Guidance to 2018 good practice

Bousquet, J.

2019-03-11


http://hdl.handle.net/10138/300692
https://doi.org/10.1186/s13601-019-0252-0

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.
Guidance to 2018 good practice: ARIA digitally-enabled, integrated, person-centred care for rhinitis and asthma


Abstract

Aims: Mobile Airways Sentinel Network (MASK) belongs to the Fondation Partenariale MACVIA-LR of Montpellier, France and aims to provide an active and healthy life to rhinitis sufferers and to those with asthma multimorbidity across the life cycle, whatever their gender or socio-economic status, in order to reduce health and social inequities incurred by the disease and to improve the digital transformation of health and care. The ultimate goal is to change the management strategy in chronic diseases.

Methods: MASK implements ICT technologies for individualized and predictive medicine to develop novel care pathways by a multi-disciplinary group centred around the patients.

Stakeholders: Include patients, health care professionals (pharmacists and physicians), authorities, patient’s associations, private and public sectors.

Results: MASK is deployed in 23 countries and 17 languages. 26,000 users have registered.

*Correspondence: jean.bousquet@orange.fr
1 MACVIA-France, Fondation Partenariale FMC VIA-LR, CHU Arnaud de Villeneuve, 371 Avenue du Doyen Gaston Griaud, 34295 Montpellier Cedex 5, France
Full list of author information is available at the end of the article

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Introduction
In all societies, the burden and cost of allergic and chronic respiratory diseases (CRDs) is increasing rapidly. Most economies are struggling to deliver modern health care effectively. There is a need to support the transformation of the health care system for integrated care with organizational health literacy. MASK (Mobile Airways Sentinel Network) [1] is a new development of the ARIA (Allergic Rhinitis and its Impact on Asthma) initiative [2, 3]. It works closely with POLLAR (Impact of Air POLLution on Asthma and Rhinitis, EIT Health) [4], and collaborates with professional and patient organizations in the field of allergy and airway diseases. MASK proposes real-life care pathways (ICPs) centred around the patient with rhinitis and/or asthma multimorbidity. It uses mHealth monitoring of environmental exposure and considers biodiversity. With the help of three EU projects (DigitalHealthEurope, Euriphi and Vigour) recently accepted on the digital transformation of health, MASK proposes a second change management strategy. The first one was the ARIA change management associated with the recognition and wide acceptance by all stakeholders of the essential links between rhinitis and asthma. The second one deals with change management of care pathways for rhinitis and asthma [5].

In the context of implementing communication on the digital transformation of health and care, specifically in relation to chapter 5 of the document "Digital tools for citizen empowerment and for person-centred care," DG SANTE has taken steps towards supporting the scale-up and wider implementation of good practices in the field of digitally-enabled, integrated, person-centred care. With the help of three EU projects (DigitalHealthEurope, Euriphi and Vigour) recently accepted on the digital transformation of health, MASK proposes a second change management strategy. The first one was the ARIA change management associated with the recognition and wide acceptance by all stakeholders of the essential links between rhinitis and asthma. The second one deals with change management of care pathways for rhinitis and asthma [5].

The current paper reviews the questions raised during the workshop concerning the good practice on allergic rhinitis and asthma: ARIA digitally-enabled, integrated, person-centred care for rhinitis and asthma multimorbidity using real-world evidence [1]. This practice is a GARD (Global Alliance against Chronic Respiratory Diseases) demonstration project.

The practice
The practice includes the care pathways defined in 2014 [6–8] (Fig. 1) as well as ICT (Information and Communication Technology) solutions (cell phones for patients, inter-operable tablets for health care professionals and a web-based questionnaire for physicians) [1, 9] (Fig. 2). The aim is to develop a change management strategy for chronic diseases [5].

MASK is a patient-centred ICT system [8]. A mobile phone app (the Allergy Diary, now called MASK-air), central to MASK, is available in 23 countries. It has been validated [10] and found to be an easy and effective method of assessing the symptoms of allergic rhinitis (AR) and work productivity [10–13]. MASK follows the checklist for the evaluation of Good Practices developed by the European Union Joint Action JACHRODIS (Joint Action on Chronic Diseases and Promoting Healthy Ageing across the Life Cycle) [14]. One of the major aims of MASK is to provide care pathways [15] in rhinitis and asthma multimorbidity [16] including a sentinel network using the geolocation of users [17]. It can also inform the App users of the pollen and/or pollution risk level in their area, by means of geolocation (Table 1).

The practice has been developed for allergic rhinitis (and asthma multimorbidity), being the most common chronic disease globally [18, 19] and affecting all age groups from early childhood to old age. There are several unmet needs that should be addressed in an ICP. Moreover, the lessons learnt will benefit all chronic

Lessons learnt: (i) Adherence to treatment is the major problem of allergic disease, (ii) Self-management strategies should be considerably expanded (behavioural), (iii) Change management is essential in allergic diseases, (iv) Education strategies should be reconsidered using a patient-centred approach and (v) Lessons learnt for allergic diseases can be expanded to chronic diseases.

Keywords: App, Asthma, Care pathways, MASK, mHealth, Rhinitis, DG Santé
diseases since rhinitis is considered as a mild disease although it impairs social life, school and work productivity considerably [20]. It is estimated that, in the EU, work loss accounts for 30–100 b€ annually. Moreover, it is essential to consider mild chronic diseases and to establish health promotion and management strategies
early in life in order to prevent a severe outcome and to promote healthy ageing [21].

**Level of care integration**

MASK is used for the integration of primary and specialist care, of primary-secondary-tertiary health care, as well as of health and social care for disease management.

**Deployment**

Many of the GPs that are developed in one region (country) take into account health systems, availability of treatments and legal considerations which makes it difficult to scale up the practice without customization. MASK has taken the opposite direction starting with a tool immediately available in 10 languages and 14 countries and regularly scaled up. Moreover, the tool is included in a generic ICP (Fig. 2) that can be customized easily in any country globally.

**Geographical scope of the practice**

MASK was developed in English and is currently available in 23 countries and 17 languages (Table 2).

**New countries**

Deployment is in process in Bolivia, Colombia, Japan and Peru. The involvement of developing countries is needed to offer a practice for middle- and low-income countries that will benefit poverty areas of developed countries and that will be in line with the mission of GARD. Deployment to the US is being discussed with the National Institute for Allergy and Infectious diseases (NIH).

**Transfer of innovation of allergic rhinitis and asthma multimorbidity in the elderly (MASK Reference Site Twinning, EIP on AHA)**

The EIP on AHA includes 74 Reference Sites. The aim of this TWINNING is to transfer innovation from the MASK App to other reference sites. The phenotypic characteristics of rhinitis and asthma multimorbidity in adults and the elderly have been compared using validated mHealth tools (i.e. the Allergy Diary and CARAT [22]) in 23 Reference Sites or regions across Europe, Argentina, Australia, Brazil and Mexico [23].

**Individuals/institutions reached**

ARIA has been implemented in over 70 countries globally [3], and several governments use the practice. Approximately 26,000 users have registered to the MASK database. 700 patients have been enrolled in the Twinning. Due to privacy, there is no possibility of assessing users who have reported data.

**Timeframe**

The project was initiated in 1999 during a World Health Organization (WHO) workshop (ARIA) and undergoes continuous developments. The ARIA initiative, commenced during a WHO workshop in 1999 [2], has been further developed by the WHO Collaborating Center.
for Asthma and Rhinitis (2002–2013). The initial goals (Phase 1) were (1) to propose a new AR classification, (2) to promote the concept of multimorbidity in asthma and rhinitis and (3) to develop guidelines with all stakeholders that could be used globally for all countries and all populations. ARIA has been disseminated and implemented in over 70 countries [3, 19, 24–32]. It was developed as a guideline [19] using the GRADE approach [33–39].

MASK, the Phase 3 ARIA initiative, is focusing on (1) the implementation of multi-sectoral care pathways (2) using emerging technologies (3) with real world data (4) for individualized and predictive medicine (5) in rhinitis and asthma multimorbidity (6) by a multi-disciplinary group or by patients themselves (self-care) using the AIRWAYS ICPs algorithm (7) across the life cycle [8, 17]. It will be scaled up using the EU EIP on AHA strategy [26].


Developments for 2019 include a multimorbidity App and the deployment of an app for home services.

The MASK project is intended to be sustainable and a business plan has been initiated.

The medium-term future is to develop care pathways for the prevention and control of chronic diseases to sustain planetary health. A symposium during the Finnish Presidency of the EU Council is planned for October 2019.

Scientific evidence and conceptual framework for configuring the practice

The scientific evidence is based on a validated “research” tool (The Allergy Diary, –2018) that has led to large scale deployment (MASK-air, 2019–):

- Validation of the app using COSMIN guidelines [40].
- Baseline characteristics informed [12].
- Work productivity associated with the control of allergic diseases [41, 42].
- EQ-5D is available and has been found to correlate to baseline characteristics [43].
- Novel phenotypes of allergic diseases have been discovered [44].

<table>
<thead>
<tr>
<th>Table 2 List of countries using MASK-air</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Country</strong></td>
</tr>
<tr>
<td>AR</td>
</tr>
<tr>
<td>AT</td>
</tr>
<tr>
<td>AU</td>
</tr>
<tr>
<td>BE</td>
</tr>
<tr>
<td>BR</td>
</tr>
<tr>
<td>CA</td>
</tr>
<tr>
<td>CH</td>
</tr>
<tr>
<td>CZ</td>
</tr>
<tr>
<td>DE</td>
</tr>
<tr>
<td>DK</td>
</tr>
<tr>
<td>ES</td>
</tr>
<tr>
<td>FI</td>
</tr>
<tr>
<td>FR</td>
</tr>
<tr>
<td>GB</td>
</tr>
<tr>
<td>GR</td>
</tr>
<tr>
<td>IT</td>
</tr>
<tr>
<td>LT</td>
</tr>
<tr>
<td>MX</td>
</tr>
<tr>
<td>NL</td>
</tr>
<tr>
<td>PL</td>
</tr>
<tr>
<td>PT</td>
</tr>
<tr>
<td>SE</td>
</tr>
<tr>
<td>TR</td>
</tr>
</tbody>
</table>

AR Argentina, AT Austria, AU Australia, Be Belgium, BR Brazil, CA Canada, CH Switzerland, CZ Czech Republic, DE Germany, DK Denmark, ES Spain, FI Finland, FR France, GB Great Britain, GR Greece, IT Italy, LT Lithuania, MX Mexico, NL The Netherlands, PL Poland, PT Portugal, SE Sweden, TR Turkey

Scientific evidence and conceptual framework for configuring the practice

The scientific evidence is based on a validated “research” tool (The Allergy Diary, –2018) that has led to large scale deployment (MASK-air, 2019–):

- Validation of the app using COSMIN guidelines [40].
- Baseline characteristics informed [12].
- Work productivity associated with the control of allergic diseases [41, 42].
- EQ-5D is available and has been found to correlate to baseline characteristics [43].
- Novel phenotypes of allergic diseases have been discovered [44].
Adherence to treatment is extremely low and novel approaches to inform the efficacy of treatment have been proposed [45] leading to novel studies for a better understanding of guidelines [46, 47].

**Evidence of impact**

MASK has identified novel phenotypes of allergic diseases [44] that have been confirmed in classical epidemiologic studies by re-analyzing them [48–51]. One of the studies used the MASK baseline characteristics [49]. These phenotypes allowed the re-classification of allergic multimorbidity and the discovery of a new extreme phenotype of allergic diseases that need to be considered in the stratification of patients.

MASK has shown real-life mHealth data for the first time in allergy treatment in 9,950 users [1, 45]. This led to next-generation care pathways for allergic diseases (meeting co-organized by POLLAR, a member of EIT Health, EIP on AHA and GARD (WHO alliance): 3-12-2018) and proposed a change management strategy [5].

MASK is involved in an EIT Health project (POLLAR) which assesses the interactions between air pollution, asthma and rhinitis [4].

With the EIP on AHA, MASK is involved in 3 EU projects on the digital transformation of health and care (DigiHealthEurope, Euriphi and Vigour).

MASK is also involved in a large project on Planetary Health in a side event which will take place during the Presidency of the EU council (Finland). This event will gather researchers, academic leaders and other experts from European institutions as well as other stakeholders and will discuss Planetary Health global challenges and their scientific solutions. Experts on human health as well as on effects of climate change, urbanization and food production will be invited to prepare a European initiative to promote effective and sustainable research on planetary health issues. The event similarly aims at raising political awareness about the need for multidisciplinary and systemic approaches to Planetary Health issues globally and in the EU. The multimorbid App developed by MASK may be used in the project.

**Unmet needs**

Several unmet needs have been identified in allergic diseases. They include (1) suboptimal rhinitis and asthma control due to medical, cultural and social barriers [65, 66], (2) better understanding of endotypes [67], phenotypes and multimorbidities, (3) assessment of allergen and pollutants as risk factors to promote sentinel networks in care pathways, (4) stratification of patients for optimized care pathways [68] and (5) promotion of multidisciplinary teams within integrated care pathways, endorsing innovation in clinical trials and encouraging patient empowerment [17, 69].

**Overall goal**

The general objective of AIRWAYS-ICPs [6–8] is to develop multi-sectoral ICPs for CRDs used across European countries and regions in order to (1) reduce the burden of the diseases in a patient-centred approach, (2) promote AHA, (3) create a care pathways simulator tool which can be applied across the life cycle and in older adults, (4) reduce health and social inequalities, (5) reduce gender inequalities, (6) use the lessons learned in CRDs for chronic diseases and (7) promote SDG3 (more specifically 3.4) (https://www.who.int/sdg/targets/en/). In September 2015, the UN General Assembly established the Sustainable Development Goals (SDGs), a set of global goals for fair and sustainable health at every level from planetary biosphere to
local community [70, 71], essential for sustainable development. SDG 3 prioritizes health and well-being for all ages.

The aim of AIRWAYS-I CPs is also to generalise the approach of the uniform definition of severity, control and risk of severe asthma presented to WHO [66] and allergic diseases [72] in order to develop a uniform risk stratification usable for chronic diseases in most situations.

MASK further refined AIRWAYS ICPs using mobile technology to promote the digital transformation of health and care in developed and developing countries for all age groups.

Target population
In the initial phase, the target population included all patients with allergic rhinitis and asthma multimorbidity. Rhinitis and asthma are considered as a model for all chronic diseases and the project is being extended to chronic diseases.

All patients able to use a smartphone (≥12 years) represent the target population. A special effort is being placed in underserved populations from developing countries as the practice is a GARD (Global Alliance against Chronic Respiratory Diseases, WHO alliance) demonstration project.

Stakeholders involved
Involvement in the design, implementation (including the creation of ownership), evaluation, continuity/ sustainability
As from the very first workshop in 1999, the ARIA initiative has included all stakeholders required to develop a WHO programme on CRDs (GARD). In particular, patient’s organizations were involved. All health care professionals were also involved (physicians, primary care, pharmacists, other health care professionals). Another important component of ARIA was the deployment to developing countries [73]. Moreover, policy makers were also actively involved.

ARIA has grown regularly over the past 20 years and an ARIA chapter is ongoing in over 70 countries in all continents with a very active scaling up strategy [26]. MASK has used the ARIA working group to scale up the practice.

All stakeholders were highly receptive
The ARIA and now the MASK community is very cohesive and all members are extremely reactive. They have been particularly active in deploying MASK in the 23 countries and we have received requests from many other countries in which MASK-air is not yet available.

Resistance or conflict of interest: None

Implementation methodology/strategy
We used the scaling up strategy of the European Innovation Partnership on Active and Healthy Ageing and proposed a 5-step framework for developing an individual: (1) what to scale up: (1-a) databases of good practices, (1-b) assessment of viability of the scaling up of good practices, (1-c) classification of good practices for local replication and (2) how to scale up: (2-a) facilitating partnerships for scaling up, (2-b) implementation of key success factors and lessons learnt, including emerging technologies for individualized and predictive medicine. This strategy has already been applied to the chronic respiratory disease action plan of the European Innovation Partnership on Active and Healthy Ageing [26].

Consistency in the pace of delivery
For the past 20 years, ARIA has been a success story in over 72 countries [3, 8, 19, 24, 25, 27, 28, 30–32, 38, 46, 74–100]. A Pocket Guide has been translated into 52 languages. MASK is following ARIA with the same group and the same strategy.

Main outcomes and evaluation of the practice
The ARIA strategy was to change management in the treatment of asthma and rhinitis since nasal symptoms—often the most troublesome—were not considered in most asthmatics. Over 85% of asthma in children and adolescents is associated with rhinitis, suggesting common pathways, whereas only 20–30% of rhinitis patients have asthma, suggesting rhinitis-specific genes. There is a link between asthma severity and rhinitis multimorbidity. Asthma is more severe in patients with rhinitis [101]. The strategy at all levels of care indicates that it is essential to consider multimorbidity in the management of asthma for the benefit of the patient and the satisfaction of the treatment as shown in many surveys (Fig. 3). Some studies have found that the ARIA strategy is more effective than free treatment choice [102]. Moreover, EMA has used the ARIA recommendations for the approval of a house dust mite immunotherapy tablet including asthma and rhinitis multimorbidity [103].

The change management strategy of MASK has not yet been evaluated. However, the results of the first studies indicate that the vast majority of patients are not adherent to treatment [45] and that next-generation care pathways are needed (Figs. 4 and 5).
Next-generation care pathways were initiated in Paris, December 3, 2018, as part of POLLAR, MASK and GARD.

Additional (secondary) outcomes assessed
Work productivity and school performance are measured. When rhinitis and/or asthma are not well controlled, work productivity is impaired [1, 41, 43].

Sustainability of the practice
The MASK App, The Allergy Diary, was used to demonstrate the scientific value of the project [1]. It has been replaced by the commercial App, MASK-air, which is version 3.0 and which includes questionnaires (e.g. tobacco and allergens) and sleep (VAS and Epworth questionnaire [104]) (Fig. 6). A business plan is in place for the sustainability of the practice.
Communication about the practice and dissemination of results
A communication strategy has been set up [1] and includes a website (mask-air.com), media coverage, leaflets and newsletters, publications in scientific journals and lay press, partners’ networks and events. The MASK community includes over 300 members in all countries in which MASK is deployed.

Budget required to implement the practice
The budget required to implement the MASK strategy is around 1.5 M€. It will be provided by the private sector (1 M€) and from EU grants, in particular a Structural and Development Fund. POLLAR has an additive budget of 2 M€ to embed outdoor air pollution and aerobiology data in the ICP using artificial intelligence.

It is difficult to estimate human resources since many physicians worked in the 23 countries for the translation,
adaptation of the practice and its implementation. It can be proposed that 50–100 h have been spent working in each country.

The practice has been presented to multiple national and international meetings.

Sustainability has been carefully evaluated and a business plan is in place.

Main lessons learned

- Adherence to treatment is the major problem of allergic disease.
- Self-management strategies should be considerably expanded (behavioural).
- Change management is essential in allergic diseases.
- Education strategies should be reconsidered using a patient-centred approach.
- Lessons learned for allergic diseases can be expanded to chronic diseases.

Improvement and expansion of the practice

An expert meeting took place at the Pasteur Institute in Paris, December 3, 2018, to discuss next-generation care pathways and lessons learnt (Fig. 7, Annex 1): (1) patient participation, health literacy and self-care through technology-assisted “patient activation”, (2) implementation of care pathways by pharmacists and (3) next-generation guidelines assessing the recommendations of GRADE guidelines in rhinitis and asthma using real-world evidence (RWE) assessed by mobile technology. The meeting was organized by POLLAR and MASK in collaboration with GARD, patient’s organizations and all European scientific societies in the field.

Abbreviations

AHA: active and healthy ageing; AIRWAYS ICPs: integrated care pathways for airway diseases; AR: allergic rhinitis; ARIA: allergic rhinitis and its impact on asthma; CDSS: clinical decision support system; CRD: chronic respiratory disease; DG CONNECT: directorate general for communications networks, content and technology; DG Santé: directorate general for health and food safety; EIP on AHA: European innovation partnership on AHA; EIP European innovation partnership; EQ-5D: Euroqol; Euforea: European forum for research and education in allergy and airways diseases; GARD: Global Alliance against Chronic Respiratory Diseases (WHO Alliance); GINA: Global Initiative for Asthma; MACVIA: Fondation VI/A-LR; SPLF: Société de Pneumologie de Langue Française; SFA: Société française d’Allergologie; WAO: World Allergy Organization.
Universidade do Porto, Porto, Portugal and MEDIDA, Lda, Porto, Portugal. 143Allergist, Reims, France. 144Hospital General Regional 1 “Dr Carlos Mc Gregor Sanchez Navarro” IMSS, Mexico City, Mexico. 145Regional hospital of ISSSTE, Puebla, Mexico. 146National Center for Disease Control and Public Health of Georgia, Tbilisi, Georgia. 147Allergologo, Guadalajara, Mexico. 148Allergy Clinic, National Institute of Respiratory Diseases, Mexico City, Mexico. 149Department of Pulmonary Diseases, Istanbul University-Cerrahpaşa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey. 150Allergology unit, UHATEM “NIPirogov”, Sofia, Bulgaria. 151Medical University, Faculty of Public Health, Sofia, Bulgaria. 152Allergy and Immunology Division, Clinic Ricardo Palma, Lima, Peru. 153Department of Pulmonology, Warsaw Medical University, Warsaw, Poland. 154Division of Allergy, Immunology and Pulmonary Diseases, Riga, Latvia. 155Federal District Base Hospital Institute, Brasilia, Brazil. 156Institute of Health Policy and Management, IBMG, Erasmus University, Rotterdam, The Netherlands. 157University Hospital Olomouc – National eHealth Centre, Czech Republic. 158Immunology and Allergy Division, Clinical Hospital, University of Chile, Santiago, Chile. 159Skin and Allergy Hospital Helsingin, The University of Helsinki, Helsingin, Finland. 160Centre: de expertise national des technologies de l’information et de la communication pour l’autonomie, Gérontopôle autonomie longévité des Pays de la Loire, Conseil régional des Pays de la Loire, Centre d’expertise Partenariat Européen d’Innovation pour un vieillissement actif et en bonne santé, Nantes, France. 161Autonomous University of Baja California, Ensenada, Baja California, Mexico. 162Department of Paediatrics and Child Health, University College Cork, Cork, Ireland. 163Hospital General Regional 1 “Dr. Carlos MacGregor Sanchez Navarro” IMSS, Mexico City, Mexico. 164Université Paris-Sud; Service de Pneumologie, Hôpital Bicêtre; Inserm UMR_S999, Le Kremlin Bicêtre, France. 165Dipartimento di medicina, chirurgia e odontoiatria, università di Salerno, Italy. 166Division for Health Innovation, Campania Region and Federico II University Hospital Naples (R&D and DISMET) Naples, Italy. 167Servicio de Alergia e Immunologia, Clinica Santa Isabel, Buenos Aires, Argentina. 168President, Libra Foundation, Buenos Aires, Argentina. 169Medical University of Gdańsk, Department of Allergology, Gdańsk, Poland. 170Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK. 171Dept of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium. 172Hallym University College of Medicine, Hallym University Sacred Heart Hospital, Gyeonggi-do, South Korea. 173Department of Clinical Immunology, Wroclaw Medical University, Poland. 174Ukrainiana Medical Stomatological Academy, Poltava, Ukraine. 175Pediatric Allergy and Asthma Unit, Hacettepe University School of Medicine, Ankara, Turkey. 176Hacettepe University, School of Medicine, Department of Chest Diseases, Immunology and Allergy Division, Ankara, Turkey. 177Allergy Centre, Tampere University Hospital, Tampere, Finland. 178First Department of Family Medicine, Medical University of Lodz, Poland. 179Institute of Social Medicine, Epidemiology and Health Economics, Chantil – Universitätsmedizin Berlin, Berlin, and Institute for Clinical Epidemiology and Biometry, University of Wuerzburg, Germany. 180Department of Medicine, McMaster University, Health Sciences Centre 3V47, West, Hamilton, Ontario, Canada. 181National Research Center, Institute of Immunology, Federal Medicobiological Agency, Laboratory of Molecular immunology, Moscow, Russian Federation. 182GARD Chairman, Geneva, Switzerland. 183Allergy & Asthma Center Westend, Berlin, Germany. 184Center for Rhinology and Allergology, Wiesbaden, Germany. 185Department of Immunology and Allergy, Health Ageing Research Center, Medical University of Lodz, Lodz, Poland. 186Children’s Hospital and University of Helsinki, Finland. 187Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm and Sah’s Children and Young Hospital, Södersjukhuset, Stockholm, Sweden. 188Faculty of Medicine, Vilnius University, Vilnius, Lithuania. 189Department of Prevention of Environmental Hazards and Allergology, Medical University of Warsaw, Poland. 190Center of Excellence in Asthma and Allergy, Médica Sur Clinical Foundation and Hospital, México City, Mexico. 191President, CMAQ, Milano, Italy. 192Department of Pedro de Elizalde Children’s Hospital, Buenos Aires, Argentina. 193University of Medicine and Pharmacy, Hochiminh City, Vietnam. 194Federal University of Bahia, Brazil. 195Sfmed, Milano, Italy. 196State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China. 197Departments of Internal Medicine and Pediatrics (Divisions of Allergy and Immunology), University of Tennessee College of Medicine, Germantown, TN, USA. 198Scittr, Centre for Respiratory Research, Cardiovascular & Diabetes Medicine, Medical Research Institute, Ninewells Hospital, University of Dundee, UK. 199Oslo University Hospital, Department of Paediatrics, Oslo, and University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, Oslo, Norway. 200Department of Pulmonary Medicine, CHU Sart- Tilman, and GIGA 13 research group, Liege, Belgium. 201Faculty of Health Sciences and CIC – UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal. 202Department of Philosophical, Methodological and Instrumental Disciplines, CUCS, University of Guadalajara, Guadalajara, Mexico. 203Department of Pulmonary Medicine, Rashid Hospital, Dubai, UAE. 204Biomax Informatics AG, Munich, Germany. 205Director General for Health and Social Care, Scottish Government, Edinburgh, UK. 206Department of Respiratory Medicine, University of Bratislava, Bratislava, Slovakia. 207Coimbra Institute for Clinical and Biomedical Research (ICB), Faculty of Medicine, University of Coimbra, Portugal. 208Ageing@Coimbra EIP-AHA Reference Site, Coimbra, Portugal. 209Medical center Iskar Ltd Sofia, Bulgaria. 210Department of Medicine (RCSI), Bon Secours Hospital, Glasnevin, Dublin, Ireland. 211Kronikgune, International Centre of Excellence in Chronicity Research Barakaldo, Bizkaia, Spain. 212Division of Clinical Immunology and Allergy, Laboratory of Behavioral Immunology Research, The University of Mississippi Medical Center, Jackson, Mississippi, USA. 213Tobacco Control Research Centre, Iranian Anti Tobacco Association, Tehran, Iran. 214Argentine Association of Allergy and Clinical Immunology, Buenos Aires, Argentina. 215Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Mexico City, Mexico. 216University of Southeast Bahrain, Bahrain. 217Allergy-Centrum-Chanté at the Department of Dermatology and Allergy, Chanté ‑ Universitätsmedizin Berlin, Germany. 218Maputo Central Hospital, Department of Paediatrics, Maputo, Mozambique. 219Allergology, Veracruz, Mexico. 220Sach’s Children and Youth Hospital, Södersjukhuset, Stockholm and Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden. 221Allergy and Asthma Medical Group and Research Center, San Diego, California, USA. 222CIRFF, Federico II University, Naples, Italy. 223Department of Physiology, CHRU, University Montpellier; Vice President for Research, PhyMedExp, INSERM U1046, CNRS UMR 9214, France. 224Croatian Pulmonary Society. 225National Institute of Pneumology M Nasta, Bucharest, Romania. 226Clinic for Pulmonary Diseases, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Serbian Association for Asthma and COPD, Belgrade, Serbia. 227Regione Piemonte, Torino, Italy. 228Col Jardines de Sta Monica, Tlalnepantla, Mexico. 229Department of Public health and health products, Paris Descartes University-Sorbonne Paris Cité, EA 4064 and Paris Municipal Department of social action, childhood, and health, Paris, France. 229Paris municipal Department of social action, childhood, and health, Paris, France. 230Lead Respiratory Physician Mater Dei Hospital Malta, Academic Head of Dept and Professor of Medicine University of Malta, Deputy Dean Faculty of Medicine and Surgery University of Medicine, La Valette, Malta. 231Department of Medical Sciences, Allergy and Clinical Immunology Unit, University of Torino & Mauriziano Hospital, Torino, Italy. 232Instituto de Prevision Social IPS HC, Socia de la SPAI, Tesoreria de la SLAAI, Asuncion, Paraguay. 233Allergy Center, CUF Descobertas Hospital, Lisboa, Portugal. 234Universidade de São Paulo, São Paulo, Brazil. 235Institute of Medical Statistics, and Computational Biology, Medical Faculty, University of Cologne, Germany and CR-Clinical Research International-Ltd, Hamburg, Germany. 236General Pathology Institute, Faculty of Medicine, University of Coimbra, Portugal. 237Immunology and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland. 238Center of Excellence in Chronicity Research Barakaldo, Bizkaia, Spain. 239Hospital General Regional 1 “Dr Carlos MacGregor Sanchez Navarro” IMSS, Mexico City, Mexico.
Available: data and materials
Not applicable.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
FMC VIA LR.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 11 January 2019  Accepted: 4 February 2019
Published online: 11 March 2019

Competing interests
Dr. Ansotegui reports personal fees from Mundipharma, Roval, Sanofi, MSD, Faes Farma, Hikma, UCB, AstraZeneca, outside the submitted work. Dr. Bosnic-Anticevich reports grants from TEVA, personal fees from TEVA, Boehringer Ingelheim, AstraZeneca, Sanofi, Mylan, outside the submitted work. Dr. Bousquet reports personal fees and others from Chiesi, Cipra, Hikma, Menarini, Mundipharma, Mylan, Novartis, Sanofi-Aventis, Takeda, Teva, Urich, others from Kyomed, outside the submitted work. Dr. Boulet reports and Disclosure of potential conflicts of interest—last 3 years research grants for participation to multicentre studies, AstraZeneca, Boston Scientific, GlaxoSmithKline, Hoffman La Roche, Novartis, Ono Pharma, Sanofi, Takeda Support for research projects introduced by the investigator AstraZeneca, Boehringer-Ingelheim, GlaxoSmithKline, Merck, Takeda. Consulting and advisory boards AstraZeneca, Novartis, Methapharm. Royalties Co-author of “Up-To-Date” occupational asthma. Non-profit grants for production of educational materials AstraZeneca, Boehringer-Ingelheim, GlaxoSmithKline, Merck Frosst, Novartis. Conference fees AstraZeneca, GlaxoSmithKline, Merck, Novartis. Support for participation in conferences and meetings Novartis, Takeda. Other participations Past president and Member of the Canadian Thoracic Society Respiratory Guidelines Committee; Chair of the Board of Directors of the Global Initiative for Asthma (GINA). Chair of Global Initiative for Asthma (GINA) Guidelines Development and Implementation Committee; Laval University Chair on Knowledge Transfer, Prevention and Education in Respiratory and Cardiovascular Health; Member of scientific committees for the American College of Chest Physicians, American Thoracic Society, European Respiratory Society and the World Allergy Organization; 1st Vice-President of the Global Asthma Organization ‘InterAsma’. Dr. Casale reports grants and non-financial support from Stallergenes, outside the submitted work. Dr. Cruz reports grants and personal fees from GlaxoSmithKline, personal fees from Boehringer Ingelheim, AstraZeneca, Novartis, Merck, Sharp & Dohme, MEDA Pharma, EuroFARMA, Sanofi Aventis, outside the submitted work. Dr. Ebisawa reports personal fees from DBV Technologies, Mylan EPD maruo, Shionogi & Co., Ltd., Kyorin Pharmaceutical Co., Ltd., Thermofisher Diagnostics, Pfizer, Beyer, Nippon ChemiTech, Takeda Pharmaceutical Co., Ltd., MSD, outside the submitted work. Dr. Ivanovitch reports personal fees from Euro Farma Argentina, Faes Farma, non-financial support from Laboratorios Casasco, outside the submitted work. Dr. Haahsla reports personal fees from Mundipharma, Novartis, and Orion Pharma, outside the submitted work. Dr. Klimek reports grants and personal fees from ALK Abelló, Denmark, Novartis, Switzerland, Allergopharma, Germany, Bionorica, Germany, GSK, Great Britain, Lofarma, Italy, personal fees from MEDA, Sweden, Boehringer Ingelheim, Germany, grants from Biocay, Austria, HAL, Netherlands, LETI, Spain, Roval, Germany, Bencard, Great Britain, outside the submitted work. V.KV has received payment for consultancy from GSK and for lectures from StallergensGreer, Berlin-Chemie and sponsorship from MYLAN for in the following professional training: ARIA masterclass in allergic rhinitis participation. Dr. Larenas Linnemann reports personal fees from GSK, Asta- zeneca, MEDA, Boehringer Ingelheim, Novartis, Grunenthal, UCB, Amstrong, Sienthrone, DBV Technologies, MSD, Pfizer, grants from Sanofi, AstraZeneca, Novartis, UCB, GSK, TEVA, Chiesi, Boehringer Ingelheim, outside the submitted work. Dr. Moisés reports personal fees from ALK, grants from ASIT biotech, Leti, Biotag AG, Hulka, Ursapharm, Optima, personal fees from allergopharma, Nuvo, Media, Firluchel, Hexal, Servier, Bayer, Johnson&Johnson, Klosterfrau, GSK, MSD, FAES, Stada, UCB, Allergy Therapeutics; grants and personal fees from Bencard, Stallergenes; grants, personal fees and non-financial support from Lofarma; non-financial support from Roval, Atmós, Bionorica, Oronomy, Ferrero; personal fees and non-financial support from Novartis, Dr. Okamoto reports personal fees from Ezaqi Co., Ltd., Shionogi Co., Ltd., Tonri Co., Ltd., GSK, MSD, Kyowa Co., Ltd., grants and personal fees from Kyorin Co., Ltd., Theo Co., Ltd. grants from Yakuruto Co., Ltd., Yamada Bee Farm, outside the submitted work. Dr. Papadopoulos reports grants from Gerylomatos, personal fees from Hal Allergy B.V., Novartis Pharma AG, Menarini, Hal Allergy B.V., outside the submitted work. Dr. Pépin reports grants from AIR LIQUIDE FOUNDATION, AGIR à dom, ASTRA ZENECA, FISHER & PAYKEL, MUTUALIA, PHILIPS, RESMED, VITALARE, other from AGIR à dom, ASTRA ZENEA, BOEHRINGER INGE‑ HEMI, JAZZ PHARMACEUTICAL, NIGHT BALANCE, PHILIPS, RESMED, SEFAM, outside the submitted work. Dr. Pifar reports grants and personal fees from ALK-Abelló, Allergopharma Stallergenes Greer, HAL Allergy Holding B.V./HAL Allergie GmbH, Bencard Allergie GmbH/Allergy Therapeutics, Lofarma, grants from Biomay, ASIT Biotech Tools S.A., Laboratorios LETI/LETI Pharma, Anergis S.A., grants from Nuvo, Circassia, Glaxo Smith Kline, personal fees from Novartis Pharma, MEDA Pharma, Mobile Chamber Experts (a GA2LEN Partner), Pohl－Boskamp, Indoor Biotechnologies, grants from, outside the submitted work. Dr. Todd-Born reports grants and personal fees from Novartis, Mundipharma, GSK Teva Pharma, personal fees from AstraZeneca, grants from Leti, outside the submitted work. Dr. Tsiligianni reports advisory boards from Boehringer Ingelheim and Novartis and a grant from GSK, outside the submitted work. Dr. Wallace reports and Indicates that she is the co-chair of the Joint Task Force on Practice Parameters, a task force composed of 12 members of the American Academy of Allergy, Asthma, and Immunology and the American College of Allergy, Asthma, and Immunology. Dr. Waserman reports other from CSL Behring, Shire, AstraZeneca, Teva, Meda, Merck, outside the submitted work. Dr. Zuberbier reports and Organizational affiliations: Committee member- WHO-Initiative “Allergic Rhinitis and Its Impact on Asthma” (ARIA). Member of the Board: German Society for Allergy and Clinical Immunology (DGAKI). Head: European Centre for Allergy Research Foundation (ECARF) Secretary General, Global Allergy and Asthma European Network (GA2LEN). Member, Committee on Allergy Diagnosis and Molecular Allergology, World Allergy Organization (WAO).


