Observation of Two Excited B-c(+) States and Measurement of the B-c(+) (2S) Mass in pp Collisions at root s=13 TeV

The CMS collaboration

2019-04-02

http://hdl.handle.net/10138/301435
https://doi.org/10.1103/PhysRevLett.122.132001

Downloaded from Helda, University of Helsinki institutional repository.
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.
Please cite the original version.
Observation of Two Excited B_c^+ States and Measurement of the $B_c^+(2S)$ Mass in pp Collisions at $\sqrt{s}=13$ TeV

A. M. Sirunyan et al.*
(CMS Collaboration)

(Received 1 February 2019; revised manuscript received 18 February 2019; published 2 April 2019)

Signals consistent with the $B_c^+(2S)$ and $B_c^{++}(2S)$ states are observed in proton-proton collisions at $\sqrt{s}=13$ TeV, in an event sample corresponding to an integrated luminosity of 143 fb$^{-1}$, collected by the CMS experiment during the 2015–2018 LHC running periods. These excited bc states are observed in the $B_c^+\pi^+\pi^-$ invariant mass spectrum, with the ground state B_c^+ reconstructed through its decay to $J/\psi\pi^+$. The two states are reconstructed as two well-resolved peaks, separated in mass by $29.1\pm 1.5(\text{stat})\pm 0.7(\text{syst})$ MeV. The observation of two peaks, rather than one, is established with a significance exceeding five standard deviations. The mass of the $B_c^+(2S)$ meson is measured to be $6871.0\pm 1.2(\text{stat})\pm 0.8(\text{syst})\pm 0.8(B_c^+)$ MeV, where the last term corresponds to the uncertainty in the world-average B_c^+ mass.

DOIs: 10.1103/PhysRevLett.122.132001

The B_c family consists of charged mesons composed of a beauty quark and a charm antiquark (or vice versa). The ground state was discovered in 1998 by the CDF Collaboration [1]. The spectrum of this heavy quarkonium family is predicted to be very populated [2–13], but spectroscopic observations and measurements of production properties remain scarce. Indeed, their production yields are significantly smaller than those of the charmonium and bottomonium states, the bc production cross sections being proportional to the fourth power of the strong coupling constant, α_s^4 (since two pairs of heavy quarks need to be produced). While the masses and sizes of these beauty-charm quark-antiquark pairs place them between the charmonium and bottomonium systems, so that many properties can be theoretically inferred by interpolation of existing knowledge, the unequal quark masses and velocities could lead to more complex dynamics, where some (nonrelativistic) approximations might break down. Since the bc mesons cannot annihilate into gluons, the excited states decay to the ground state via the cascade emission of photons or pion pairs, leading to total widths that are less than a few hundred MeV. Figure 1 shows the transitions between the lightest B_c states.

The high collision energies and integrated luminosities provided by the LHC have opened the way for a series of new measurements. The ATLAS Collaboration observed a state with a mass of $6842\pm 4(\text{stat})\pm 5(\text{syst})$ MeV, consistent with the values predicted for the $B_c^+(2S)$, using data collected at 7 and 8 TeV [14], while the LHCb Collaboration reported that their 8 TeV data sample did not show any significant sign of the $B_c^+(2S)$ or $B_c^{++}(2S)$ states [15]. The peak observed by ATLAS could be the superposition of the $B_c^+(2S)$ and $B_c^{++}(2S)$ states, too closely spaced with respect to the resolution of the measurement. The mass difference between the B_c^+ and B_c^+ hyperfine partners is predicted to be around 55 MeV, while the corresponding difference between the $B_c^{++}(2S)$ and $B_c^+(2S)$ masses should be around 35 MeV [11–13].

While the $B_c^+(2S)$ decays directly to $B_c^+\pi^+\pi^-$, the $B_c^{++}(2S)$ is expected to decay predominantly to $B_c^{++}\pi^+\pi^-$, followed by the $B_c^{++}\to B_c^+\gamma$ decay. The emitted photon has a very low energy and its detection is very challenging, so that the $B_c^{++}(2S)$ peak should be seen in the $B_c^+\pi^+\pi^-$ mass spectrum at the mass $M[B_c^+(2S)]-\Delta M$, where $\Delta M = M(B_c^{++})-M(B_c^+)-\{M[B_c^+(2S)]-M[B_c^+(2S)]\}$. If the ΔM value is larger than the experimental resolution, the $B_c^+\pi^+\pi^-$ invariant mass distribution will show a two-peak structure. Since $M(B_c^{++})-M(B_c^+)$ is predicted to be larger than $M[B_c^+(2S)]-M[B_c^+(2S)]$, the $B_c^{++}(2S)$ state will be the lower mass peak.

This Letter reports the observation of well-resolved signals consistent with the $B_c^+(2S)$ and $B_c^{++}(2S)$ states, as well as the first measurement of the $B_c^+(2S)$ mass. Although strictly speaking we should refer to these two signals as $B_c^+(2S)$ and $B_c^{++}(2S)$ candidates, in the remainder of this Letter, we will skip the word candidates for improved readability. The result is based on the analysis of proton-proton data samples collected by the CMS experiment at a center-of-mass energy of 13 TeV, in 2015, 2016, 2017, and 2018 (the full LHC Run 2), corresponding to integrated luminosities of 2.8, 36.1, 42.1, and 61.6 fb$^{-1}$, respectively.

*Full author list given at the end of the Letter.

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two end cap sections. Forward calorimeters extend the pseudorapidity coverage provided by the barrel and end cap detectors. Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [16].

The event samples used in this analysis were collected with a two-level trigger system [17]. The first level consists of custom hardware processors and uses information from the muon system to select events with two muons. The high-level trigger requires two oppositely charged muons with pseudorapidity $|\eta| < 2.5$ and transverse momentum $p_T > 4$ GeV, a distance of closest approach between the two muons smaller than 0.5 cm, a dimuon vertex fit χ^2 probability larger than 10%, a dimuon invariant mass in the range 2.9–3.3 GeV, and a distance between the dimuon vertex and the beam axis larger than three times its uncertainty. In addition, the dimuon p_T must be aligned with the transverse displacement vector: $\cos \theta > 0.9$, where $\cos \theta = \vec{L}_{32} \cdot \vec{p}_T / (L_{32} p_T)$, with \vec{L}_{32} representing the transverse decay displacement vector of the dimuon. Finally, there must exist a third track in the event compatible with being produced at the dimuon vertex. The offline reconstruction requires two oppositely charged muons matching those that triggered the detector readout, with some requirements being stricter than at the trigger level, such as $|\eta| < 2.4$ and $\cos \theta > 0.98$. The muons must fulfill the “soft muon identification” requirements [18] and be close to each other in angular space: $\sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} < 1.2$, where $\Delta \eta$ and $\Delta \phi$ are differences in pseudorapidity and azimuthal angle, respectively, between the directions of the two muons.

Several simulated samples were used in the analysis. The $B_c^+, B_c^{*(0)}$ (2S), and $B_c^{+(0)}$ (2S) signal samples are generated with the BCVEGPY 2.2 [19] Monte Carlo generator, interfaced with the PYTHIA 8.230 package [20] to simulate the hadronization step, and with EVTGEN 1.6.0 [21] for the decays. Final-state radiation is modeled with PHOTOS 3.61 [22]. The generated events are then processed through a detailed simulation of the CMS detector, based on the GEANT4 package [23], using the same trigger and reconstruction algorithms as used for the collision data. The simulated events include multiple proton-proton interactions in the same or nearby beam crossings, with a distribution matching the measured one. Charge-conjugated states are implied throughout this Letter.

All the physics objects used in this analysis, including the muon tracks, must pass high-purity track quality requirements [24]. The B_c^+ candidates are reconstructed by combining the dimuon with a track, assumed to be a pion. This track must have $|\eta| < 2.4$, $p_T > 3.5$ GeV, at least one hit in the pixel layers, at least five hits in the tracker (pixel and strip layers), and an impact parameter in the transverse plane larger than two times its uncertainty. The B_c^+ candidate is obtained by performing a kinematic fit, imposing a common vertex on the dimuon and pion tracks, and constraining the dimuon invariant mass to be the world-average J/ψ mass [25]. The primary vertex (PV) associated with the candidate B_c^+ is selected among all the reconstructed vertices [26] as the one with the smallest angle between the reconstructed B_c^+ momentum and the vector joining the PV with the B_c^+ decay vertex. Studies based on simulation show that the probability of selecting a wrong vertex is less than 1%. The decay length of the B_c^+, denoted by l, is computed as the (three-dimensional) distance between the PV and the $J/\psi \pi^+$ vertex (assumed to be, respectively, the B_c^+ production and decay vertices). To avoid biases in the determination of l, the PV is refitted without the tracks associated with the muons and the pion.

Similarly to what has been previously done in Refs. [27,28], the B_c^+ candidates are required to have $p_T > 15$ GeV, rapidity $|y| < 2.4$, $l > 100 \mu m$, and a kinematic fit χ^2 probability larger than 10%. If several B_c^+ candidates are found in the same event, only the one with the highest p_T is kept. The invariant mass distribution of the selected $B_c^+ \rightarrow J/\psi \pi^+$ candidates, shown in Fig. 2, is fitted to the expected B_c^+ signal peak, modeled as a sum of two Gaussian functions with a common mean, superimposed on a background composed of three sources of events: (i) the combinatorial background resulting from associating the J/ψ with uncorrelated charged particles, parametrized by a
by performing a kinematic fit, combining a solution function; (iii) a small contribution from ARGUS function [29] convolved with a Gaussian resolution function, representing the reconstructed invariant masses of the $B_c^+ \pi^+\pi^-$ and $B_c^+ \pi^+$ candidates, and $m_{B_c^+}$ is the world-average B_c^+ mass [25]. This variable is measured with a better resolution than $M(B_c^+ \pi^+\pi^-)$ and is, hence, advantageous when searching for peaks in the mass distribution. The measured distribution is fitted to a superposition of two Gaussian functions, representing the $B_c^+ (2S)$ and $B_c^+ (2S)$ signal peaks, plus a third-order Chebyshev polynomial, modeling the continuum background, with all parameters left free in the fit. The two contributions arising from $B_c^+ \rightarrow J/\psi K^+$ decays are also considered; they have shapes identical to the signal peaks, neglecting a shift to lower mass values that should be smaller than 1 MeV, and normalizations constrained by the ratio of the $B_c^+ \rightarrow J/\psi K^+$ and $B_c^+ \rightarrow J/\psi \pi^+$ signal yields, as previously mentioned. The unbinned extended maximum-likelihood fit gives 67 ± 10 and 51 ± 10 events for the lower-mass and higher-mass peak, respectively. Since these yields are not corrected for detection efficiencies and acceptances, they cannot be used to infer ratios of production cross sections. The two signals are well resolved, their mass difference being $\Delta M = 29.1 \pm 1.5$ MeV, where the uncertainty is statistical only. The widths of the peaks are consistent with the value expected from simulation studies, which is approximately 6 MeV. The χ^2 between the binned distribution and the fit function is 42 for 39 degrees of freedom.

Studies of simulated samples show that the low-energy photon emitted in the $B_c^+ (2S)$ decay has a very small reconstruction efficiency, of order 1%. Consequently, the photon is not detected and the mass of the $B_c^+ (2S)$ cannot be measured. Given the predicted mass splittings mentioned before [11–13], the $B_c^+ (2S)$ peak is expected to be observed at a mass lower than the $B_c^+ (2S)$. The mass of the $B_c^+ (2S)$ meson, assumed to be the higher-mass peak in Fig. 3, is measured to be 6871.0 ± 1.2 MeV, where the uncertainty is statistical only.

The $M(B_c^+ \pi^+\pi^-) - M(B_c^+) + m_{B_c}$ distribution has also been fitted with the two peaks modeled by a Breit-Wigner function, convolved with a Gaussian resolution function determined from the simulated samples. The result is that, for both peaks, the natural width parameter of the Breit-Wigner function is consistent with zero, indicating that both natural widths are small in comparison with the experimental resolution.

![FIG. 2. The invariant mass distribution of the B_c^+ candidates. The vertical dashed lines indicate the mass window retained for the reconstruction of the $B_c^+ (2S)$ and $B_c^+ (2S)$ candidates. The vertical bars on the points represent the statistical uncertainty in the data. The contributions from various sources are shown by the stacked distributions. The solid line represents the result of the fit.](image-url)
The fitting procedure was tested using randomly generated event samples, of sizes corresponding to the number of measured events, reflecting the nominal likelihood probability distribution functions and fitted parameters. No significant fit biases were found in the central values and uncertainties.

Several sources of systematic uncertainties have been considered. The mass measurements reported here are expected to be essentially insensitive to the event selection criteria. The analysis was repeated by splitting the data in exclusive subsamples, depending on the B_c^+ rapidity or p_T, or according to the data collection periods. The p_T thresholds were also varied, between 10 and 18 GeV for the B_c^+ and between 3 and 5 GeV for the pion produced in the B_c^+ decay. The results remain unchanged; hence no systematic uncertainty is assigned to the selection criteria. Also, no significant changes are seen in the results when the widths of the Gaussian functions used to describe the two peaks, or their ratio, are fixed to the values evaluated with the simulated event samples. The mass measurements might depend on the models used to describe the signal and background contributions. The impact of the fitting models has been evaluated by varying the considered functional forms. The combinatorial background, nominally represented by a third-order Chebyshev polynomial, has been alternatively modeled by the function $\lambda(x-x_0)^6 \exp[\nu(x-x_0)]$, where λ, ν, and x_0 are free parameters. For each of the two signal peaks, and corresponding $B_c^+ \rightarrow J/\psi K^+$ terms, the default Gaussian function was replaced by a Breit-Wigner parametrization. The differences in the measured observables are taken as the systematic uncertainty associated with the fit modeling. While the alternative background model leads to a negligible change, the systematic uncertainties reflecting the modeling of the peaks are 0.8 and 0.7 MeV in the $B_c^+(2S)$ mass and in ΔM, respectively.

The nominal fit includes a $B_c^+ \rightarrow J/\psi K^+$ component, with the same shape as the signal peaks and normalization defined by the expected ratio of the $B_c^+ \rightarrow J/\psi K^+$ and $B_c^+ \rightarrow J/\psi\pi^+$ yields in the B_c^+ mass window, corrected by the ratio of the corresponding reconstruction efficiencies. The normalization has been increased by a factor of two, a variation ten times larger than the sum of the uncertainties in the ratio of branching fractions [25] and in the ratio of reconstruction efficiencies, and no significant effect has been seen on the results, so that no systematic uncertainty is associated with this background contribution. The B_c^+ mass distribution includes a contribution from partially reconstructed decays. Their contamination in the $M(B_c^+ \pi^+\pi^-) - M(B_c^+) + m_{B_c}$ distribution is suppressed by the rejection of B_c^+ candidates with invariant mass below 6.2 GeV. To evaluate possible resolution effects associated with this selection, the requirement was changed to 6.1 GeV, a variation that also leads to a larger contamination from $B_c^+ \rightarrow J/\psi K^+$ events. The difference between the results, taking into account that the two event samples are strongly correlated, is not statistically significant, so that no systematic uncertainty is assigned. The potential bias introduced in the mass measurement by possible misalignments of the tracker detectors has been evaluated through simulation studies and also by comparing distributions measured in the 2016 and 2017 running periods, a meaningful comparison given that an important fraction of the CMS tracker detector was replaced between these two years. The outcome is that the alignment of the detector leads to a negligible systematic uncertainty in the results of the present analysis. Thus, the total systematic uncertainties are 0.8 and 0.7 MeV in the $B_c^+(2S)$ mass measurement and in ΔM, respectively.

The world-average B_c^+ mass, $m_{B_c^+} = 6274.9 \pm 0.8$ MeV [25], enters in the measurement of the $B_c^+(2S)$ mass, thereby contributing an additional systematic uncertainty of 0.8 MeV. Strictly speaking, however, it is the mass difference $M(B_c^+ \pi^+\pi^-) - M(B_c^+)$ that is measured event by event, before adding the $m_{B_c^+}$ constant, and it is convenient to report the $B_c^+(2S)$ mass as $M(B_c^+(2S)) - M(B_c^+) = 596.1 \pm 1.2$ (stat) ± 0.8 (syst) MeV, a value independent of $m_{B_c^+}$. Another interesting mass difference, also unaffected by the uncertainty in the B_c^+ world-average mass, can be derived from the previously reported measurements: $M(B_c^+(2S)) - M(B_c^+) = \{M(B_c^+(2S)) - M(B_c^+)\} - \Delta M = 567.0 \pm 1.0$ (total) MeV. Since the systematic effects previously mentioned cancel almost completely in this mass difference, the total uncertainty is dominated by the statistical term, which was determined by redoing the fit of the $M(B_c^+ \pi^+\pi^-) - M(B_c^+) + m_{B_c}$ distribution setting this new variable as a floating parameter, to properly account for the correlations between the parameters. The observation of two peaks, rather than one, is established.
with a significance of 6.5 standard deviations, evaluated with the likelihood-ratio technique confronting the two-peaks (ten free parameters) and one-peak (seven free parameters) hypotheses, using asymptotic formulae [33,34] and accounting for the (dominant) systematic uncertainty in the signal model.

In summary, signals consistent with the $B^+_c(2S)$ and $B^{0*}_c(2S)$ states have been separately observed for the first time by investigating the $B^+_c \pi^+\pi^-$ invariant mass spectrum measured by CMS. The analysis is based on the entire LHC sample of proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to a total integrated luminosity of 143 fb$^{-1}$. The two peaks are well resolved, with a measured mass difference of $\Delta M = 29.1 \pm 1.5$(stat) ± 0.7(syst) MeV. The $B^+_c(2S)$ mass is measured to be 6871.0 ± 1.2(stat) ± 0.8(syst) $\pm 0.8(B^+_c)$ MeV, where the last term is the uncertainty in the world-average B^+_c mass. Because the low-energy photon emitted in the $B^+_c \rightarrow B^+_c \gamma$ radiative decay is not reconstructed, the observed $B^{0*}_c(2S)$ peak has a mass lower than the true value, which remains unknown. These measurements contribute significantly to the detailed characterization of heavy meson spectroscopy and provide a rich source of information on the nonperturbative QCD processes that bind heavy quarks into hadrons.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

[1] F. Abe et al. (CDF Collaboration), Observation of the B_c Meson in $p\bar{p}$ Collisions at $\sqrt{s} = 1.8$ TeV, Phys. Rev. Lett. 81, 2432 (1998).

CMS Collaboration, Description and performance of track and primary-vertex reconstruction with the CMS tracker, J. Instrum. 9, P10009 (2014).

CMS Collaboration, Measurement of the ratio of the production cross sections times branching fractions of $B_s^\pm \to J/\psi \pi^\pm$ and $B^\pm \to J/\psi K^\pm$ and $B(B_s^+ \to J/\psi \pi^+ \pi^-)/B(B_s^+ \to J/\psi \pi^\pm)$ in pp collisions at $\sqrt{s} = 7$ TeV, J. High Energy Phys. 01 (2015) 063.

LHCb Collaboration, Measurement of the ratio of branching fractions $B(B_s^+ \to J/\psi K^+)/B(B_s^+ \to J/\psi \pi^+)$, J. High Energy Phys. 09 (2016) 153.

CMS Collaboration, Search for the $X(5568)$ State Decaying into $B_s^0 \pi^\pm$ in Proton-Proton Collisions at $\sqrt{s} = 8$ TeV, Phys. Rev. Lett. 120, 202005 (2018).

CMS Collaboration, Studies of $B_s^0(5840)^0$ and $B_s^0(5830)^0$ mesons including the observation of the $B_s^0(5840)^0 \to B_s^0 K^0_S$ decay in proton-proton collisions at $\sqrt{s} = 8$ TeV, Eur. Phys. J. C 78, 939 (2018).

(CMS Collaboration)
24 Charles University, Prague, Czech Republic
25 Escuela Politecnica Nacional, Quito, Ecuador
26 Universidad San Francisco de Quito, Quito, Ecuador
27 Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
28 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
29 Department of Physics, University of Helsinki, Helsinki, Finland
30 Helsinki Institute of Physics, Helsinki, Finland
31 Lappeenranta University of Technology, Lappeenranta, Finland
32 IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
33 Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, France
34 Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
35 Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
36 Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
37 Georgian Technical University, Tbilisi, Georgia
38 Tbilisi State University, Tbilisi, Georgia
39 RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
40 RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
41 RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
42 Deutsches Elektronen-Synchrotron, Hamburg, Germany
43 University of Hamburg, Hamburg, Germany
44 Karlsruher Institut fuer Technologie, Karlsruhe, Germany
45 Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
46 National and Kapodistrian University of Athens, Athens, Greece
47 National Technical University of Athens, Athens, Greece
48 University of Ioannina, Ioannina, Greece
49 MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
50 Wigner Research Centre for Physics, Budapest, Hungary
51 Institute of Nuclear Research ATOMKI, Debrecen, Hungary
52 Institute of Physics, University of Debrecen, Debrecen, Hungary
53 Indian Institute of Science (IISc), Bangalore, India
54 National Institute of Science Education and Research, HBNI, Bhubaneswar, India
55 Panjab University, Chandigarh, India
56 University of Delhi, Delhi, India
57 Saha Institute of Nuclear Physics, HBNI, Kolkata, India
58 Indian Institute of Technology Madras, Madras, India
59 Bhabha Atomic Research Centre, Mumbai, India
60 Tata Institute of Fundamental Research-A, Mumbai, India
61 Tata Institute of Fundamental Research-B, Mumbai, India
62 Indian Institute of Science Education and Research (IISER), Pune, India
63 Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
64 University College Dublin, Dublin, Ireland
65 INFN Sezione di Bari, Bari, Italy
66 INFN Sezione di Bologna, Bologna, Italy
67 INFN Sezione di Catania, Catania, Italy
68 INFN Sezione di Firenze, Firenze, Italy
69 INFN Laboratori Nazionali di Frascati, Frascati, Italy
70 INFN Sezione di Genova, Genova, Italy
71 INFN Sezione di Napoli, Napoli, Italy
72 INFN Sezione di Milano-Bicocca, Milano, Italy
73 INFN Sezione di Napoli ‘Federico II’, Napoli, Italy
74 Università della Basilicata, Potenza, Italy
75 Università G. Marconi, Roma, Italy, Napoli, Italy
73 INFN Sezione di Padova, Padova, Italy
73 Università di Padova, Padova, Italy
73 Università di Trento, Trento, Italy
74 INFN Sezione di Pavia, Pavia, Italy
74 Università di Pavia, Padova, Italy
75 INFN Sezione di Perugia, Perugia, Italy
75 Università di Perugia, Perugia, Italy
76 INFN Sezione di Pisa, Pisa, Italy
76 Università di Pisa, Pisa, Italy
76 Scuola Normale Superiore di Pisa, Pisa, Italy
77 INFN Sezione di Roma, Rome, Italy
77 Sapienza Università di Roma, Rome, Italy
77 INFN Sezione di Torino, Torino, Italy
77 Università di Torino, Torino, Italy
78 Università del Piemonte Orientale, Novara, Italy
78 INFN Sezione di Trieste, Trieste, Italy
78 Università di Trieste, Trieste, Italy
80 Kyungpook National University, Daegu, Korea
81 Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
82 Hanyang University, Seoul, Korea
83 Korea University, Seoul, Korea
84 Kyung Hee University, Department of Physics, Seoul, Korea
85 Sejong University, Seoul, Korea
86 Seoul National University, Seoul, Korea
87 University of Seoul, Seoul, Korea
88 Sungkyunkwan University, Suwon, Korea
89 Riga Technical University, Riga, Latvia
90 Vilnius University, Vilnius, Lithuania
91 National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
92 Universidad de Sonora (UNISON), Hermosillo, Mexico
93 Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
94 Universidad Iberoamericana, Mexico City, Mexico
95 Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
96 Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
97 University of Montenegro, Podgorica, Montenegro
98 University of Auckland, Auckland, New Zealand
99 University of Canterbury, Christchurch, New Zealand
100 National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
101 National Centre for Nuclear Research, Swierk, Poland
102 Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
103 Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
104 Joint Institute for Nuclear Research, Dubna, Russia
105 Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
106 Institute for Nuclear Research, Moscow, Russia
107 Institute for Theoretical and Experimental Physics, Moscow, Russia
108 Moscow Institute of Physics and Technology, Moscow, Russia
109 National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia
110 P.N. Lebedev Physical Institute, Moscow, Russia
111 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
112 Novosibirsk State University (NSU), Novosibirsk, Russia
113 Institute for High Energy Physics of National Research Centre 'Kurchatov Institute', Protvino, Russia
114 National Research Tomsk Polytechnic University, Tomsk, Russia
115 Tomsk State University, Tomsk, Russia
116 University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
117 Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
118 Universidad Autónoma de Madrid, Madrid, Spain
119 Universidad de Oviedo, Oviedo, Spain
120 Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
121 University of Colombo, Colombo, Sri Lanka
122 University of Ruhuna, Department of Physics, Matara, Sri Lanka
183 Texas A&M University, College Station, Texas, USA
184 Texas Tech University, Lubbock, Texas, USA
185 Vanderbilt University, Nashville, Tennessee, USA
186 University of Virginia, Charlottesville, Virginia, USA
187 Wayne State University, Detroit, Michigan, USA
188 University of Wisconsin—Madison, Madison, Wisconsin, USA

a Deceased.
b Also at Vienna University of Technology, Vienna, Austria.
c Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.
d Also at Universidade Estadual de Campinas, Campinas, Brazil.
e Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
f Also at Universidade Federal de Pelotas, Pelotas, Brazil.
g Also at Université Libre de Bruxelles, Bruxelles, Belgium.
h Also at University of Chinese Academy of Sciences, Beijing, China.
i Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.
j Also at Joint Institute for Nuclear Research, Dubna, Russia.
k Also at British University in Egypt, Cairo, Egypt.
l Also at Suez University, Suez, Egypt.
m Also at Purdue University, West Lafayette, Indiana, USA.
n Also at Université de Haute Alsace, Mulhouse, France.
o Also at Tbilisi State University, Tbilisi, Georgia.
p Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
q Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany.
r Also at University of Hamburg, Hamburg, Germany.
s Also at Brandenburg University of Technology, Cottbus, Germany.
t Also at Institute of Physics, University of Debrecen, Debrecen, Hungary.
u Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
v Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary.
w Also at IIT Bhubaneswar, Bhubaneswar, India.
x Also at Institute of Physics, Bhubaneswar, India.
y Also at Shoolini University, Solan, India.
z Also at University of Visva-Bharati, Santiniketan, India.

aa Also at Isfahan University of Technology, Isfahan, Iran.
bb Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
c Also at Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Bologna, Italy.
dd Also at Centro Siciliano di Fisica Nucleare e di Struttura Della Materia.
ee Also at Università degli Studi di Siena, Siena, Italy.
ff Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy.
gg Also at Riga Technical University, Riga, Latvia.
hh Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia.
i Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico.
j Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland.
k Also at Institute for Nuclear Research, Moscow, Russia.
l Also at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia.
m Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia.
n Also at University of Florida, Gainesville, Florida, USA.
o Also at P.N. Lebedev Physical Institute, Moscow, Russia.
p Also at California Institute of Technology, Pasadena, California, USA.
q Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia.
r Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia.
s Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
t Also at INFN Sezione di Pavia, Università di Pavia, Pavia, Italy.
u Also at National and Kapodistrian University of Athens, Athens, Greece.
v Also at Universität Zürich, Zurich, Switzerland.
wv Also at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria.
x Also at Adiyaman University, Adiyaman, Turkey.
y Also at Şıırmak University, Turkey.
z Also at Beykent University, Istanbul, Turkey.
aaa Also at Istanbul Aydin University, Istanbul, Turkey.
Also at Mersin University, Mersin, Turkey.
Also at Piri Reis University, Istanbul, Turkey.
Also at Gaziosmanpasa University, Tokat, Turkey.
Also at Ozyegin University, Istanbul, Turkey.
Also at Izmir Institute of Technology, Izmir, Turkey.
Also at Kafkas University, Kars, Turkey.
Also at Istanbul University, Faculty of Science, Istanbul, Turkey.
Also at Istanbul Bilgi University, Istanbul, Turkey.
Also at Hacettepe University, Ankara, Turkey.
Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
Also at Istanbul Bilgi University, Istanbul, Turkey.
Also at Hacettepe University, Ankara, Turkey.
Also at IPPP Durham University, Durham, United Kingdom.
Also at Monash University, Faculty of Science, Clayton, Australia.
Also at Bethel University, St. Paul, Minneapolis, USA.
Also at Karamanoğlu Mehmetbey University, Karaman, Turkey.
Also at Bingol University, Bingol, Turkey.
Also at Sinop University, Sinop, Turkey.
Also at Mimar Sinan University, Istanbul, Istanbul, Turkey.
Also at Texas A&M University at Qatar, Doha, Qatar.
Also at Kyungpook National University, Daegu, Korea.
Also at University of Hyderabad, Hyderabad, India.