groups. The OASIS had regression weight in SSA and BD groups, and GSE in SSA and DD groups. Older age was associated with functional impairment only in DD patients.

3.3. Objective work status

Overall, a high proportion of all patients had sick leave or disability pension (Table 4). Of all subjects with SSA, only 5.3% remained at work, while such figures for BD and DD groups were 29.3% and 33.0%, respectively. Gender, marital status, and educational level did not affect ability to work in any diagnostic group (data not shown). Older age was associated with work disability in the BD group ($P = 0.003$), and earlier age at onset in the SSA group ($P = 0.010$). Subjects of the SSA and BD groups with repeated hospitalizations ($P = 0.013$ and $P = 0.030$, respectively) and longer duration of treatment ($P = 0.003$ and $P = 0.014$, respectively) showed lower objective work ability.

Table 1

<table>
<thead>
<tr>
<th>Variable</th>
<th>SSA</th>
<th>BD</th>
<th>DD</th>
<th>Total</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>113</td>
<td>99</td>
<td>188</td>
<td>400</td>
<td>100.0</td>
</tr>
<tr>
<td>%</td>
<td>28.3</td>
<td>24.8</td>
<td>46.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>54</td>
<td>63</td>
<td>146</td>
<td>263</td>
<td>65.8</td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married/cohabitating</td>
<td>10</td>
<td>37</td>
<td>68</td>
<td>115</td>
<td>29.1</td>
</tr>
<tr>
<td>Divorced/widowed</td>
<td>19</td>
<td>30</td>
<td>39</td>
<td>88</td>
<td>22.3</td>
</tr>
<tr>
<td>Unmarried</td>
<td>81</td>
<td>32</td>
<td>79</td>
<td>192</td>
<td>48.6</td>
</tr>
<tr>
<td>No children</td>
<td>97</td>
<td>58</td>
<td>130</td>
<td>285</td>
<td>73.1</td>
</tr>
<tr>
<td>Professional education</td>
<td>68</td>
<td>71</td>
<td>121</td>
<td>260</td>
<td>65.8</td>
</tr>
<tr>
<td>AUD diagnosis</td>
<td>25</td>
<td>30</td>
<td>29</td>
<td>84</td>
<td>21.9</td>
</tr>
<tr>
<td>Inpatients</td>
<td>36</td>
<td>202</td>
<td>34</td>
<td>102</td>
<td>22.8</td>
</tr>
<tr>
<td>Age, mean (SD)</td>
<td>44.3</td>
<td>43.4</td>
<td>41.2</td>
<td>42.0</td>
<td>0.002</td>
</tr>
<tr>
<td>Age at onset, mean (SD)</td>
<td>30.5</td>
<td>35.0</td>
<td>35.5</td>
<td>34.0</td>
<td>0.006</td>
</tr>
<tr>
<td>Number of hospitalizations, mean (SD)</td>
<td>2.0 (1.1)</td>
<td>1.5 (1.3)</td>
<td>0.9 (1.2)</td>
<td>1.4 (1.3)</td>
<td>$<$ 0.003</td>
</tr>
<tr>
<td>BDI, mean (SD)</td>
<td>18.0</td>
<td>22.3</td>
<td>27.7</td>
<td>23.6</td>
<td>0.001</td>
</tr>
<tr>
<td>OASIS, mean (SD)</td>
<td>9.4</td>
<td>10.8</td>
<td>11.0</td>
<td>10.5</td>
<td>0.040</td>
</tr>
<tr>
<td>GSE, mean (SD)</td>
<td>21.7</td>
<td>21.2</td>
<td>19.1</td>
<td>20.4</td>
<td>0.006</td>
</tr>
<tr>
<td>MSI, mean (SD)</td>
<td>5.2</td>
<td>6.0</td>
<td>5.4</td>
<td>5.5</td>
<td>0.131</td>
</tr>
</tbody>
</table>

SSA: schizophrenia or schizoaffective disorder; BD: bipolar disorder; DD: depressive disorder; AUD: alcohol use disorder; BDI: Beck Depression Inventory; OASIS: Overall Anxiety Severity and Impairment Scale; GSE: General Self-Efficacy Scale; MSI: McLean Screening Instrument for borderline personality disorder.

* Chi² test.
* Kruskal–Wallis test (between-group comparison).
Table 2
Distribution of Sheehan Disability Scale scores by domains across diagnostic groups.

<table>
<thead>
<tr>
<th></th>
<th>SSA (n = 113)</th>
<th>BD (n = 99)</th>
<th>DD (n = 188)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDS summary</td>
<td>16.3 (7.7)</td>
<td>17.7 (7.9)</td>
<td>20.9 (7.6)</td>
<td><0.001*</td>
</tr>
<tr>
<td>Work</td>
<td>6.3 (3.2)</td>
<td>6.7 (3.3)</td>
<td>7.3 (3.0)</td>
<td><0.001*</td>
</tr>
<tr>
<td>Social life or leisure activities</td>
<td>5.5 (3.1)</td>
<td>5.7 (3.0)</td>
<td>6.9 (2.9)</td>
<td><0.001*</td>
</tr>
<tr>
<td>Family life or home responsibilities</td>
<td>4.4 (3.3)</td>
<td>5.3 (2.9)</td>
<td>6.4 (2.9)</td>
<td>0.019*</td>
</tr>
</tbody>
</table>

SSA: schizophrenia or schizoaffective disorder; BD: bipolar disorder; DD: depressive disorder; SDS: Sheehan Disability Scale.

* Kruskall–Wallis test.

Table 3
Linear regression analysis of clinical correlates for Sheehan Disability Scale within diagnostic groups.

<table>
<thead>
<tr>
<th></th>
<th>SSA (n = 113)</th>
<th>BD (n = 99)</th>
<th>DD (n = 188)</th>
<th>B</th>
<th>β</th>
<th>Sig.</th>
<th>B</th>
<th>β</th>
<th>Sig.</th>
<th>B</th>
<th>β</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.02</td>
<td>0.02</td>
<td>0.654</td>
<td>0.01</td>
<td>0.02</td>
<td>0.876</td>
<td>0.25</td>
<td>0.44</td>
<td>0.004</td>
<td>0.01</td>
<td>0.25</td>
<td>0.44</td>
</tr>
<tr>
<td>Age at onset</td>
<td>-0.04</td>
<td>-0.05</td>
<td>0.407</td>
<td>-0.03</td>
<td>-0.05</td>
<td>0.716</td>
<td>-0.15</td>
<td>-0.30</td>
<td>0.071</td>
<td>-0.03</td>
<td>-0.15</td>
<td>-0.30</td>
</tr>
<tr>
<td>Number of hospitalizations</td>
<td>0.74</td>
<td>0.10</td>
<td>0.136</td>
<td>0.19</td>
<td>0.03</td>
<td>0.408</td>
<td>0.49</td>
<td>0.06</td>
<td>0.256</td>
<td>0.49</td>
<td>0.06</td>
<td>0.256</td>
</tr>
<tr>
<td>BDI</td>
<td>0.15</td>
<td>0.27</td>
<td>0.026</td>
<td>0.35</td>
<td>0.50</td>
<td>0.000</td>
<td>0.30</td>
<td>0.50</td>
<td>0.000</td>
<td>0.30</td>
<td>0.50</td>
<td>0.000</td>
</tr>
<tr>
<td>OASIS</td>
<td>0.40</td>
<td>0.34</td>
<td>0.007</td>
<td>0.44</td>
<td>0.24</td>
<td>0.032</td>
<td>0.15</td>
<td>0.12</td>
<td>0.196</td>
<td>0.15</td>
<td>0.12</td>
<td>0.196</td>
</tr>
<tr>
<td>GSE</td>
<td>-0.24</td>
<td>-0.26</td>
<td>0.006</td>
<td>-0.06</td>
<td>0.05</td>
<td>0.594</td>
<td>-0.20</td>
<td>-0.18</td>
<td>0.100</td>
<td>-0.20</td>
<td>-0.18</td>
<td>0.100</td>
</tr>
<tr>
<td>MSI</td>
<td>0.38</td>
<td>0.15</td>
<td>0.125</td>
<td>0.25</td>
<td>0.01</td>
<td>0.933</td>
<td>0.16</td>
<td>0.06</td>
<td>0.399</td>
<td>0.16</td>
<td>0.06</td>
<td>0.399</td>
</tr>
<tr>
<td>R²</td>
<td>0.432</td>
<td>R² = 0.402</td>
<td>R² = 0.465</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P-value at statistically significant level (< 0.05) is bolded. SSA: schizophrenia or schizoaffective disorder; BD: bipolar disorder; DD: depressive disorder; SDS: Sheehan Disability Scale, summary scores; BDI: Beck Depression Inventory; OASIS: Overall Anxiety Severity and Impairment Scale; GSE: General Self-Efficacy Scale; MSI: McLean Screening Instrument for borderline personality disorder; R²: adjusted R square.

Table 4
Objective work status and subjective ability to work.

<table>
<thead>
<tr>
<th>Objective work status</th>
<th>SSA (n = 113)</th>
<th>BD (n = 99)</th>
<th>DD (n = 188)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working</td>
<td>6</td>
<td>5.3</td>
<td>29</td>
<td>29.3</td>
</tr>
<tr>
<td>Sick leave</td>
<td>6</td>
<td>5.3</td>
<td>12</td>
<td>12.1</td>
</tr>
<tr>
<td>Disability pension/rehabilitation subsidy</td>
<td>101</td>
<td>89.3</td>
<td>58</td>
<td>58.6</td>
</tr>
<tr>
<td>Subjective ability to work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Able to work</td>
<td>57</td>
<td>52.8</td>
<td>46</td>
<td>46.9</td>
</tr>
<tr>
<td>Unable to work</td>
<td>51</td>
<td>47.2</td>
<td>52</td>
<td>53.1</td>
</tr>
</tbody>
</table>

Correlation between objective and subjective work ability within groups (Spearman’s rank):

- r = 0.09, P = 0.379
- r = 0.58, P < 0.001
- r = 0.55, P < 0.001

SSA: schizophrenia or schizoaffective disorder; BD: bipolar disorder; DD: depressive disorder.

* Chi² test (between diagnostic groups comparison).

respectively) were more often withdrawn from work than DD patients. BD patients with work disability showed higher SDS scores, and DD patients with work disability higher SDS, OASIS, and BDI scores and lower GSE scores than their able counterparts. No such associations emerged in the SSA group (data not shown), nor were any associations found for MSI in any group. Logistic regression analysis demonstrated direct associations of work disability with SDS and number of hospitalizations in all groups and an inverse association with GSE in the SSA group (Table 5). In addition, age and age at onset had regression weight in the BD group. The results remained the same when SDS was excluded from the model.

3.4. Subjective ability to work

Near half of the patients of all groups reported work disability (Table 4). Perceived work disability was related to older age in SSA and DD groups (P = 0.001 and P = 0.004, respectively) and to number of hospitalizations in the BD group (P = 0.036). No associations emerged regarding other socio-demographic and background characteristics (data not shown). Patients with perceived work disability of all groups scored higher in OASIS, BDI, and SDS and lower in GSE, and only in the DD group had higher MSI scores than their able to work counterparts (data not shown). Logistic regression analysis revealed less consistent associations (Table 5). Thus, SDS had regression weight in BD and DD groups, and BDI in all groups. The exclusion of SDS from this model did not change the results. The MSI dropped from the final regression model because of its insignificance in SSA and BD groups.

3.5. Objective work status vs. subjective work ability

The proportions of patients working and subjectively able to work correlated moderately strongly and significantly among BD and DD patients (P < 0.001), but not in the SSA group (P = 0.379).

4. Discussion

This study investigated levels of functioning plus subjective and objective ability to work among psychiatric care patients. Most of the patients, irrespective of diagnosis, reported marked functional impairment. Of all diagnostic groups, subjects with schizophrenia or schizoaffective disorder were mostly outside the labour force, but concurrently subjectively experienced the least functional difficulties. In contrast, among patients with mood disorders, objective and subjective indicators for ability to work were broadly
convergent. Within all groups, current depressive symptoms contributed to self-reported impairment, while recurrent psychiatric hospitalizations were associated with objective work status.

4.1. Self-reported functional impairment

Perceived level of functioning, as measured by the Sheehan Disability Scale, was clearly deteriorated in all diagnostic groups. However, somewhat unexpectedly, the most subjectively impaired group across all three domains was the unipolar depressive patients. Unlike our study, most previous studies conducted in psychiatric settings have compared disability only between two major mental disorders. Wide variations in observed functioning have been reported. For instance, van der Voort et al. [46] found more prominent functional impairment in BD patients than in DD patients. Bowie et al. [30] and Simonsen et al. [47] reported more severe disability in schizophrenia than in BD. In contrast, Lee et al. [31], in comparing patients with DD, BD, or psychosis, did not find the principal diagnosis of mental disorder to be a significant predictor of functional outcome, which was instead predicted by neuropsychological functioning. However, the same group in further work found more favourable vocational prognosis for patients with BD rather than DD or schizophrenia spectrum disorder [29].

Correlates of perceived disability could conceivably differ markedly between the major mental disorders. However, we found that depressive symptoms consistently appeared as the major contributor to perceived impairment not only in DD and BD but also in SSA. Depressive symptoms are essential for poor psychosocial functioning in mood disorders [26,46,48–50] overall, but the negative bias in self-referential thinking in depression [51] may be of particular importance for an exaggeratedly negative view of perceived level of functioning. Thus, finding DD patients to report the highest subjective functional impairment of all groups is, perhaps, not surprising, as they experienced the most severe depressive symptoms (BDI) as well. In schizophrenia spectrum disorders, affective symptoms impair functioning as a secondary condition; in part, some negative symptoms, such as anhedonia, may overlap with those of depression [52–55]. Overall, our finding of depressive and, to some extent, anxiety symptoms contributing to functional impairment highlights the importance of measuring them when assessing level of functioning.

4.2. Work status

Differences in work status between the diagnostic groups were notable. Only few (5.3%) of our SSA patients were working, in contrast to nearly half of the mood disorder patients. Despite DD patients reporting the highest level of functional impairment on the SBS, they were still the most employed group of all. Such a discrepancy could refer to overall subjective underestimation of functional capacity by patients with depression compared with objective assessment [18,19,22]. Regression analyses indicated the association of numbers of hospitalizations with current labour status as unemployed, pensioned, or being on sick leave. Previous studies also demonstrate that preceding course of disease (i.e. duration of illness and hospitalizations required) is strongly related to subsequent job loss due to disability pension in schizophrenia spectrum disorders [53,56], bipolar disorder [24], and depression [23,27]. We assume that number of hospitalizations represents a proxy for the overall severity, duration, chronicity, and recurrent course of the principal mental disorder, which jointly will commonly lead to disability pension. Another major correlate of long-term work disability or pensioning across all diagnostic groups was the perceived functional impairment as measured by the SBS. The studies on this topic vary by methodology and functioning assessment tools. Nevertheless, poor self-rated functioning is likely to predict negative outcome of employment in all mental disorders [23,24,57–59]. However, regardless of the primary psychopathology, our findings highlight the importance of overall level of functioning for retaining occupational roles. Work status was correlated not only specifically with perceived disability at work but also with functioning in other areas of life. Thus, in all three diagnostic groups, both poor overall functioning and the factors jointly resulting in repeated hospitalizations were the strongest correlates for poor work status.

4.3. Objective work status vs. subjective work ability

In terms of perceived work disability, the most significant finding was a marked gap between actual labour status and subjective work ability in the SSA group. While again only 5.3% of these patients remained employed, concurrently half of them perceived themselves as able to work. Such findings are in accordance with the general phenomenon of discordance between self-reporting and assessor-rating in SSA patients. Previous studies

Table 5

Multivariate logistic regression analysis of clinical correlates for objective and subjective ability to work within diagnostic groups.

<table>
<thead>
<tr>
<th></th>
<th>SSA (n = 113)</th>
<th>BD (n = 99)</th>
<th>DD (n = 188)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Sig.</td>
<td>B</td>
</tr>
<tr>
<td>Objective work status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>0.03</td>
<td>0.623</td>
<td>0.28</td>
</tr>
<tr>
<td>Age at onset</td>
<td>−0.30</td>
<td>0.155</td>
<td>−0.21</td>
</tr>
<tr>
<td>Number of hospitalizations</td>
<td>2.06</td>
<td>0.019</td>
<td>0.77</td>
</tr>
<tr>
<td>BDI</td>
<td>0.01</td>
<td>0.906</td>
<td>0.04</td>
</tr>
<tr>
<td>OASIS</td>
<td>0.25</td>
<td>0.451</td>
<td>0.04</td>
</tr>
<tr>
<td>GSE</td>
<td>−0.36</td>
<td>0.026</td>
<td>−0.08</td>
</tr>
<tr>
<td>SDS (except “work” item)</td>
<td>0.43</td>
<td>0.031</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Subjective ability to work

<table>
<thead>
<tr>
<th></th>
<th>SSA (n = 113)</th>
<th>BD (n = 99)</th>
<th>DD (n = 188)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.05</td>
<td>0.037</td>
<td>0.02</td>
</tr>
<tr>
<td>Age at onset</td>
<td>−0.01</td>
<td>0.698</td>
<td>0.02</td>
</tr>
<tr>
<td>Number of hospitalizations</td>
<td>0.14</td>
<td>0.516</td>
<td>0.82</td>
</tr>
<tr>
<td>BDI</td>
<td>0.09</td>
<td>0.005</td>
<td>0.13</td>
</tr>
<tr>
<td>OASIS</td>
<td>0.03</td>
<td>0.657</td>
<td>0.11</td>
</tr>
<tr>
<td>GSE</td>
<td>−0.01</td>
<td>0.838</td>
<td>−0.07</td>
</tr>
<tr>
<td>SDS (except “work” item)</td>
<td>0.07</td>
<td>0.121</td>
<td>0.23</td>
</tr>
</tbody>
</table>

*p-value at statistically significant level (p < 0.05) is bolded. SSA: schizophrenia or schizoaffective disorder; BD: bipolar disorder; DD: depressive disorder; BDI: Beck Depression Inventory; OASIS: Overall Anxiety Severity and Impact Scale; GSE: General Self-Efficacy Scale; SDS: Sheehan Disability Scale (“work” item excluded. *a Information on work status collected from medical records/certificates by authors.

*b Patients’ perceived ability to work.
have indicated that, due to low insight and neurocognitive and, to some extent, negative symptoms, patients with schizophrenia spectrum disorder tend to markedly overestimate their functional level [21,22] and overall quality of life [60,61] comparing to the evaluation of a clinician. Additionally, our result of high-perceived work ability in SSA patients could partially reflect the finding that subjects with severe mental illness (i.e. schizophrenia spectrum disorders) still strongly desire to work [25]. However, it is possible that besides poor insight particularly long-term SSA patients outside working life may have a different frame of reference for judging their functioning. Because of such a discordance, clinicians should evaluate functioning of SSA patients comprehensively, including both subjective and objective aspects [62]. Their work status is likely not only related to their illness, but also dependent on context (social support, health care system, rehabilitation, etc.). Furthermore, low employment in the SSA group raises the issue of need for more effective employment programs for such patients.

Contrary to the SSA group, perceived and actual work ability were moderately strongly correlated in our mood disorder patients. Their level of self-reported work ability was, nevertheless, slightly higher than their vocational status. Such a disproportion could result from delayed functional recovery compared with syndromal remission [46]. Thus, relief of symptoms is likely to enhance subjective but not objective ability.

The correlates of perceived work ability were roughly akin to those of self-reported functional impairment. The most consistent finding across all groups was the association of subjective work disability with current depressive symptoms. Thus, clinicians should pay attention to carefully uncovering and effectively treating affective symptoms regardless of their psychopathological domain to improve the patient’s engagement in rehabilitation programmes and eventually expedite their return to work.

4.4. Study strengths and limitations

Strengths of this study include investigation of reported functioning, perceived ability to work, and work status along with clinical characteristics simultaneously across diagnostically heterogeneous (schizophrenia or schizoaffective disorder, bipolar disorder, and depression) psychiatric care patients in the Helsinki metropolitan area. This allowed comparison of the diagnostic groups in terms of the measures of functioning, their correlates, and the consistency of objective and subjective measures. Our study also has several limitations. First, all results for the SSA group should be interpreted with caution due to the low number (n = 6) of subjects remaining at work, and thus, the low statistic power in some bivariate and multivariate analyses. Second, as this study, which included a long survey, was performed in a busy routine clinical practice, the response rate was only 33%. However, according to register-based analysis of representativeness, our sample did not differ from the patient populations of participating organizations in terms of gender or age. Regarding demographic characteristics, our study is comparable with the earlier screening-based Vantaa Depression Study and Jorvi Bipolar Study [63,64], but the proportion of patients with disability pension was 18–19% higher in this study [23,24]. Third, the generalizability of the findings of this Helsinki metropolitan area study (also considering relatively low response rate) to other settings needs to be verified. Fourth, principal clinical diagnoses were set in psychiatric care by psychiatrists and residents (although not always based on structured interviews), and in addition verified by the authors from available medical records. Additionally, we did not use any clinician-rated work ability measures and utilized only data on employment status as an objective measure of work ability. The information on employment status was collected only from medical records and was not corroborated from the Finnish Social Insurance Institution or other registers. Fifth, because this was a cross-sectional study, no firm conclusions can be made on causal relationships between mental health variables and level of functioning or work ability. Sixth, recall bias could affect self-report measures, and some patients could under- or overestimate their symptoms, both factors bias our analyses. Seventh, the study included multiple descriptive statistical analyses, which increases risk of spurious findings. However, we used multivariate regression models to test our hypotheses on risk factors of functional impairment and work disability. Eighth, cognitive functioning is a highly relevant factor influencing functional outcome, but could not be assessed in this study.

5. Conclusions

Psychiatric care patients commonly suffer from marked disability and eventually end up outside the labour force. However, while among patients with mood disorders objective and subjective indicators of ability to work are largely concordant, among those with schizophrenia or schizoaffective disorder they are commonly contradictory. Among all groups, perceived functional impairment and work disability are coloured by current depressive symptoms. In contrast, objective work status reflects illness course, particularly number of preceding psychiatric hospitalizations.

Disclosure of interest

The authors declare that they have no competing interest.

References

Bipolar life

Aaltonen

Holma

Huppert

predictors:

Press,

psychological

Psychiatry

study

Why

patients

Disord

N,

disorder.

P,

a

with

Cissell

and

schizophrenia:

Acta

Bowie

and

a

schizophrenia

Acta

Lim

Thewissen

work

bipolar

spectrum

longitudinal

correlates

in

persons

illness:

JH,

PS,

of

first-episode

in

results

in

patients

with

self-

trial.

Dep,

Ma

and

(personal

information

between

impairment

in

patients

with

N

50.

Long-term

Psychosocial

atry

IBM

Corps;

Roshi

bipolar

and

Karpov

al.

Bipolar

Dis

2012;73(6):790–5

Holma

Arvilommi

and

Leppamaki

Essometa

patients

with
type

I

and

bipolar
disease:
a

prospective

18-month

follow-up

study.

Bipolar

Disord

Tsang

HW,

Leung

A,

Bell

C,

M,

and

WM.

review

on

predictors

of

outcomes

among

with

schizophrenia:
an

update

since

1998.

Aust

N

Z

J

Psychiatry

Lee

DS,

Nirmala

and

Lagopoulos

J,

Jones

A,

Scott

J,

and

Lee.

neuro-

psychological

and

functional

outcomes

in

recent-onset

major

depression,

bipolar

disorder

and

schizophrenia

spectrum

disorders:
a

longitudinal

study.

Transl

Psychiatry

Bowie

CR,

Depp

C,

McGrath

JA,

Woynich

P,

Mausbach

BT,

Thorquihet

MH,

et

al.

Prediction

of

real-world

functional

disability

in

chronic

mental

disorders:
a

comparison

of

schizophrenia

and

bipolar
disorder.

Am

Psychiatry

2010;167(9):1116–24.

Lee

DS,

Fred

Redbiold-Hodge

MA,

Nirmala

SL,

Porter

MA,

Kaur

M,

et

al.

neuropsychological

and

socio-occupational

functioning

in

young

psychiatric

outpatients:
a

longitudinal

investigation.

PLoT

Online

Bahorik

AL,

Eack

SM.

Examining

the

course

and

outcome

of

individuals

diagnosed

with

schizophrenia

and

comorbid

borderline

personality

disorder.

Schizophr

Res

Zimmerman

M,

Martinez

JH,

Young

D,

Chelmisnki

I,

Dalrymple

K.

Sustained

unemployment

in

psychiatric

outpatients

with

bipolar

disease

compared

to

major

depressive

disorder

with

comorbid

borderline

personality

disorder.

Bipolar

Disord

Cardenas

A,

Sabel

B,

Bowie

CR,

Tiznad

D,

Depp

CA,

Paterson

TL,

et

al.

When

functional

capacity

and

real-world

functioning

converge:

the

role

of

self-

efficacy.

Schizophr

Build

Norman

SR,

Cissell

SH,

Means-Christensen

AJ,

Stein

MR.

Development

and

validation

of

an

Overall

Anxiety

Severity

and

Impairment

Scale

