Guidance to 2018 good practice

Bousquet, J.

2019-03-11

http://hdl.handle.net/10138/300692
https://doi.org/10.1186/s13601-019-0252-0

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.
Guidance to 2018 good practice: ARIA digitally-enabled, integrated, person-centred care for rhinitis and asthma

Abstract

Aims: Mobile Airways Sentinel Network (MASK) belongs to the Fondation Partenariale MACVIA-LR of Montpellier, France and aims to provide an active and healthy life to rhinitis sufferers and to those with asthma multimorbidity across the life cycle, whatever their gender or socio-economic status, in order to reduce health and social inequities incurred by the disease and to improve the digital transformation of health and care. The ultimate goal is to change the management strategy in chronic diseases.

Methods: MASK implements ICT technologies for individualized and predictive medicine to develop novel care pathways by a multi-disciplinary group centred around the patients.

Stakeholders: Include patients, health care professionals (pharmacists and physicians), authorities, patient’s associations, private and public sectors.

Results: MASK is deployed in 23 countries and 17 languages. 26,000 users have registered.
Introduction

In all societies, the burden and cost of allergic and chronic respiratory diseases (CRDs) is increasing rapidly. Most economies are struggling to deliver modern health care effectively. There is a need to support the transformation of the health care system for integrated care with organizational health literacy. MASK (Mobile Airways Sentinel Network) [1] is a new development of the ARIA (Allergic Rhinitis and its Impact on Asthma) initiative [2, 3]. It works closely with POLLAR (Impact of Air POLLution on Asthma and Rhinitis, EIT Health) [4], and collaborates with professional and patient organizations in the field of allergy and airway diseases. MASK proposes real-life care pathways (ICPs) centred around the patient with rhinitis and/or asthma multimorbidity. It uses mHealth monitoring of environmental exposure and considers biodiversity. With the help of three EU projects (DigitalHealthEurope, Eurifi and Vigour) recently accepted on the digital transformation of health, MASK proposes a second change management strategy. The first one was the ARIA change management associated with the recognition and wide acceptance by all stakeholders of the essential links between rhinitis and asthma. The second one deals with change management of care pathways for rhinitis and asthma [5].

In the context of implementing communication on the digital transformation of health and care, specifically in relation to chapter 5 of the document "Digital tools for citizen empowerment and for person-centred care" [6–8] (Fig. 1) as well as ICT (Information and Communication Technology) solutions (cell phones for patients, inter-operable tablets for health care professionals and a web-based questionnaire for physicians) [1, 9] (Fig. 2). The aim is to develop a change management strategy for chronic diseases [5].

MASK is a patient-centred ICT system [8]. A mobile phone app (the *Allergy Diary*, now called MASK-air), central to MASK, is available in 23 countries. It has been validated [10] and found to be an easy and effective method of assessing the symptoms of allergic rhinitis (AR) and work productivity [10–13]. MASK follows the checklist for the evaluation of Good Practices developed by the European Union Joint Action JACRHDIS (Joint Action on Chronic Diseases and Promoting Healthy Ageing across the Life Cycle) [14]. One of the major aims of MASK is to provide care pathways in rhinitis and asthma multimorbidity [16] including a sentinel network using the geolocation of users [17]. It can also inform the App users of the pollen and/or pollution risk level in their area, by means of geolocation (Table 1).

The practice has been developed for allergic rhinitis (and asthma multimorbidity), being the most common chronic disease globally [18, 19] and affecting all age groups from early childhood to old age. There are several unmet needs that should be addressed in an ICP. Moreover, the lessons learnt will benefit all chronic diseases participating in the 3rd Health Programme to learn more about the 10 good practices and key policy initiatives in the domain of digitally-enabled, integrated, person-centred care, with a view to possible transfer and replication of the presented practices.

The current paper reviews the questions raised during the workshop concerning the good practice on allergic rhinitis and asthma: ARIA digitally-enabled, integrated, person-centred care for rhinitis and asthma multimorbidity using real-world evidence [1]. This practice is a GARD (Global Alliance against Chronic Respiratory Diseases) demonstration project.

EU grants (2018): MASK is participating in EU projects (POLLAR: impact of air POLLution in Asthma and Rhinitis, EIT Health, DigitalHealthEurope, Eurifi and Vigour).

Lessons learnt: (i) Adherence to treatment is the major problem of allergic disease, (ii) Self-management strategies should be considerably expanded (behavioural), (iii) Change management is essential in allergic diseases, (iv) Education strategies should be reconsidered using a patient-centred approach and (v) Lessons learnt for allergic diseases can be expanded to chronic diseases.

Keywords: App, Asthma, Care pathways, MASK, mHealth, Rhinitis, DG Santé
diseases since rhinitis is considered as a mild disease although it impairs social life, school and work productivity considerably [20]. It is estimated that, in the EU, work loss accounts for 30–100 b€ annually. Moreover, it is essential to consider mild chronic diseases and to establish health promotion and management strategies.
early in life in order to prevent a severe outcome and to promote healthy ageing [21].

Level of care integration

MASK is used for the integration of primary and specialist care, of primary-secondary-tertiary health care, as well as of health and social care for disease management.

Deployment

Many of the GPs that are developed in one region (country) take into account health systems, availability of treatments and legal considerations which makes it difficult to scale up the practice without customization. MASK has taken the opposite direction starting with a tool immediately available in 10 languages and 14 countries and regularly scaled up. Moreover, the tool is included in a generic ICP (Fig. 2) that can be customized easily in any country globally.

Geographical scope of the practice

MASK was developed in English and is currently available in 23 countries and 17 languages (Table 2).

New countries

Deployment is in process in Bolivia, Colombia, Japan and Peru. The involvement of developing countries is needed to offer a practice for middle- and low-income countries that will benefit poverty areas of developed countries and that will be in line with the mission of GARD. Deployment to the US is being discussed with the National Institute for Allergy and Infectious diseases (NIH).

Transfer of innovation of allergic rhinitis and asthma multimorbidity in the elderly (MASK Reference Site Twinning, EIP on AHA)

The EIP on AHA includes 74 Reference Sites. The aim of this TWINNING is to transfer innovation from the MASK App to other reference sites. The phenotypic characteristics of rhinitis and asthma multimorbidity in adults and the elderly have been compared using validated mHealth tools (i.e. the Allergy Diary and CARAT [22]) in 23 Reference Sites or regions across Europe, Argentina, Australia, Brazil and Mexico [23].

Individuals/institutions reached

ARIA has been implemented in over 70 countries globally [3], and several governments use the practice. Approximately 26,000 users have registered to the MASK database. 700 patients have been enrolled in the Twinning. Due to privacy, there is no possibility of assessing users who have reported data.

Timeframe

The project was initiated in 1999 during a World Health Organization (WHO) workshop (ARIA) and undergoes continuous developments. The ARIA initiative, commenced during a WHO workshop in 1999 [2], has been further developed by the WHO Collaborating Center for Asthma, Allergy, and Respiratory Diseases (ARIA) and its partners.
for Asthma and Rhinitis (2002–2013). The initial goals (Phase 1) were (1) to propose a new AR classification, (2) to promote the concept of multimorbidity in asthma and rhinitis and (3) to develop guidelines with all stakeholders that could be used globally for all countries and all populations. ARIA has been disseminated and implemented in over 70 countries [3, 19, 24–32]. It was developed as a guideline [19] using the GRADE approach [33–39].

MASK, the Phase 3 ARIA initiative, is focusing on (1) the implementation of multi-sectoral care pathways (2) using emerging technologies (3) with real world data (4) for individualized and predictive medicine (5) in rhinitis and asthma multimorbidity (6) by a multidisciplinary group or by patients themselves (self-care) using the AIRWAYS ICPs algorithm (7) across the life cycle [8, 17]. It will be scaled up using the EU EIP on AHA strategy [26].

Developments for 2019 include a multimorbidity App and the deployment of an app for home services.

The MASK project is intended to be sustainable and a business plan has been initiated.

The medium-term future is to develop care pathways for the prevention and control of chronic diseases to sustain planetary health. A symposium during the Finnish Presidency of the EU Council is planned for October 2019.

Scientific evidence and conceptual framework for configuring the practice

The scientific evidence is based on a validated “research” tool (The Allergy Diary, –2018) that has led to large scale deployment (MASK-air, 2019–):

- Validation of the app using COSMIN guidelines [40].
- Baseline characteristics informed [12].
- Work productivity associated with the control of allergic diseases [41, 42].
- EQ-5D is available and has been found to correlate to baseline characteristics [43].
- Novel phenotypes of allergic diseases have been discovered [44].

Table 2 List of countries using MASK-air

<table>
<thead>
<tr>
<th>Country/ Dec</th>
<th>Nov</th>
<th>Oct</th>
<th>Sep</th>
<th>Aug</th>
<th>July</th>
<th>June</th>
<th>May</th>
<th>April</th>
<th>March</th>
<th>Feb</th>
<th>Jan</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR</td>
<td>233</td>
<td>229</td>
<td>219</td>
<td>187</td>
<td>133</td>
<td>127</td>
<td>110</td>
<td>86</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT</td>
<td>874</td>
<td>869</td>
<td>863</td>
<td>861</td>
<td>850</td>
<td>844</td>
<td>799</td>
<td>749</td>
<td>727</td>
<td>714</td>
<td></td>
</tr>
<tr>
<td>AU</td>
<td>368</td>
<td>357</td>
<td>326</td>
<td>310</td>
<td>294</td>
<td>288</td>
<td>284</td>
<td>269</td>
<td>257</td>
<td>244</td>
<td>232</td>
</tr>
<tr>
<td>BE</td>
<td>286</td>
<td>281</td>
<td>276</td>
<td>263</td>
<td>255</td>
<td>251</td>
<td>242</td>
<td>217</td>
<td>192</td>
<td>185</td>
<td>179</td>
</tr>
<tr>
<td>BR</td>
<td>2967</td>
<td>2915</td>
<td>2853</td>
<td>2799</td>
<td>2726</td>
<td>2682</td>
<td>2645</td>
<td>2568</td>
<td>2514</td>
<td>2449</td>
<td>2377</td>
</tr>
<tr>
<td>CA</td>
<td>68</td>
<td>68</td>
<td>66</td>
<td>66</td>
<td>60</td>
<td>58</td>
<td>57</td>
<td>51</td>
<td>47</td>
<td>44</td>
<td>42</td>
</tr>
<tr>
<td>CH</td>
<td>1765</td>
<td>1756</td>
<td>1751</td>
<td>1745</td>
<td>1738</td>
<td>1733</td>
<td>1729</td>
<td>1646</td>
<td>1075</td>
<td>947</td>
<td>930</td>
</tr>
<tr>
<td>CZ</td>
<td>73</td>
<td>71</td>
<td>67</td>
<td>66</td>
<td>65</td>
<td>65</td>
<td>59</td>
<td>51</td>
<td>25</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>DE</td>
<td>1515</td>
<td>1476</td>
<td>1447</td>
<td>1415</td>
<td>1367</td>
<td>1340</td>
<td>1296</td>
<td>1127</td>
<td>1001</td>
<td>943</td>
<td>884</td>
</tr>
<tr>
<td>ES</td>
<td>1341</td>
<td>1313</td>
<td>1264</td>
<td>1230</td>
<td>1180</td>
<td>1151</td>
<td>1105</td>
<td>9104</td>
<td>859</td>
<td>834</td>
<td>777</td>
</tr>
<tr>
<td>FI</td>
<td>642</td>
<td>627</td>
<td>614</td>
<td>605</td>
<td>597</td>
<td>595</td>
<td>581</td>
<td>555</td>
<td>514</td>
<td>502</td>
<td>492</td>
</tr>
<tr>
<td>FR</td>
<td>1799</td>
<td>1755</td>
<td>1729</td>
<td>1697</td>
<td>1668</td>
<td>1644</td>
<td>1607</td>
<td>1476</td>
<td>1146</td>
<td>1089</td>
<td>1074</td>
</tr>
<tr>
<td>GB</td>
<td>1435</td>
<td>1399</td>
<td>1363</td>
<td>1333</td>
<td>1297</td>
<td>1281</td>
<td>1239</td>
<td>1157</td>
<td>1087</td>
<td>1060</td>
<td>1029</td>
</tr>
<tr>
<td>GR</td>
<td>465</td>
<td>453</td>
<td>432</td>
<td>420</td>
<td>410</td>
<td>406</td>
<td>396</td>
<td>374</td>
<td>357</td>
<td>330</td>
<td>298</td>
</tr>
<tr>
<td>IT</td>
<td>2617</td>
<td>2570</td>
<td>2522</td>
<td>2490</td>
<td>2463</td>
<td>2445</td>
<td>2424</td>
<td>2406</td>
<td>2382</td>
<td>2355</td>
<td>2324</td>
</tr>
<tr>
<td>LT</td>
<td>740</td>
<td>726</td>
<td>711</td>
<td>695</td>
<td>679</td>
<td>675</td>
<td>657</td>
<td>611</td>
<td>533</td>
<td>474</td>
<td>460</td>
</tr>
<tr>
<td>MX</td>
<td>1566</td>
<td>1537</td>
<td>1497</td>
<td>1461</td>
<td>1437</td>
<td>1332</td>
<td>1284</td>
<td>1235</td>
<td>1135</td>
<td>1050</td>
<td>975</td>
</tr>
<tr>
<td>NL</td>
<td>1755</td>
<td>1741</td>
<td>1717</td>
<td>1707</td>
<td>1683</td>
<td>1666</td>
<td>1626</td>
<td>1442</td>
<td>1335</td>
<td>1270</td>
<td>1213</td>
</tr>
<tr>
<td>PL</td>
<td>1745</td>
<td>1711</td>
<td>1673</td>
<td>1649</td>
<td>1570</td>
<td>1500</td>
<td>1489</td>
<td>1433</td>
<td>1340</td>
<td>1270</td>
<td>1200</td>
</tr>
<tr>
<td>PT</td>
<td>2704</td>
<td>2683</td>
<td>2661</td>
<td>2642</td>
<td>2615</td>
<td>2597</td>
<td>2570</td>
<td>2497</td>
<td>2422</td>
<td>2353</td>
<td>2284</td>
</tr>
<tr>
<td>SE</td>
<td>272</td>
<td>265</td>
<td>252</td>
<td>249</td>
<td>243</td>
<td>231</td>
<td>220</td>
<td>199</td>
<td>183</td>
<td>179</td>
<td>173</td>
</tr>
<tr>
<td>TR</td>
<td>15062</td>
<td>14745</td>
<td>14523</td>
<td>14231</td>
<td>13952</td>
<td>13683</td>
<td>13425</td>
<td>13179</td>
<td>12941</td>
<td>12715</td>
<td>12493</td>
</tr>
</tbody>
</table>

AR Argentina, AT Austria, AU Australia, Be Belgium, BR Brazil, CA Canada, CH Switzerland, CZ Czech Republic, DE Germany, DK Denmark, ES Spain, FI Finland, FR France, GB Great Britain, GR Greece, IT Italy, LT Lithuania, MX Mexico, NL The Netherlands, PL Poland, PT Portugal, SE Sweden, TR Turkey
• Adherence to treatment is extremely low and novel approaches to inform the efficacy of treatment have been proposed [45] leading to novel studies for a better understanding of guidelines [46, 47].

Evidence of impact
MASK has identified novel phenotypes of allergic diseases [44] that have been confirmed in classical epidemiologic studies by re-analyzing them [48–51]. One of the studies used the MASK baseline characteristics [49]. These phenotypes allowed the re-classification of allergic multimorbidity and the discovery of a new extreme phenotype of allergic diseases that need to be considered in the stratification of patients.

MASK has shown real-life mHealth data for the first time in allergy treatment in 9,950 users [1, 45]. This led to next-generation care pathways for allergic diseases (meeting co-organized by POLLAR, a member of EIT Health, EIP on AHA and GARD (WHO alliance): 3-12-2018 and proposed a change management strategy [5].

MASK is involved in an EIT Health project (POLLAR) which assesses the interactions between air pollution, asthma and rhinitis [4].

With the EIP on AHA, MASK is involved in 3 EU projects on the digital transformation of health and care (DigiHealthEurope, Euriphi and Vigour).

MASK is also involved in a large project on Planetary Health in a side event which will take place during the Presidency of the EU council (Finland). This event will gather researchers, academic leaders and other experts from European institutions as well as other stakeholders and will discuss Planetary Health global challenges and their scientific solutions. Experts on human health as well as on effects of climate change, urbanization and food production will be invited to prepare a European initiative to promote effective and sustainable research on planetary health issues. The event similarly aims at raising political awareness about the need for multidisciplinary and systemic approaches to Planetary Health issues globally and in the EU. The multimorbid App developed by MASK may be used in the project.

Contextual relevance

The practice addresses a public health priority
Chronic respiratory diseases (CRDs) are major non-communicable diseases (NCDs) [18]. Rhinitis and asthma multimorbidity is common and the two diseases should be considered jointly [19]. Asthma is the most common NCD in children and rhinitis is the most common chronic disease in Europe. They often start early in life, persist across the life cycle and cause a high disease burden in all age groups [19]. By 2020, rhinitis will affect at least 20% of the old age population [52–56]. These diseases represent an enormous burden associated to medical and social costs and they impact health and social inequalities.

The practice is based on a local/regional/national strategic action plan
The Polish Presidency of the EU Council (3051st Council Conclusions) made the prevention, early diagnosis and treatment of asthma and allergic diseases a priority to reduce health inequalities [57, 58]. The 3206th Cyprus Council Conclusions [59] recommended that the diagnosis and treatment of chronic diseases should be initiated as early as possible to improve AHA. Debates at the European Parliament recommended the early diagnosis and management of CRDs in order to promote active and healthy ageing (AHA) [60–62].

The practice is also a WHO-associated project: Initial workshop (1999), WHO Collaborating Center for rhinitis and asthma (2004–2014), Global Alliance against Chronic Respiratory Diseases (GARD) [63, 64] demonstration project (2015—).

Unmet needs
Several unmet needs have been identified in allergic diseases. They include (1) suboptimal rhinitis and asthma control due to medical, cultural and social barriers [65, 66], (2) better understanding of endotypes [67], phenotypes and multimorbidities, (3) assessment of allergen and pollutants as risk factors to promote sentinel networks in care pathways, (4) stratification of patients for optimized care pathways [68] and (5) promotion of multidisciplinary teams within integrated care pathways, endorsing innovation in clinical trials and encouraging patient empowerment [17, 69].

Overall goal
The general objective of AIRWAYS-ICPs [6–8] is to develop multi-sectoral ICPs for CRDs used across European countries and regions in order to (1) reduce the burden of the diseases in a patient-centred approach, (2) promote AHA, (3) create a care pathways simulator tool which can be applied across the life cycle and in older adults, (4) reduce health and social inequalities, (5) reduce gender inequalities, (6) use the lessons learned in CRDs for chronic diseases and (7) promote SDG3 (more specifically 3.4) (https://www.who.int/sdg/targets/en/). In September 2015, the UN General Assembly established the Sustainable Development Goals (SDGs), a set of global goals for fair and sustainable health at every level from planetary biosphere to
local community [70, 71], essential for sustainable development. SDG 3 prioritizes health and well-being for all ages.

The aim of AIRWAYS-ICPs is also to generalise the approach of the uniform definition of severity, control and risk of severe asthma presented to WHO [66] and allergic diseases [72] in order to develop a uniform risk stratification usable for chronic diseases in most situations.

MASK further refined AIRWAYS ICPs using mobile technology to promote the digital transformation of health and care in developed and developing countries for all age groups.

Target population

In the initial phase, the target population included all patients with allergic rhinitis and asthma multimorbidity. Rhinitis and asthma are considered as a model for all chronic diseases and the project is being extended to chronic diseases.

All patients able to use a smartphone (≥ 12 years) represent the target population. A special effort is being placed in underserved populations from developing countries as the practice is a GARD (Global Alliance against Chronic Respiratory Diseases, WHO alliance) demonstration project.

Stakeholders involved

Involvement in the design, implementation (including the creation of ownership), evaluation, continuity/sustainability

As from the very first workshop in 1999, the ARIA initiative has included all stakeholders required to develop a WHO programme on CRDs (GARD). In particular, patient’s organizations were involved. All health care professionals were also involved (physicians, primary care, pharmacists, other health care professionals). Another important component of ARIA was the deployment to developing countries [73]. Moreover, policy makers were also actively involved.

ARIA has grown regularly over the past 20 years and an ARIA chapter is ongoing in over 70 countries in all continents with a very active scaling up strategy [26]. MASK has used the ARIA working group to scale up the practice.

All stakeholders were highly receptive

The ARIA and now the MASK community is very cohesive and all members are extremely reactive. They have been particularly active in deploying MASK in the 23 countries and we have received requests from many other countries in which MASK-air is not yet available.

Resistance or conflict of interest: None

Implementation methodology/strategy

We used the scaling up strategy of the European Innovation Partnership on Active and Healthy Ageing and proposed a 5-step framework for developing an individual: (1) what to scale up: (1-a) databases of good practices, (1-b) assessment of viability of the scaling up of good practices, (1-c) classification of good practices for local replication and (2) how to scale up: (2-a) facilitating partnerships for scaling up, (2-b) implementation of key success factors and lessons learnt, including emerging technologies for individualized and predictive medicine. This strategy has already been applied to the chronic respiratory disease action plan of the European Innovation Partnership on Active and Healthy Ageing [26].

Consistency in the pace of delivery

For the past 20 years, ARIA has been a success story in over 72 countries [3, 8, 19, 24, 25, 27, 28, 30–32, 38, 46, 74–100]. A Pocket Guide has been translated into 52 languages. MASK is following ARIA with the same group and the same strategy.

Main outcomes and evaluation of the practice

The ARIA strategy was to change management in the treatment of asthma and rhinitis since nasal symptoms—often the most troublesome—were not considered in most asthmatics. Over 85% of asthma in children and adolescents is associated with rhinitis, suggesting common pathways, whereas only 20–30% of rhinitis patients have asthma, suggesting rhinitis-specific genes. There is a link between asthma severity and rhinitis multimorbidity. Asthma is more severe in patients with rhinitis [101]. The strategy at all levels of care indicates that it is essential to consider multimorbidity in the management of asthma for the benefit of the patient and the satisfaction of the treatment as shown in many surveys (Fig. 3). Some studies have found that the ARIA strategy is more effective than free treatment choice [102]. Moreover, EMA has used the ARIA recommendations for the approval of a house dust mite immunotherapy tablet including asthma and rhinitis multimorbidity [103].

The change management strategy of MASK has not yet been evaluated. However, the results of the first studies indicate that the vast majority of patients are not adherent to treatment [45] and that next-generation care pathways are needed (Figs. 4 and 5).
Next-generation care pathways were initiated in Paris, December 3, 2018, as part of POLLAR, MASK and GARD.

Additional (secondary) outcomes assessed
Work productivity and school performance are measured. When rhinitis and/or asthma are not well controlled, work productivity is impaired [1, 41, 43].

Sustainability of the practice
The MASK App, The Allergy Diary, was used to demonstrate the scientific value of the project [1]. It has been replaced by the commercial App, MASK-air, which is version 3.0 and which includes questionnaires (e.g. tobacco and allergens) and sleep (VAS and Epworth questionnaire [104]) (Fig. 6). A business plan is in place for the sustainability of the practice.
Communication about the practice and dissemination of results

A communication strategy has been set up [1] and includes a website (mask-air.com), media coverage, leaflets and newsletters, publications in scientific journals and lay press, partners’ networks and events. The MASK community includes over 300 members in all countries in which MASK is deployed.

Budget required to implement the practice

The budget required to implement the MASK strategy is around 1.5 M€. It will be provided by the private sector (1 M€) and from EU grants, in particular a Structural and Development Fund. POLLAR has an additive budget of 2 M€ to embed outdoor air pollution and aerobiology data in the ICP using artificial intelligence.

It is difficult to estimate human resources since many physicians worked in the 23 countries for the translation,
adaptation of the practice and its implementation. It can be proposed that 50–100 h have been spent working in each country.

The practice has been presented to multiple national and international meetings. Sustainability has been carefully evaluated and a business plan is in place.

Main lessons learned

- Adherence to treatment is the major problem of allergic disease.
- Self-management strategies should be considerably expanded (behavioural).
- Change management is essential in allergic diseases.
- Education strategies should be reconsidered using a patient-centred approach.
- Lessons learned for allergic diseases can be expanded to chronic diseases.

Improvement and expansion of the practice

An expert meeting took place at the Pasteur Institute in Paris, December 3, 2018, to discuss next-generation care pathways and lessons learnt (Fig. 7, Annex 1): (1) patient participation, health literacy and self-care through technology-assisted “patient activation”; (2) implementation of care pathways by pharmacists and (3) next-generation guidelines assessing the recommendations of GRADE guidelines in rhinitis and asthma using real-world evidence (RWE) assessed by mobile technology. The meeting was organized by POLLAR and MASK in collaboration with GARD, patient’s organizations and all European scientific societies in the field.

Abbreviations

AHA: active and healthy ageing; AIRWAYS ICPs: integrated care pathways for airway diseases; AR: allergic rhinitis; ARIA: allergic rhinitis and its impact on asthma; CDSS: clinical decision support system; CRD: chronic respiratory disease; DG CONNECT: directorate general for communications networks, content and technology; DG Santé: directorate general for health and food safety; EIP on AHA: European innovation partnership on AHA; EIP: European innovation partnership; EQ-SD: euroqol; Euforea: European forum for research and education in allergy and Airways Diseases; GARD: Global Alliance against Chronic Respiratory Diseases (WHO Alliance); GINA: Global Initiative for Asthma, MACVIA: Fondation VIA-LR, SPLF: Société de Pneumologie de Langue Française, SFA: Société française d’Allergologie, WAO: World Allergy Organization

Authors’ contributions

All authors are MASK members and have contributed to the design of the project. Many authors also included users and disseminated the project in their own country. All authors read and approved the final manuscript.

Author details

1 MACVIA-France, Fondation Partenariale FMC VIA-LR, CHU Arnaud de Villeeneuve, 371 Avenue du Doyen Gaston Giraud, 34295 Montpellier Cedex 5, France. 2 INSERM U 1168, VIMA: Ageing and Chronic Diseases Epidemiological
Universidade do Porto, Porto, Portugal and MEDIDA, Lda, Porto, Portugal.

143Allergist, Reims, France. 144Hospital General Regional 1 Dr Carlos Mc Gregor Sanchez Navarro IMS, Mexico City, Mexico. 145Regional Hospital of ISSSTE, Puebla, Mexico. 146National Center for Disease Control and Public Health of Georgia, Tbilisi, Georgia. 147Allergologo, Guadalajara, Mexico. 148Allergy Clinic, National Institute of Respiratory Diseases, Mexico City, Mexico. 149Department of Pulmonary Diseases, Istanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Istanbul, Turkey. 150Allergology unit, UHATEM ‘Nipirogo’, Sofia, Bulgaria. 151Medical University, Faculty of Public Health, Sofia, Bulgaria. 152Allergy and Immunology Division, Clinic Ricardo Palma, Lima, Peru. 153Partner of Excellence (PEx); Hospital Institute, Brasilia, Brazil. 154Head and Professor, Centro Regional de Excelencia CONACYT y WAO en Alergia, Asma e Imunologia, Hospital Universitario, Universidade Autónoma de Nuevo León, Monterrey NL, Mexico. 155Center of Allergy and Immunology, Georgian Association of Allergology, and Clinical Immunology, Tbilisi, Georgia. 156Lithuanian Association of Allergists, Center of Tuberculosis and Lung Diseases, Riga, Latvia. 157Federal District Base Hospital Institute, Brasilia, Brazil. 158Institute of Health Policy and Management iBMG, Erasmus University, Rotterdam, The Netherlands. 159Hospital University Olomouc – National eHealth Centre, Czech Republic. 159Immunology and Allergy Division, Clinical Hospital, University of Chile, Santiago, Chile. 160Skin and Allergy Hospital University of Helsinki, University of Helsinki, Helsinki, Finland. 161Centhic: centre d'expertise national des technologies de l'information et de la communication pour l'autonomie, Gérontopôle autonome longévité des Pays de la Loire, Conseil régional des Pays de la Loire, Centre d'expertise Partenariat Européen d'Innovation pour un vieillissement actif et en bonne santé, Nantes, France. 162Autonomous University of Baja California, Ensenada, Baja California, Mexico. 163Department of Paediatrics and Child Health, University College Cork, Cork, Ireland. 164Hospital General Regional 1 Dr. Carlos MacGregor Sánchez Navarro IMS, Mexico City, Mexico. 165Université Paris-Sud; Service de Pneumologie, Hôpital Bicêtre; Inserm UMR S999, Le Kremlin Bicêtre, France. 166Dipartimento di medicina, chirurgia e odontoiatria, università di Salerno, Italy. 167Division for Health Innovation, Centre d'expertise Partenariat Européen d’Innovation pour un vieillissement actif et en bonne santé, Nantes, France. 168University Hospital Olomouc – National eHealth Centre, Czech Republic.

Allergy Diseases, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China. 201Departments of Internal Medicine and Pediatrics (Divisions of Allergy and Immunology), University of Tennessee College of Medicine, Germantown, TN, USA. 202Scottish Centre for Respiratory Research, Cardiovascular & Diabetes Medicine, Medical Research Institute, Ninewells Hospital, University of Dundee, UK. 203Oslo University Hospital, Department of Paediatrics, Oslo, and University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, Oslo, Norway. 204Department of Pulmonary Medicine, CHU Sart-Tilman, and GIGA 13 research group, Liege, Belgium. 205Faculty of Health Sciences and CICS – UBI, Health Sciences Research Centre, University of Porto, Porto, Portugal. 206Department of Philosophical, Methodological and Instrumental Disciplines, CLUCS, University of Guadalajara, Guadalajara, Mexico. 207Department of Pulmonary Medicine, Rashid Hospital, Dubai, UAE. 208Biomax Informatics AG, Munich, Germany. 209Director General for Health and Social Care, Scottish Government, Edinburgh, UK. 210Department of Respiratory Medicine, University of Bratislava, Bratislava, Slovakia. 211Coimbra Institute for Clinical and Biomedical Research (ICBR), Faculty of Medicine, University of Coimbra, Portugal. 212Medical center Iskar Ltd Sofia, Bulgaria. 213Department of Medicine (RCSI), Bon Secours Hospital, Glasnevin, Dublin, Ireland. 214Kronikgune, International Centre of Excellence in Chronicity Research Barakaldo, Bizkaia, Spain. 215Division of Clinical Immunology and Allergy, Laboratory of Behavioral Immunology Research, The University of Mississippi Medical Center, Jackson, Mississippi, USA. 216Tobacco Control Research Centre, Iranian Anti Tobacco Association, Tehran, Iran. 217Argentine Association of Allergy and Clinical Immunology, Buenos Aires, Argentina. 218Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Mexico City, Mexico. 219University of Southeast Bahia, Brazil. 220Allergy-Centrum-Chántel at the Department of Dermatology and Allergy, Chántel - Universitätsmedizin Berlin, Germany. 221Maputo Central Hospital, Department of Paediatrics, Maputo, Mozambique. 222Allergologist, Veracruz, Mexico. 223Sah's Children and Youth Hospital, Södersjukhuset, Stockholm and Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden. 224Allergy and Asthma Medical Group and Research Center, San Diego, California, USA. 225CIRFF, Federico II University, Naples, Italy. 226Department of Physiology, Centre de Recherche Médicale et en Bonne Santé, Nantes, France. 227Université Paris-Sud; Service de Pneumologie, Hôpital Bicêtre; Inserm UMR S999, Le Kremlin Bicêtre, France. 228National Institute of Pneumology M Nasta, Bucharest, Romania. 229Clinic for Pulmonary Diseases, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Serbian Association for Asthma and COPD, Belgrade, Serbia. 230Regione Piemonte, Torino, Italy. 231Col Jardines de Sta Monica, Tlalnepantla, Mexico. 232National Institute for Research in Chronic Respiratory Diseases, Tishreen University School of Medicine, Latakia, Syria. 233Department of Public health and health products, Paris Descartes University-Sorbonne Paris Cité, EA 4064 and Paris Municipal Department of social action, childhood, and health, Paris, France. 234Paris municipal Department of social action, childhood, and health, Paris, France. 235Lead Respiratory Physician Mater Dei Hospital Malta, Academic Head of Dept and Professor of Medicine University of Malta, Deputy Dean Faculty of Medicine and Surgery University of Medicine, La Valette, Malta. 236Department of Medical Sciences, Allergy and Clinical Immunology Unit, University of Torino & Mauriziano Hospital, Torino, Italy. 237Instituto de Previsión Social IPS HC, Socia de la SPAAI, Tesorería de la SLALI, Asunción, Paraguay. 238Allergy Center, CUF Descobertas Hospital, Lisbon, Portugal. 239Universidade de São Paulo, São Paulo, Brazil. 240Institute of Medical Statistics, and Computational Biology, Medical Faculty, University of Cologne, Germany and CR-Clinical Research International-Ltd, Hamburg, Germany. 241General Pathology Institute, Faculty of Medicine, University of Coimbra, Portugal. 242Medical Communications Consultant, MedScript Ltd, Dundalk, Co Louth, Ireland and New Zealand, and Honorary Research Fellow, OPC, Cambridge, UK. 243Johns Hopkins School of Medicine, Baltimore, Maryland, USA. 244Head of the Allergy Service, University Hospital, Policlinico Umberto I, Rome, Italy. 245Scientific Centre of Children's Health under the MoH, Moscow, Russian National Research Medical University named Pirogov, Moscow, Russia. 246Director of Center of Allergy, Immunology and Respiratory Diseases, Santa
Immunology, Ajou University School of Medicine, Suwon, South Korea. 260Medical center "Research expert", University, Melbourne, Victoria, Australia; Department of Immunology, Monash University, Melbourne, Victoria, Australia. 262Dept of Otorhinolaryngology, Chiba University Hospital, Chiba, Japan. 264Allergologo, Jalisco, Guadalajara, Mexico. 265Centre Hospitalier Universitaire Pédarche Charles de Gaulle, Ouagadougou, Burkina Faso. 266Dept of Comparative Medicine; Messerli Research Institute of the University of Veterinary Medicine and Medical University, Vienna, Austria. 267Department of Immunology and Allergology, Faculty of Medicine and Faculty Hospital in Pilsen, Charles University in Prague, Pilsen, Czech Republic. 268Division of Infection, Immunology and Respiratory Medicine, Manchester Children’s Hospital, University of Manchester, Manchester, UK, and Allergy Department, 2nd Pediatric Clinic, Athens General Children's Hospital "P&A Kriyaku", University of Athens, Athens, Greece. 269Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea. 270Respiratory Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy. 271Allergy and Respiratory Diseases, Ospedale Policlinico San Martino - University of Genoa, Italy. 272Farmacias Holon, Lisbon, Portugal. 273Department of Pediatrics, Nippon Medical School, Tokyo, Japan. 274University of Southern Denmark, Kolding, Denmark. 275Université Grenoble Alpes, Laboratoire HP2, Grenoble, INSERM, U1042 and CHU de Grenoble, France. 276Allergy Unit, CUF-Porto Hospital and Institute; Center for Research in Health Technologies and information systems CINTEGIS, Universidade do Porto, Portugal. 277Sociologist, municipality area n3, Sorrento, Italy. 278Center for Rhinology and Allergology, Wiesbaden, Germany. 279Department of Otorhinolaryngology, Head and Neck Surgery, Universitätmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany. 280Centre for empowering people and communities, Dublin, UK. 281Conseil Général de l’Economie Ministère de l’Economie, de l’Industrie et du Numérique, Paris, France. 282Société de Pneumologie de Langue Française, Espace francophone de Pneumologie, Paris, France. 283Département de pédiatrie, CHU de Grenoble, Grenoble France. 284Medical School, University of Cyprus, Nicosia, Cyprus. 285Children's Hospital Srebrenjak, Zagreb, School of Medicine, University J.J. Strossmayer, Osijek, Croatia. 286Karl Landsteiner Hospital, Portugal. 287University Hospital 'Sv. Ivan Rilski’ , Sofia, Bulgaria; Department of Respiratory Medicine, tuberculosis and Rothhaar study center, Berlin, Germany. 288Allergy Unit, University College London, UK. 289University of Athens, Athens, Greece. 290Department of Pediatrics & Child Health, Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada. 291INSERM, Université Grenoble Alpes, I2B, U1214, Team of Environmental Epidemiology applied to Respiratory Medicine, Université Grenoble Alpes, Institute of Occupational and Respiratory Health, Université Joseph Fourier, Grenoble, France. 292Società Paraguaia de Allergia Arma e Imunologia’ a, Paraguay. 293Division of Allergy, Clinical Immunology and Rheumatology, Department of Pediatrics, Federal University of São Paulo, São Paulo, Brazil. 294European Health Futures Forum (EHFF), Dromahair, Ireland. 295Alergología Infantil, Hospital La Fe, Valencia, Spain. 296Allergy and Clinical Immunology, Emek Medical Center, Afula, Israel. 297Division of Allergy Asthma and Clinical Immunology, University of Athens, Athens, Greece. 298Allergologo, cancun quintana roo, Mexico. 299Serviço de Pneumologia, Clínica São Francisco, Itaparica, Bahia, Brazil. 300Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. 301Primary Care Respiratory Research Unit Instituto Investigación Sanitaria de Palma Idiarts, Palma de Mallorca, Spain. 302Allegry Unit, Presidio Columbus, Rome, Catholic University of Sacred Heart, Rome and IRCCS Ospedale S. Anna, Rome, Italy. 303Hospital La Fe, Mexico City, Mexico. 304Regione Piemonte, Torino, Italy. 305Medical University of Graz, Department of Internal Medicine, Graz, Austria. 306Servizio di Immuinologia Respiratoria e Clinica di Malattia della Pelle, Livorno, Italy. 307Hospital de Clinicas, University of Parana, Brazil. 308Division of Allergy, Asthma and Clinical Immunology, Medec Medik Center, Afuła, Israel. 309Honoraty Clinical Research Fellow, Allergy and Respiratory Research Group, King’s College London, University of Edinburgh, Edinburgh, UK. 310Department of Respiratory Medicine, Tokyo, Japan. 311Association of Finnish Pharmacies, Helsinki, Finland. 312Allergy and Clinical Immunology Department, Centro Médico-Doctore la, Trinidad and Clinica El Avila, Caracas, Venezuela. 313Faculty of Medicine, Autonomic University of Madrid, Spain. 314The Royal National TNE Hospital, University College London, UK. 315DIBIMIS, University of Palermo, Italy. 316Allergy Unit, Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland. 317Asmtha Reference Center, Escuela Superior de Ciencias da Santa Casa de Misericordia de Vitoria – Esperito Santo, Brazil. 318The Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, UK. 319Department of Pediatrics & Child Health, Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada. 320INSERM, Université Grenoble Alpes, I2B, U1214, Team of Environmental Epidemiology applied to Respiratory Medicine, Université Grenoble Alpes, Institute of Occupational and Respiratory Health, Université Joseph Fourier, Grenoble, France. 321Division of Allergy Asthma and Clinical Immunology, University of Manchester, Manchester, UK. 322Allergy Unit, Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland. 323Asmtha Reference Center, Escuela Superior de Ciencias da Santa Casa de Misericordia de Vitoria – Esperito Santo, Brazil. 324The Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, UK. 325Department of Pediatrics & Child Health, Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada. 326European Health Futures Forum (EHFF), Dromahair, Ireland. 327Alergologia, Hospital A. Guimaraes, Porto, Portugal. 328Division of Allergy, Asthma and Clinical Immunology, Medical University of Graz, Department of Internal Medicine, Graz, Austria. 329Department of Respiratory Medicine, Faculty of Medicine, University of Zagreb, Croatia. 330Children's Hospital Srebrnjak, Zagreb, School of Medicine, University of Zagreb, Croatia. 331Division of Allergy, Asthma and Clinical Immunology, Medical University of Vienna, Vienna, Austria. 332University College London, UK. 333Department of Respiratory Medicine, Faculty of Medicine, University of Zagreb, Croatia. 334Allergy, Asthma and Clinical Immunology, Medical University of Graz, Department of Internal Medicine, Graz, Austria. 335Pulmonary Division, Heart Institute (InCor), Hospital das Clinicas do Porto, Porto, Portugal. 336Public Health Institute of Vilnius University, Vilnius, Lithuania. 337Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil. 338RNSA (Réseau National de Surveillance et de Prévention des Maladies Respiratoires), Bordeaux, France. 339The Hospital for Sick Children, Dalla Lana School of Public Health, University of Toronto, Canada. 331Immunologie, Centrum Hospitalar Universitari de Comedi and Faculty of Medicine, University of Combriga, Portugal. 334Department of ENT, Medical University of Graz, Austria. 335Campania Region, Division on Pharmacy and devices policy, Naples, Italy. 336Department of Respiratory Medicine, Hvidovre Hospital & University of Copenhagen, Denmark. 337Universidade Federal dos Pampas, Umuarama, Brazil. 338Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria. 339Neumología y Asma, Hospital La Fe, Valencia, Spain. 340Pulmonary Unit, Department of Respiratory Medicine, U.S. National Healthcare System, San Juan, Puerto Rico. 341Allergy Unit, University of Manchester, Manchester, UK, and Allergy Department, 2nd Pediatric Clinic, Athens General Children's Hospital "P&A Kriyaku", University of Athens, Athens, Greece. 342Department of Respiratory Medicine, University of Southern Denmark, Kolding, Denmark. 343Department of Pediatrics, Faculty of Medicine, University of Athens, Athens, Greece. 344Department of Allergy, Asthma and Clinical Immunology, Medical University Solna, Karolinska Institutet and University Hospital, Stockholm. 345Department of Lung Diseases and Clinical Immunology Allergology, University of Turku and Tampereal allergy clinic, Turku, Finland. 346PELyon; HESPER 7425, Health Services and Performance Research - Université Claude Bernard Lyon, France. 347Immunology and Allergy Department, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm. 348Department of Chest Medicine, Centre Hospitalier Universitaire UCL Namur, Université Catholique de Louvain, Namur, Belgium. 349Department of Internal Medicine, Unit of Geriatric Immunologyallergology, Bari, Italy. 350Pulmonary Unit, Department of Medical Specialties, Arcispedale SMaria Nuova/IRCCS, AUSL di Reggio Emilia, Italy. 351FILHA, Finnish Lung Association, Helsinki, Finland. 352Pulmonary Environmental Epidemiology Unit, CIRNE institute of Clinical Physiology, Pisa, Italy; and CNR Institute of Biomedicine and Molecular Immunology "A Monzo", Palermo, Italy. 353Medical University, Plovdiv, Bulgaria, Department of Otorhinolaryngology, University of Medicine and Care Respiratory Research Unit Institutode Investigación Sanitaria de Palma Idiarts, Palma de Mallorca, Spain. 354Dept of Otorhinolaryngology, Universitätsklinikum Düsseldorf, Germany. 355Asthma UK, Mansell street, London, UK. 356Nova Southeastern University, Fort Lauderdale, Florida, USA. 357Department of
Competing interests

Dr. Antoichev reports personal fees from Mundipharma, Roxall, Sanofi, MSD, Faes Farma, Hicka, UCB, AstraZeneca, outside the submitted work. Dr. Bosnic-Anticevic reports grants from TEVA, personal fees from TEVA, Boehringer Ingelheim, AstraZeneca, Sanofi, Mylan, outside the submitted work. Dr. Bousquet reports personal fees and others from Chiesi, Cipla, Hicka, Menarini, Mundipharma, Mylan, Novartis, Sanofi-Aventis, Takeda, Teva, Uriach, others from Kyomed, outside the submitted work. Dr. Boulot reports and Disclosure of potential conflicts of interest—last 3 years research grants for participation to multicentre studies, AstraZeneca, Boston Scientific, GlaxoSmithKline, Hoffman La Roche, Novartis, Ono Pharma, Sanofi, Takeda. Support for research projects introduced by the investigator AstraZeneca, Boehringer-Ingelheim, GlaxoSmithKline, Merck, Takeda. Consulting and advisory boards AstraZeneca, Novartis, Metapharm. Royalties Co-author of “Up-To-Date” (occupational asthma). Dr. Bosnich reports grants and personal fees from GlaxoSmithKline, personal fees from Boehringer Ingelheim, AstraZeneca, Novartis, Merck, Sharp & Dohme, MEDA Pharma, EUROFARMA, Sanofi Aventis, outside the submitted work. Dr. Casale reports grants and non-financial support from Stallergenes, outside the submitted work. Dr. Cruz reports grants and personal fees from GlaxoSmithKline, personal fees from Boehringer Ingelheim, AstraZeneca, Novartis, Merck, Sharp & Dohme, MEDA Pharma, EUROFARMA, Sanofi Aventis, outside the submitted work. Dr. Ebisawa reports personal fees from DBV Technologies, Mylan EPD maruho, Shionogi & CO, Ltd., Kyorin Pharmaceutical Co., Ltd., Thermofisher Diagnostics, Pfizer, Beye, Nippon Chemiphar, Takeda Pharmaceutical Co., Ltd., MSD, outside the submitted work. Dr. Ikkos reports personal fees from Euro Farma Argentina, Faes Farma, non-financial support from Laboratorios Casasco, outside the submitted work. Dr. Haahela reports personal fees from Mundipharma, Novartis, and Orion Pharma, outside the submitted work. Dr. Klimek reports grants and personal fees from ALK Abelló, Denmark, Novartis, Switzerland, Allergopharma, Germany, Bionorica, Germany, GSK, Great Britain, Lofarma, Italy, personal fees from MEDA, Sweden, Boehringer Ingelheim, Germany, grants from Biomay, Austria, HAL, Netherlands, LETI, Spain, Roxall, Germany, Bencard, Great Britain, outside the submitted work. VKV has received payment for consultancy from GSK and for lectures from StallergensGreet, Berlin-Chemie and sponsorship from MYLAN for in the following professional training: ARIA masterclass in allergic rhinitis participation. Dr. Larenas Linnemann reports personal fees from GSK, AstraZeneca, MEDA, Boehringer Ingelheim, Novartis, Grunenthal, UCB, Asthma, Allergy and Rhinitis, Danish Society for Otolaryngology, ENT, and Allergy, Denmark, outside the submitted work. Dr. Mösers reports personal fees from ALK, grants from ASIT biotech, Leti, BiotropAG, Hulka, Ursapharm, Optima, personal fees from allergopharma, Novo, Meda, Frilechum, Hexal, Servier, Bayer, Johnson & Johnson, Klosterfrau, MSD, FAES, Stada, UCB, Allergy Therapeutics; grants and personal fees from Bencard, Stallergenes, grants, personal fees and non-financial support from Lofarma; non-financial support from Roxall, Atmos, Bionorica, Otonomy, Ferrero; personal fees and non-financial support from Novartis, Dr. Okamoto reports personal fees from Ezaq Co Ltd., Shionogi Co Ltd., Tami Co Ltd., GSK, MSD, Kyowa Co Ltd, grants and personal fees from Kyorin Co Ltd., Hal Allergy B V, outside the submitted work. Dr. Pépin reports grants from AIR LIQUIDE FOUNDATION, AGIR à dom, Astra ZENeca, FISHER & PAYKEL, MUTUALIA, PHILIPS, RESMED, VITALIAIRE, other from AGIR à dom, ASTRA ZENeca, BOEHRINGER INGEL­HEIM, JAZZ PHARMACEUTICAL, NIGHT BALANCE, PHILIPS, RESMED, SEFAM, outside the submitted work. Dr. Pifar reports grants and personal fees from ALK-Abelló, Allergopharma Stallergenes Greer, HAL, Allergy Holding B V, HAL Allergie GmbH, Bencard Allergie GmbH/Allergy Therapeutics, Lofarma, grants from Biomay, ASIT Biotech Tools S A, Laboratorios LETI/LETI Pharma, Anergis S A, personal fees from Novu, Circassia, Glaxo Smith Kline, personal fees from Novartis Pharma, MEDA Pharma, Mobile Chamber Experts (a GA’LEN Partner), Pohls­Boskamp, Indoor Biotechnologies, grants from, outside the submitted work. Dr. Todo-Born reports personal fees and grants from Novartis, Mundipharma, GSK Tева Pharma, personal fees from AstraZeneca, grants from Leti, outside the submitted work. Dr. Tsiligianni reports advisory boards from Boehringer Ingelheim and Novartis and a grant from GSK, outside the submitted work. Dr. Wallace reports and Indicates that she is the co-chair of the Joint Task Force on Practice Parameters, a task force composed of 12 members of the American Academy of Allergy, Asthma, and Immunology and the American College of Allergy, Asthma, and Immunology. Dr. Waserman reports other from CSL Behring, Shire, AstraZeneca, Teva, Meda, Merck, outside the submitted work. Dr. Zuberbier reports and Organizational affiliations: Committee member: WHO-Initiative “Allergic Rhinitis and Its Impact on Asthma” (ARIA). Member of the Board: German Society for Allergy and Clinical Immunology (DGAKI). Head: European Centre for Allergy Research Foundation (ECARF) Secretary General, Global Allergen and Asthma European Network (GA’LEN). Member, Committee on Allergy Diagnosis and Molecular Allergology, World Allergy Organization (WAO).

Availability of data and materials
Not applicable.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
FMC VIA LR.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 11 January 2019 Accepted: 4 February 2019 Published online: 11 March 2019

