Accepted Article

Title: Mass-production of Mesoporous MnCo2O4 Spinel with MnIV- and CoII-rich Surface for Superior Bifunctional Oxygen Electrocatalysis

Authors: Wenhai Wang, Long Kuai, Wei Cao, Marko Huttula, Sami Ollikkala, Taru Ahopelto, Ari-Pekka Honkanen, Simo Huotari, Mengkang Yu, and Baoyou Geng

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.201708765
Angew. Chem. 10.1002/ange.201708765

Link to VoR: http://dx.doi.org/10.1002/anie.201708765
http://dx.doi.org/10.1002/ange.201708765
Mass-production of Mesoporous MnCo$_2$O$_4$ Spinel with MnIV- and CoII-rich Surface for Superior Bifunctional Oxygen Electrocatalysis

Wenhai Wang, Long Kuai, Wei Cao, Marko Huttula, Sami Ollikkala, Taru Ahopelto, Ari-Pekka Honkanen, Simo Huotari, Mengkang Yu, and Baoyou Geng*

Abstract: A mesoporous MnCo$_2$O$_4$ electrode materials is successfully fabricated for bifunctional oxygen electrocatalysis. The MnCo$_2$O$_4$ exhibits both Co$_3$O$_4$-like activity for oxygen evolution reaction (OER) and Mn$_3$O$_4$-approaching performance for oxygen reduction reaction (ORR). The potential difference between ORR metric and OER metric of MnCo$_2$O$_4$ is as low as 0.93 V. By XANES and XPS investigation, the notable activity is resulted from the preferred MnIV- and CoII-rich surface. Valuably, the products can be obtained in large-scale with the precise chemical components at relatively low temperature. The surface state engineering maybe open a new avenue to optimize electrocatalysis performance of electrode materials. The prominent bifunctional activity shows that MnCo$_2$O$_4$ has the possibility of being used in metal-air batteries and/or other energy devices.

Considerable interest has been focused on oxygen electrocatalysis for its important role in energy storage and conversion.[1] The Pt-based materials are regarded as the best catalysts toward ORR, but they are suffered from a poor OER activity.[2] There are a few catalysts possessing OER performance which can be comparable with Ir- or Ru-based materials.[3] Nevertheless, Ir- or Ru-based materials show a normal activity toward ORR. Although alloys of Pt, Ir and Ru have been used as bifunctional catalysts, their scarcity and high cost also hamper their applications.[4]

Among the developed bifunctional oxygen-catalysts,[5] heteroatoms doped carbon materials have been paid numerous attention because of heteroatoms doping can change the asymmetry spin density and the local charge density of carbon lattice.[5c-e] In order to perform the synergistic effects of heteroatoms, the synthesized temperatures of heteroatoms doped carbon materials often beyond 800 °C but the precise doping is difficult to achieve.[5c,d] Contrarily, metal oxides are easily synthesized at lower temperatures. However, ordinary pure metal oxides with ideal crystal structure often exhibit single oxygen electrocatalysis activity of either OER or ORR. Various fabrication engineering has been developed to modulate the structure or component of metal oxides to motivate their bifunctional performance.[6] The structure or component engineering often involve some complicated processes and the yield is limited. Fortunately, previous researches have also revealed that the electrocatalytic activity has a great connection with the surface chemical state. Just as reported, average Mn valence locates in the region between MnIII and MnIV can greatly improve the ORR activity of manganese oxides, in which the driving force comes from the ε_g orbit number change from zero to one that can reduce oxygen adsorption and facilitate the exchange of hydroxyl by oxygen.[7] It is noticed that MnCo$_2$O$_4$ is one of spinel oxides possess the structural flexibility and mixed valence states. Most of the reported MnCo$_2$O$_4$ catalysts have a good activity toward OER, whereas the ORR activity is clumsy.[8] The main reason is that the average Mn valence of these MnCo$_2$O$_4$ catalysts is between MnII and MnIV, preventing ORR being improved. We are fortunate to have developed a facile spray-pyrolysis approach for the fabrication of mesoporous Mn$_2$O$_4$ with Pt/C comparable OER activity via modulating Mn chemical state.[9] Therefore, it is also expectable to achieve the bifunctional performance of MnCo$_2$O$_4$ through surface chemical state engineering.

Herein, we reported a mesoporous MnCo$_2$O$_4$ possess dominant MnIV in the surface and MnIII in bulk while CoII both in the surface and bulk, which exhibit high activity toward both ORR and OER with the potential difference between ORR and OER metrics of 0.93 V. The study of Zn-air batteries device shows that the initial discharge and charge potential of MnCo$_2$O$_4$ are respectively 1.21 V and 2.05 V at the power density of 10 mA/cm2. After 180 cycles, there is only a small potential drop in discharge (1.10 V) and up in charge (2.32 V), which is superior to Pt/C in the same condition. Notably, the products can be synthesized in large-scale at a relatively low temperature.

The fabrication of the products is performed on the home-made equipment.[10] The SEM and TEM images (Figure 1a-b and Figure S1a-b, d-e) reveal that the obtained products are porous spheres with the size of 1-2 μm, which is similar to that of Mn$_3$O$_4$ and Co$_3$O$_4$ prepared under same condition. The lattice fringe in HRTEM image (Figure 1c) is indexed to the (220) plane...
of MnCo$_2$O$_4$. The SEM element mapping (Figure 1d) proves the elements of Mn, Co and O distributing uniformly in the product. The powder X-ray diffraction (XRD) pattern (Figure 1e) confirms the phases of the samples can be assigned to Mn$_2$O$_3$ (JCPDS 41-1442), Co$_3$O$_4$ (JCPDS 74-1656) and MnCo$_2$O$_4$ (JCPDS 77-0471). Compared to peaks of Co$_3$O$_4$, the peaks of MnCo$_2$O$_4$ shift slightly to smaller angles. The substitution of larger size Mn cations results in the improvement of d (lattice fringe).[11]

The N$_2$ adsorption-desorption curves in Figure S2a reveal that the surface areas of MnCo$_2$O$_4$, Mn$_2$O$_3$ and Co$_3$O$_4$ are 23.57 m2/g, 40.15 m2/g and 19.28 m2/g, respectively. The N$_2$ adsorption-desorption curves also show a loop occurs in the range of 0.9-1.0 P/P$_0$. The mesoporous porous structure can promote the formation of active sites (Figure S2b), improving the electrochemistry activity of catalysts.

The X-ray photoelectron spectroscopy (XPS) was shown in Figure 2. In the Mn spectra (Figure 2a), the peaks at 644.2 eV and 654.7 eV are characteristic peaks of MnII.[8a] The peaks at 641.3 eV and 653.3 eV are assigned to MnIII.[8c] The peaks of 641.5 eV and 653.0 eV are ascribed to MnII.[8b] According to Figure 2a, the Mn2p$_{3/2}$ and Mn2p$_{1/2}$ for MnCo$_2$O$_4$ shift to higher binding energy, showing the slightly higher surface Mn valence of MnCo$_2$O$_4$ than Mn$_2$O$_3$. Apparently, the ration of CoII/CoIII for MnCo$_2$O$_4$ is higher than Mn$_2$O$_3$ in Figure 2c. The calculated surface Co and Mn oxidation states of MnCo$_2$O$_4$ from XPS were 2.47 and 3.19 (Table S1), which display the preferred state with MnII and CoIII-rich surface. Meanwhile, the Mn (Figure 2b) and Co (Figure 2d) K-edge x-ray absorption near edge structures (XANES) were further investigated its electron structure in bulk due to much larger detection depth. It is obvious that the Co’s binding energy in MnCo$_2$O$_4$ is less than Co$_3$O$_4$ (insets of Figure 2d), which matches with the XPS results, suggesting that the CoII is dominant type in the both surface and bulk of MnCo$_2$O$_4$. To keep the spinel structure, the Mn atoms occupy the CoIII’s sites, so the Mn presents dominant MnIII in the bulk of MnCo$_2$O$_4$, which is consistent with the Mn XANES (Figure 2b) compared to Mn$_2$O$_3$, Mn$_3$O$_4$ and MnO$_2$.

To evaluate the property of MnCo$_2$O$_4$ for OER, it was carried out in O$_2$-saturated 0.1 M KOH by polarization curves. As a comparison, a bare glassy carbon (GC) electrode, carbon (Vulcan XC-72), Pt/C (20 wt.% Pt), Mn$_2$O$_3$, Co$_3$O$_4$ and the physical mixture of Mn$_2$O$_3$ and Co$_3$O$_4$ were also performed under the same condition. From Figure 3a, the bare GC and carbon don’t have a great effect on catalyzing OER. At 10 mA cm$^{-2}$ (Figure 3b), MnCo$_2$O$_4$ displays a small overpotential (0.40 V), which is comparable with Co$_3$O$_4$ (0.39 V). The OER activity of Co-based spinel oxides relies on the relative ratio of CoIII/CoII. Liu et al. found that CoII is beneficial for forming cobalt oxygydroxide (CoOOH), which is responsible for enhanced OER.[12] In contrast, CoIII tends to improve the strength between catalysts’ surface and hydroxides groups, which lowers the activity of OER. It is fortunate that the as-synthesized MnCo$_2$O$_4$ possesses dominant CoIII in the both surface and bulk, causing the highly-comparable OER activity to Co$_3$O$_4$. In addition, the OER activity for the physical mixture of Mn$_2$O$_3$ and Co$_3$O$_4$ is less active than MnCo$_2$O$_4$, which indicates the importance of the chemical synergic coupling of Mn and Co to enhance the electrochemical activity. Taking account of surface area and catalyst loading, the specific activity (j$_{s}$) and mass activity (j$_{m}$) were also used to compare OER activity of catalysts (Table S2). It is shown that the specific activity and mass activity of MnCo$_2$O$_4$ (j$_{s}$: 20.60 mA g$^{-1}$, j$_{m}$: 90 ± 10 μA cm$^{-2}$) are as good as that of Co$_3$O$_4$ (j$_{s}$: 22.90 mA g$^{-1}$, j$_{m}$: 110 ± 15 μA cm$^{-2}$).

From Figure 3c, we can find that the Tafel slope of MnCo$_2$O$_4$ is 90 mV decade$^{-1}$, which is slightly higher than Co$_3$O$_4$ (71 mV decade$^{-1}$) and lower than the physical mixture of Mn$_2$O$_3$ and Co$_3$O$_4$. A lower Tafel slope means a faster ion transport in catalysts. From Figure 3d, the MnCo$_2$O$_4$ catalysts have the best catalytic activity (j$_{s}$: 22.90 mA g$^{-1}$, j$_{m}$: 110 ± 15 μA cm$^{-2}$).

Figure 2. (a) Mn and (b) Co XPS spectra of MnCo$_2$O$_4$, Mn$_2$O$_3$ and Co$_3$O$_4$. (c) Mn and (d) Co K-edge XANES spectra of various samples. The inset of Figure 2d is the zoom map of XANES ranging from 7719 to 7735 eV.

Figure 1. (a) SEM, (b) TEM, (c) HRTEM, (d) SEM element mapping (scale bars: 500 nm) images of MnCo$_2$O$_4$; (e) XRD patterns of MnCo$_2$O$_4$, Co$_3$O$_4$ and Mn$_2$O$_3$. This article is protected by copyright. All rights reserved.
The charge transfer resistance (Rct) follows the order of Pt/C > Mn3O4 > the physical mixture of Mn3O4 and Co3O4 > MnCo3O4 > Co3O4, which is associated with their OER activities.

Cyclic voltammetry (CV) was used to assess the ORR electrocatalytic properties of MnCo3O4. From the Figure 3d, the peak potential of MnCo3O4 appears at 0.83 V, which provides a similar ORR activity with Mn3O4 (0.85 V) and Pt/C (0.87 V). The peak potential of MnCo3O4 is slightly negative to Mn2O3. There are two reasons causing this gap. Firstly, by comparison with Mn311 and Mn4V, Co-based species don’t have a great effect on the enhancement of ORR. Secondly, Mn2O3 has a larger surface area than MnCo3O4. Compared with Co3O4 (peak potential: 0.69 V) the high ORR activity of MnCo3O4 can be attributed to the substitution of Mn. Mn311 and Mn4V are more active ORR sites than Co-based species.[15] On one hand, the presence of Mn311 can promote the ORR kinetics.[16] On the other hand, the amount of peroxide can be decomposed by Mn4V. The physical mixture of Mn2O3 and Co3O4 (peak potential: 0.78 V) offers lower ORR activity than MnCo3O4, suggesting that chemical synergistic effect also has a great advantage in the enhancement of ORR.

Rotating disk electrode (RDE) was employed to gain insight into the ORR kinetic of catalysts. The onset potential of MnCo3O4 is 0.95 V (Figure 3e and S4), which can be comparable with Mn3O4 (0.98 V) and Pt/C (1.00 V). In addition, the limiting current of MnCo3O4 is close to Pt/C. The electron transfer number (n) was calculated from polarization curves according to the Koutecky-Levich (K-L) equation (Figure 3f). It is well known that Pt/C follows a 4e transfer mechanism.[17] According to K-L equation, the electron transfer number of MnCo3O4 was calculated to be 3.94, which approaches that of Mn3O4 (3.97). Considering the contribution of catalysts’ mass and specific surface area to ORR, mass activity and specific activity of catalysts were measured. From Table S3, the mass activity and specific activity of MnCo3O4 (jc: 0.83 mA g-1; jmc: 30 μA cm-2) is larger than Co3O4 (jc: 0.21 mA g-1; jmc: 10 μA cm-2). The incorporation of Mn311/Mn4V in Co3O4 forms MnCo3O4, leading to the decrement of peroxide and the increment of the electron transfer number. Consequently, the sluggish kinetic of ORR would be facilitated.

Rotating ring-disk electrode (RRDE) was used to explore the electron transfer number and the peroxide yield of MnCo3O4 (Figure S5). MnCo3O4 shows a high disk current for the reduction of O2 and a low ring current for the oxidation of peroxide. The peroxide yield of MnCo3O4 fluctuates between 4 % and 6 % over the potential from 0.4 V to 0.7 V (Figure 4a), which is similar to that of Mn3O4 and less than the reported MnCo3O4-N-rGO (nearly 10%).[11] For Co3O4, the n value is lower than MnCo3O4 and the peroxide yield reaches 35 %, indicating that oxygen was mainly reduced to peroxide. RRDE confirms that MnCo3O4 shows a great excellent activity toward ORR, which is aligned with RDE results. The oxygen strength on metal oxides’ surface is a key step of ORR. The oxygen strength will be decreased by the reaction of Mn311/Mn4V, resulting to the acceleration of the kinetics of ORR.[18] The smaller amount of peroxide generated on MnCo3O4’s surface should be originated from the coexistence of Mn311/Mn4V. The introduction of Mn311 and Mn4V in Co3O4 forming MnCo3O4 makes great contributions to increasing the electron number of ORR. The long-term stability of MnCo3O4 was studied by chronoamperometric measurements. After 10 h, the loss of current density for MnCo3O4 is only 15 % (Figure 4b), indicating high stability of MnCo3O4 than Pt/C.

To quantitatively evaluate the bifunctional oxygen electrode activity of MnCo3O4, a metric was adopted and used to compare the difference between the ORR potential at -3 mA cm^-2 and the OER potential at 10 mA cm^-2. The smaller the potential difference, the better the catalyst’s bifunctional activity is. The potential difference between ORR metric and OER metric of MnCo3O4 is only 0.83 V (Table S4), which can be comparable with the most excellent reported N, P-GCNs (0.71 V). The unique surface state of Mn and Co is the source to the high performance. The dominant surface Mn4V gives birth to excellent ORR activity while superior surface Co311 contributes efficient OER performance. To determine this claiming, the bifunctional oxygen catalysis of H2-treated MnCo3O4 samples was investigated. As shown in Figure S6a and b, the performance decreased after H2-treatment at both 200 ℃ and 400 ℃, and ORR activity inhibition appears much more dominant. Based on the XANES spectra of H2-treated MnCo3O4 samples (Figure S6c and d) at 200 ℃, we can find that the bulk structure maintains well compared to that of fresh MnCo3O4 sample. However, the OER and ORR activity presents notable difference, indicating that the structure change happens in the surface. Furthermore, after H2-treatment at 400 ℃, the bulk structure changes apparently, where the binding

This article is protected by copyright. All rights reserved.
energy of Co moves to CoO and the Mn shifts toward Mn$_3$O$_4$. While, the activity toward both OER and ORR differs very slightly from that of MnCo$_2$O$_4$-H200 sample, suggesting that the contribution of bulk structure is much less dominant compared to the surface state.

A home-build Zn-air battery was used to study the bifunctional stability of MnCo$_2$O$_4$ (Figure 4d). The stability was performed by the discharge-charge cycling in 0.2 M Zn(CH$_3$COO)$_2$ and 6.0 M KOH. The discharge-charge curves were examined at 10 mA cm$^{-2}$ (Figure 4c). The initial discharge and charge potential of MnCo$_2$O$_4$ are respectively 1.21 V and 2.05 V. After 180 cycles, there is small potential change in discharge (1.10 V) and charge (2.32 V). Although Pt/C has a high potential (1.27 V) during discharge process at first, the stable discharge potential of Pt/C is only ~0.88 V. This result shows that the stability of MnCo$_2$O$_4$ is still excellent during the practical application.

In summary, a mesoporous MnCo$_2$O$_4$ bifunctional oxygen electrocatalyst was synthesized by spray-pyrolysis route. The product possesses a remarkably high activity toward both OER and ORR. The unique MnIV and CoIII-rich surface state is the source to the high OER and ORR activity. It makes possible that MnCo$_2$O$_4$ has the potential of being applied to promote the development of renewable energy technologies and devices. Additionally, the products produced through spray-pyrolysis can be sustainable obtained in a large scale with the precise components. The surface state engineering through modulating the chemical state of elements opens up attractive opportunities to synthesize a large number of new materials with excellent performance.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21471006, 21271009), the Recruitment Program for Leading Talent Team of Anhui Province, the Program for Innovative Research Team of Anhui Education Committee, and the Research Foundation for Science and Technology Leaders and Candidates of Anhui Province.

Keywords: MnCo$_2$O$_4$ • mesoporous • mass production • surface state • bifunctional oxygen electrocatalysis

Mass-production of mesoporous MnCo$_2$O$_4$ spinel with superior bifunctional O$_2$ electrocatalysis is performed simply. The obtained MnCo$_2$O$_4$ possesses dominant surface chemical state, which stimulate the excellent bifunctional performance.

Wenhai Wang, Long Kuai, Wei Cao, Marko Huttula, Sami Ollikkala, Taru Ahopelto, Ari-Pekka Honkanen, Simo Huotari, Mengkang Yu, Baoyou Geng*

Page No.1 – Page No.6

Mass-production of Mesoporous MnCo$_2$O$_4$ Spinel with MnIV and CoII-rich Surface for Superior Bifunctional Oxygen Electrocatalysis

10.1002/anie.201708765

Accepted Manuscript

Angewandte Chemie International Edition

This article is protected by copyright. All rights reserved.