Converting F_{ENO} by different flows to standard flow F_{ENO}.
Converting F_{ENO} by different flows to standard flow F_{ENO}.

Abstract

In clinical practice, assessment of expiratory nitric oxide (F_{ENO}) may reveal eosinophilic airway inflammation in asthmatic and other pulmonary diseases. Currently, measuring of F_{ENO} is standardised to exhaled flow level of 50 mL/s, since the expiratory flow rate affects the F_{ENO} results. To enable the comparison of F_{ENO} measured with different expiratory flows, we firstly aimed to establish a conversion model to estimate F_{ENO} at the standard flow level, and secondly, validate it in five external populations.

F_{ENO} measurements were obtained from 30 volunteers (mixed adult population) at the following multiple expiratory flow rates: 50, 30, 100 and 300 mL/s, after different mouthwash settings, and a conversion model was developed.
We tested the conversion model in five populations: healthy adults, healthy children, and patients with COPD, asthma, and alveolitis. F_{ENO} conversions in the mixed adult population, in healthy adults and in children, showed the lowest deviation between estimated F_{ENO} from 100 mL/s and measured F_{ENO} at 50 mL/s: -0.28 ppb, -0.44 ppb, and 0.27 ppb respectively. In patients with COPD, asthma and alveolitis the deviation was -1.16 ppb, -1.68 ppb, and 1.47 ppb respectively. We proposed a valid model to convert F_{ENO} in healthy or mixed populations, as well as in subjects with obstructive pulmonary diseases, and found it suitable for converting F_{ENO} measured with different expiratory flows to the standard flow in large epidemiological data, but not on individual level.

In conclusion, a model to convert F_{ENO} from different flows to the standard flow was established and validated.

Keywords: asthma; fractional exhaled nitric oxide (F_{ENO}); mouthwash; alveolitis; COPD; adults; children, multiple-flow.

Introduction

Chronic bronchial inflammation of the respiratory mucosa can lead to bronchial hyperreactivity and airway obstruction. Clinicians often employ fractional exhaled nitric oxide (F_{ENO}) to evaluate bronchial eosinophilic inflammation (National Institute for Health and Care Excellence, 2017). F_{ENO} values are flow-dependent and an expiratory flow rate of 50 mL/s mirrors the bronchial nitric oxide (NO) production and not the NO with peripheral origin (Tsoukias and George, 1998, Högman et al., 2000). For this reason, F_{ENO} measurement is currently standardised at the expiratory flow rate of 50 mL/s (2005, Horváth et al., 2017). Prior to the standardisation, F_{ENO} was acquired in Northern Europe with expiratory flow rates of 50-300 mL/s (Högman et al., 1997, Ekroos et al., 2002, Rouhos et al., 2008) and a previous guideline endorsed the use of flow rates between 167 and 250 mL/s (Kharitonov et
al., 1997). Many pioneers in F_{ENO} investigation adopted a flow rate of 100 mL/s (Kharitonov and Barnes, 2001). Unfortunately, data measured at different flow levels have been difficult to compare, since F_{ENO} values are affected by the flow rate used and represent NO from anatomically different lung parts. Therefore, a conversion method to interpolate F_{ENO} values to equivalent F_{ENO} values at diverse flows was needed. Since the lowering effect of mouthwashes on F_{ENO} values is well documented (Lassmann-Klee et al., 2018), the conversion method should address also the mouthwashes.

The aim of this study was to establish a method for converting F_{ENO}, measured at different expiratory flow levels, to the standard F_{ENO} measured at 50 mL/s and validate this method. Further on, we aimed to determine the need of considering the mouthwashes in the conversion method.

Glossary

F_{ENO} Fractional exhaled nitric oxide

\hat{F}_{ENO} Estimated fractional exhaled nitric oxide

\dot{V} Expiratory flow rate

NO Nitric Oxide
Methods

Data acquisition

We recruited 30 healthy or asthmatic adults as volunteers (henceforth referred as “mixed adult population”) to develop a conversion method. We have previously described this population (Lassmann-Klee et al., 2018). The volunteers were adult patients (n=9) or healthcare workers (n=21). The patients invited were previously referred for \textit{FENO} assessment to the Laboratory of Clinical Physiology or to the Skin and Allergy Hospital at the Helsinki University Central Hospital area. The healthcare employees were included in the study without exclusions. The patients enrolled had respiratory symptoms or a chronic respiratory disease, including asthma (n=4), eosinophilic bronchitis (n=1), building-related respiratory symptoms (n=3), and Sjögren’s syndrome (n=1). Spirometric data (n=25) were analysed and none of the participants had actual bronchodilator reversibility (Pellegrino et al., 2005).

\textit{FENO} measurements were performed at the Finnish Institute of Occupational Health and at the Skin and Allergy Hospital with CLD 88 sp chemiluminescence NO analysers and EXHALIZER®’s D devices using SPIROWARE® software (Eco Medics AG, Switzerland). The devices were calibrated in compliance with the producer’s specifications: use of certified span gas (AGA Gas BV, Amsterdam, Netherlands) and a zero-air filtering system (DENOX 88 unit). Additionally, a calibration syringe (Hans Rudolph Inc., USA) was used to calibrate the ultrasonic flow sensor. We complied with all advices from the ATS/ERS statement (ATS/ERS, 2005).
We performed F_{ENO} measurements in our mixed adult population (n=30) from September 2016 until May 2017, and the tests for each volunteer were scheduled on 2 consecutive days. All the 30 volunteers followed a mouthwash protocol with tap water and carbonated water. Detailed description on the mouthwashes’ protocol is available in our recent study (Lassmann-Klee et al., 2018). Briefly, the F_{ENO} measurements were performed after a mouthwash with 100 mL of tap water at each flow level. After 15 min, all measurements were repeated after a mouthwash with 100 mL of carbonated water at each flow level. The mouthwashes’ effect, duration and chemical composition is well documented (Lassmann-Klee et al., 2018).

Secondly, we selected 10 healthcare workers from the aforementioned volunteers to perform an additional measurement phase. The selection criterion was inclusion only of those employed at the Skin and Allergy Hospital. In the third appointments, the 10 healthcare workers performed the measurements without a mouthwash.

F_{ENO} was acquired from all participants at the following multiple expiratory flow rates: 50, 30, 100 and 300 mL/s. At least two measurements of F_{ENO} were obtained at each flow level. The values were accepted, if its variation was less than 2 ppb.

Validation

For validating our conversion method, 5 different datasets of previously published articles acquired at the Tampere University Hospital were available. They contained multiple-flow data from 69 healthy adults (Lehtimäki et al., 2010), 66 healthy children (Sepponen et
al., 2008), 74 steroid-naive adults with COPD (Lehtimäki et al., 2010), 40 steroid-naive adults with asthma (Lehtimäki et al., 2001), and 17 subjects with untreated alveolitis (Lehtimäki et al., 2001). The validation process is explained in the statistical section.

This study followed the ethical principles of the declaration of Helsinki (World Medical Association, 2013) and received approval from an ethical committee (99/13/03/00/15)(2013). All participants signed an informed consent.

Statistics

Modelling the conversion method

Analyses were performed using RSTUDIO® version 1.1.383 frontend to the R statistics language (R Core Team, 2018). We agreed on a significance level of $\alpha=0.05$ as significant. We calculated the arithmetic mean from individual F_{ENO} values obtained at each flow level. The mean values were plotted against the expiratory flow rate \dot{V} in a double logarithmic scale and we performed a non-linear regression. We obtained a slope and intercept and analysed the regression line to develop our conversion model. To further refine the model, we acquired a non-linear least-squares estimation of the non-linear model parameters. This model was used to estimate \hat{F}_{ENO} values from F_{ENO} values measured at different flow rates.

Validation

To test the validity of our model, we converted F_{ENO} values measured at 30 mL/s, 100 mL/s, and 300 mL/s to estimated \hat{F}_{ENO} values for a standard flow rate of 50 mL/s. Afterwards, we compared the estimated \hat{F}_{ENO} values to the actual F_{ENO} measured at 50 mL/s.
To assess the agreement between estimated \hat{F}_{ENO} and measured F_{ENO}, we performed an analysis (see below) according to Bland and Altman (2010). Further on, the correlation coefficient rho was obtained with the Spearman’s formula to investigate linearity.

To validate our conversion model in different external populations, we compared the estimated \hat{F}_{ENO} converted from 100 mL/s with F_{ENO} measured at 50 mL/s or 40 mL/s. For this external validation a method described by Bland and Altman (2010) was employed. Accordingly, we obtained the individual differences of F_{ENO}, the mean of differences (bias), the 1.96 standard deviations of the mean (95% limits of agreement).

Additionally, we performed a linear regression analysis (glm) between F_{ENO} values measured at 50 mL/s after the tap water and carbonated water mouthwashes, to obtain a relation between the mouthwashes and to provide an additional equation to convert measurements with these two mouthwashes to the standard flow level (50 mL/s).

When necessary, raw data were examined for outliers using the absolute deviation around the median (3 deviations as threshold). If cases were omitted, the conversion was repeated and the differences and level of agreements adjusted (Leys et al., 2013).

Results

Conversion model

We plotted the mean F_{ENO} values against the expiratory flow rate \dot{V} and performed a non-linear regression. Acquiring non-linear least-squares parameter estimates, resulted in a slope...
of -0.8416 SE(0.3192) for carbonated water, a slope of -0.84 SE(0.2989) for tap water, and a slope of -0.83111 SE(0.05424) in the absence of a mouthwash. In the latter case the equation model can be further defined as:

\[\hat{F}_{ENO} = k \cdot \dot{V}^{-0.83111} \]

(1)

Plotting our model with equation 1 using measured \(F_{ENO} \) and \(\dot{V} \), as well as calculated values for \(k \), resulted in Figure 1. [Figure 1 near here]

The linear regression of \(F_{ENO} \) at 50 mL/s after a tap water mouthwash in relation to carbonated water, resulted in a slope coefficient of 1.055 ppb and intercept of 0.354 ppb \((p<0.001)\).

When employing the different estimating slopes for the \(\hat{F}_{ENO} \) conversions with tap water and carbonated water mouthwashes, the mean estimated \(\hat{F}_{ENO} \) for the carbonated water mouthwash was ca. -4.5 % lower than the mean estimated \(\hat{F}_{ENO} \) for tap water at all flow levels (unadjusted).

Validation results in mixed adult population

Using equation 1, we calculated the values for \(\hat{F}_{ENO} \) (flow level 50 mL/s) interpolated from data obtained at 100 mL/s. Applying the (Bland and Altman, 2010) method resulted in mean (SD) differences between the estimated \(\hat{F}_{ENO} \) (flow level 50 mL/s) and the measured \(F_{ENO} \) (flow level 50 mL/s) of -0.45(2.44) ppb, upper 95% limit of agreement of 4.34 ppb and lower 95% limit of agreement of -5.23 ppb. The measured \(F_{ENO} \) and the estimated \(\hat{F}_{ENO} \) had a good correlation (Spearman’s \(\rho=0.87; p<0.0001 \)).
We also estimated \(\hat{F}_{ENO} \) (50 mL/s) from values measured at all flow levels and mouthwash settings. All differences with the (Bland and Altman, 2010) method showed a good agreement, the total unadjusted mean of the absolute deviation of \(\hat{F}_{ENO} \) from \(F_{ENO} \) was 0.72 ppb. All estimated values were highly correlated with corresponding measured values. Table 1 summarises these results. Figure 2 exemplifies the unadjusted mean differences of \(\hat{F}_{ENO} \) and \(F_{ENO} \) after applying Equation 1 (conversion with carbonated water mouthwash from flow of 100 mL/s). After adjusting measured \(F_{ENO} \) by removing outliers and performing a new estimation, a better agreement was found between estimated \(\hat{F}_{ENO} \) and measured \(F_{ENO} \), total mean of the absolute deviations of \(\hat{F}_{ENO} \) from \(F_{ENO} \) was 0.66 ppb. The adjusted results after controlling for outliers can be also found in Table 1.

Validation results in external populations

With the same approach, we converted \(F_{ENO} \) data obtained at 100 mL/s (Lauri Lehtimäki et al., 2001; Sepponen et al., 2008; Lehtimäki et al., 2010; Lehtimäki et al., 2010) to estimated \(\hat{F}_{ENO} \) (flow level 50 mL/s or 40 mL/s) without a mouthwash (Equation 1). The mean difference between estimated \(\hat{F}_{ENO} \) and measured \(F_{ENO} \) was lowest (0.27 ppb) in the healthy-children group, followed by the healthy-adult group (-0.44 ppb), as shown in figure 3. The mean difference illustrated in figure 2 of steroid-naive adults with asthma was -1.68 ppb. In figure 4 the mean difference shown is -1.16 ppb in steroid-naive adults with COPD, and 1.47 in the untreated alveolitis population. The healthy groups had narrow limits of agreement, in contrast to the groups with diseases. Table 2 synthesises these results. Additionally, figure 5 demonstrates the distribution of the differences in all populations. Table 3 contains the correlation between the measured and estimated \(F_{ENO} \) values and provides information concerning the linearity between the values.
Discussion

Conversion model
We found that using a non-linear regression yielded a simple model to convert F_{ENO} values measured at different flows to estimated F'_{ENO} at 50 mL/s. To prove the feasibility of the equation, we compared estimated F'_{ENO} levels at the standard flow (50 mL/s) from all flow levels (30, 100 and 300 mL/s), with F_{ENO} acquired at 50 mL/s and found a good mean agreement between the estimated and measured values. The limits of agreement between estimated F'_{ENO} and F_{ENO} were reasonable.

Validation
Assessment of the conversion in external datasets, including data of a wide-range of pulmonary diseases and multiple-flow F_{ENO} values, confirmed these previous findings. The conversion model developed showed the lowest deviation in F_{ENO} conversions in healthy children, healthy adults and in our mixed asthmatic and healthy adult population. In the steroid-naive asthmatic, alveolitis and COPD populations, the average differences in F_{ENO} were moderate with moderate limits of agreement. In the population with COPD, some single individuals showed a considerable deviation.

We acknowledge the limitation of this conversion procedure, i.e. being only an approximation that may result in a considerable deviation between estimated and physiological values especially at extreme F_{ENO} and/or flow levels, as observed in conversions from low flow (30ml/s) or high expiratory flow (300 mL/s) levels. Nevertheless, this equation is useful when comparing the F_{ENO} medians of large population data measured.
at different flow levels, being very reliable on the group level, although not on individual level. The conversion model developed suits best F_{ENO} conversions in healthy adults, healthy children and in a mixed adult population, showing the lowest deviation. This novel conversion model mimics physiological expiratory NO values proportional to expiratory flows. Similar F_{ENO} and expiratory flow curves were previously described by other researchers (Tsoukias and George, 1998, Silkoff et al., 2000), but this model uses a simplified approach in estimating F_{ENO} and makes no claim in predicting flow-independent parameters.

Since the conversion model developed derives from healthy and asthmatic adults without alveolar diseases, the slope reflects only very low amounts of alveolar nitric oxide concentration (C_{ANO}). We previously determined C_{ANO} in our mixed healthy and asthmatic group and all results were under 2.3 ppb (Lassmann-Klee et al., 2018). Logically the slope and the estimating equation would change, if switching the participants with subjects with high alveolar NO. The conversion method produces errors in those subjects in whom the relation between alveolar and bronchial NO production is very different from the group mean, as the slope between F_{ENO} and \dot{V} is very different in these subjects. Therefore, the model may result in erroneous estimates when applied to subjects with known high alveolar nitric oxide concentrations. Emphasis should be made, not to employ the model without discretion in this type of subjects. The elimination of outliers could represent a limitation of our study, although we did not observe drastic changes when comparing the bias between crude and adjusted data. This statistical adjustment merely narrowed the limits of agreement, and served the purpose of demonstrating how the model estimates F_{ENO} values stemming from adjusted datasets.
Further on, regression estimates were obtained for FENO values between the mouthwashes, in order to facilitate an interpolation between FENO values measured at 50 mL/s after carbonated, and tap water, and vice versa. Our estimating equation provides different slopes for both mouthwashes. The mean estimated FENO values were ca. 4% lower for the carbonated water mouthwash than the tap water mouthwash. This approximate difference between these mouthwashes was previously confirmed (Lassmann-Klee et al., 2018). The conversion model succeeds also in considering the mouthwashes.

In conclusion, we developed an equation for converting FENO values obtained with different flow levels to FENO with standard flow (50 mL/s), taking also into account the eventual mouthwash. We proposed a novel model to convert FENO in healthy populations, as well in subjects with obstructive pulmonary diseases. We conclude that the model is reliable in converting FENO in large epidemiological data and might be applied in small scale populations with pulmonary diseases, but not on individual level.

Acknowledgments

We thank the staff members: Sari Fischer, Helena Punkari and Elina Voutilainen for performing the FENO measuring and also Tommi Pallasaho for data collection.

Funding

This work was supported by the Nordic Council of Ministers, NordForsk Institution (The Nordic Epilung Study), the Nummela Sanatorium Foundation (PP 2015, 2017), (AS 2016) and Finnish State Funding for University-level Health Research (TYH: 2013354). The Research Foundation of the Pulmonary Diseases (PLK 2017, 2018), Tampere Tuberculosis Foundation: Eero Härmäläinen (PLK 2017, 2018), Ida Montin Foundation (PLK 2017), Väänö and Laina Kivi Foundation (PLK 2017, 2018), the University of Helsinki (PLK 2019).

This article is protected by copyright. All rights reserved.
Disclosures

No conflicts of interest are declared by the author(s).

References

Asthma: diagnosis, monitoring and chronic asthma management | Guidance and guidelines | NICE.
[Figure legends]

Figure 1. F_{ENO} as a function of expiratory flow (without mouthwash), n=10. Curve shows the equation $\hat{F}_{ENO} = k \cdot \dot{V}^{-0.8311}$.

Figure 2. Bland-Altman plot with mean of measured F_{ENO} and estimated \hat{F}_{ENO} from 100 mL/s in asthmatics (grey dots, n=40) and our mixed adult population (black dots, n=30), plotted against the differences in F_{ENO}. In asthmatics: mean differences (grey dotted line), 1.96 standard deviations (grey dot-slashed line). In mixed adult population: mean differences (black solid line), 1.96 standard deviation (black slashed line). In asthmatics F_{ENO} measured at 40 mL/s. In mixed adult population F_{ENO} measured at 50 mL/s after carbonated water mouthwash.

Figure 3. Bland-Altman plot with mean of F_{ENO} measured at 50 mL/s and estimated \hat{F}_{ENO} from 100 mL/s in healthy children (grey dots, n=66) and in healthy adults (black dots, n=69), plotted against the differences in F_{ENO}. In healthy children: mean differences (grey dotted line), 1.96 standard deviations (grey dot-slashed line). In healthy adults: mean differences (black solid line), 1.96 standard deviation (black slashed line).

Figure 4. Bland-Altman plot with mean of measured F_{ENO} and estimated \hat{F}_{ENO} from 100 mL/s in COPD patients (grey dots, n=72) and patients with alveolitis (black dots, n=17), plotted against the differences in F_{ENO}. In COPD patients: mean differences (grey dotted line), 1.96 standard deviations (grey dot-slashed line). In patients with alveolitis: mean differences (black solid line), 1.96 standard deviation (black slashed line). In patients with alveolitis F_{ENO} measured at 40 mL/s. In COPD patients F_{ENO} measured at 50 mL/s.

Figure 5. Density plot with mean differences between F_{ENO} measured at 50 mL/s or 40 mL/s and estimated \hat{F}_{ENO} from 100 mL/s, and the density of the individual mean differences in all study groups.
Table 1. Bland-Altman statistics in our mixed healthy and asthmatic adult population (n=30) and in healthcare workers (n=10) with mean, bias†, levels of agreement, and standard deviation (SD) of the differences between estimated \hat{F}_{ENO} from different flow levels and mouthwashes, and measured F_{ENO} at 50 mL/s (tap water: 27.27 ppb; carbonated water: 25.51 ppb; no mouthwash: 22.05). Raw data and adjusted values for outliers. Rho according to Spearman’s test.

| Mean estimated \hat{F}_{ENO} (ppb) at 50 mL/s from flow level and mouthwash | level of agreement | level of agreement | \(\text{bias}^\dagger\) | lower | upper | SD | \(\text{bias}^\dagger\) | lower | upper | SD | \(\text{rho} \)$ | \(\$\) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 30 mL/s; tap | 25.24 | -2.03 | -11.17 | 7.10 | 4.66 | 1.23 | -5.44 | 3.0 | 2.15 | 0.96 | 3 |
| 100 mL/s; tap | 26.99 | -0.28 | -7.42 | 6.86 | 3.64 | -0.11 | -3.67 | 3.44 | 1.81 | 0.98 | 3 |
| 300 mL/s; tap | 26.27 | -1.00 | -19.02 | 17.01 | 9.19 | -0.74 | -5.79 | 7.27 | 3.33 | 0.95 | 2 |
| 30 mL/s; carbonated | 24.23 | -1.28 | -4.92 | 2.36 | 1.86 | -1.15 | -4.90 | 1.90 | 1.73 | 0.99 | 3 |
| 100 mL/s; carbonated | 25.65 | -0.13 | -4.28 | 4.55 | 2.25 | -0.08 | -3.32 | 3.16 | 1.65 | 0.99 | 4 |
| 300 mL/s; carbonated | 25.07 | 0.44 | -13.32 | 12.43 | 6.57 | 0.99 | -4.69 | 6.67 | 2.90 | 0.95 | 4 |
| 30 mL/s; no mouthwash | 21.64 | -0.41 | -5.89 | 5.06 | 2.79 | -0.41 | -5.89 | 5.06 | 2.79 | 0.84 | 0 |
| 100 mL/s; no mouthwash | 21.60 | -0.45 | -5.23 | 4.34 | 2.44 | -0.45 | -5.23 | 4.34 | 2.44 | 0.87 | 0 |
| 300 mL/s; no mouthwash | 21.62 | -0.43 | -5.67 | 4.82 | 2.68 | -0.43 | -5.67 | 4.82 | 2.68 | 0.82 | 0 |

† average of the differences between estimated \hat{F}_{ENO} and measured F_{ENO}. ‡ Number of observations excluded with the adjustment.
Table 2. Bland-Altman statistics with bias†, levels of agreement, and standard deviation (SD) of the differences between estimated \tilde{F}_{ENO} from 100 mL/s (Equation 1) and measured F_{ENO} at 50 mL/s or 40 mL/s.

<table>
<thead>
<tr>
<th>Population</th>
<th>bias†</th>
<th>lower</th>
<th>upper</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed healthy and asthmatic adults</td>
<td>-0.28</td>
<td>-7.42</td>
<td>6.86</td>
<td>3.64</td>
</tr>
<tr>
<td>Healthy adults</td>
<td>-0.44</td>
<td>-3.87</td>
<td>2.98</td>
<td>1.74</td>
</tr>
<tr>
<td>Asthmatic</td>
<td>-1.68</td>
<td>-11.36</td>
<td>7.99</td>
<td>4.94</td>
</tr>
<tr>
<td>Healthy children</td>
<td>0.27</td>
<td>-1.94</td>
<td>2.48</td>
<td>1.13</td>
</tr>
<tr>
<td>COPD</td>
<td>-1.16</td>
<td>-11.46</td>
<td>9.13</td>
<td>5.25</td>
</tr>
<tr>
<td>Alveolitis</td>
<td>1.47</td>
<td>-8.28</td>
<td>11.22</td>
<td>4.98</td>
</tr>
</tbody>
</table>

† average of the differences between estimated \tilde{F}_{ENO} and measured F_{ENO}
Table 3. Spearman’s correlation between estimated \dot{F}_{ENO} from 100 mL/s and measured F_{ENO} at 50 mL/s, with 95% CI and p values.

<table>
<thead>
<tr>
<th>Population</th>
<th>correlation</th>
<th>lower</th>
<th>upper</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed healthy and asthmatic adults</td>
<td>0.99</td>
<td>0.98</td>
<td>0.99</td>
<td><0.001</td>
</tr>
<tr>
<td>Healthy adults</td>
<td>0.97</td>
<td>0.95</td>
<td>0.98</td>
<td><0.001</td>
</tr>
<tr>
<td>Asthmatic</td>
<td>0.99</td>
<td>0.98</td>
<td>0.99</td>
<td><0.001</td>
</tr>
<tr>
<td>Healthy children</td>
<td>0.97</td>
<td>0.95</td>
<td>0.98</td>
<td><0.001</td>
</tr>
<tr>
<td>COPD</td>
<td>0.98</td>
<td>0.96</td>
<td>0.98</td>
<td><0.001</td>
</tr>
<tr>
<td>Alveolitis</td>
<td>0.87</td>
<td>0.68</td>
<td>0.95</td>
<td><0.001</td>
</tr>
</tbody>
</table>