Title page

Names of the authors: H. Aromaa(1)*, K. Helariutta(1), J. Ikonen(1), M. Yli-Kaila(2), L. Koskinen(2) and M. Siitari-Kauppi(1)

Title: Analysis of 3H, 36Cl, 133Ba, 134Cs and 22Na from synthetic granitic groundwater: an in-situ through diffusion experiment at ONKALO

Affiliation(s) and address(es) of the author(s): (1)Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 University of Helsinki, Finland

(2)Posiva Oy, Olkiluoto, 27160 Eurajoki, Finland

E-mail address of the corresponding author: hanna.m.ahola@helsinki.fi
Analysis of ^3H, ^{36}Cl, ^{133}Ba, ^{134}Cs and ^{22}Na from synthetic granitic groundwater: an in-situ through diffusion experiment at ONKALO

H. Aromaa$^{(1)*}$, K. Helariutta$^{(1)}$, J. Ikonen$^{(1)}$, M. Yli-Kaila$^{(2)}$, L. Koskinen$^{(2)}$ and M. Siitari-Kauppi$^{(1)}$

$^{(1)}$Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 University of Helsinki, Finland

$^{(2)}$Posiva Oy, Olkiluoto, 27160 Eurajoki, Finland

Abstract

A method for analyzing ^3H, ^{36}Cl, ^{22}Na, ^{133}Ba and ^{134}Cs from simulated groundwater (SGW) samples was introduced. Gamma emitting radionuclides ^{22}Na, ^{133}Ba and ^{134}Cs were measured by using an HPGe-detector. Beta emitting ^3H and ^{36}Cl were separated from gamma emitting ^{22}Na, ^{133}Ba and ^{134}Cs. AgCl precipitation was used for the separation of ^{36}Cl from SGW samples with yields of 98 ± 2%. ^3H was separated by distillation with recoveries of 97 ± 3%. This method was used for the determination of activity concentrations of ^3H, ^{36}Cl, ^{22}Na, ^{133}Ba and ^{134}Cs in SGW samples collected from an in-situ through diffusion experiment (TDE).

Keywords
Introduction

The final disposal of spent nuclear fuel (SNF) from present nuclear power plants in Finland (Olkiluoto and Loviisa) is planned to take place in a crystalline granitic rock at Olkiluoto island (Eurajoki, Finland) [1]. The SNF will be protected by multiple barrier system. The fuel elements are placed into iron canisters with an outer layer of copper. The canisters are sealed and placed in vertical holes drilled in tunnels around 420 meters below ground, in Olkiluoto island. In the vertical holes, the canisters are embedded in compacted bentonite clay. The tunnels will be backfilled and the last barrier will be the bedrock itself. Behavior of radionuclides in fractured crystalline rock has been studied for the safety assessment calculations [2, 3]. The evaluation of the safety is done for hundreds of thousands of years in the final disposal site [4]. If released into the bedrock, radionuclides will be transported by advection along water conducting fractures and their retardation may occur by molecular diffusion from the fractures into the stagnant pore water and/or by sorption onto mineral surfaces in the adjacent rock matrix [5].

In-situ diffusion experiments in crystalline rock have been performed in several countries e.g. Sweden [6, 7, 8], Switzerland [9, 10] and Canada [11, 12] to demonstrate the behavior of radionuclides which might be released from the canisters into the bedrock in the disposal site of spent nuclear fuel. In 1996, in Canada series of in-situ experiments with iodide were conducted to study diffusion in sparsely fractured rock (SFR) [11, 12]. In Switzerland, the retention of several radionuclides was studied in-situ in Grimsel granodiorite via a long-term diffusion (LTD) experiment [9, 10]. In Sweden at the Äspö Hard Rock Laboratory, a Long Term Diffusion Experiment (LTDE) studied retention of 22 radionuclides in granodiorite [7, 8]. The focus in the Swedish experiment was more directed towards sorption rather than diffusion due to the relatively short experimental time of about six months.
The laboratory data of rock porosity and diffusion might be overestimated because of drilling artefacts caused by stress release and/or prehandling the rock core samples by sawing. The data that is used in safety case calculations is conservative and performed mostly in laboratory conditions. The in-situ experiments are performed to increase understanding and realism of diffusion data. This is the first time that diffusion of radionuclides is studied in-situ in Olkiluoto. In addition, this is one of the first through diffusion experiments in-situ in the world.

A project “rock matrix REtention PROperties” (REPRO) at ONKALO, which is the underground rock characterization facility in Olkiluoto, Finland, consists of extensive series of in-situ sorption and diffusion experiments that are supplemented by laboratory work [13, 14]. One of these in-situ experiments is a Through Diffusion Experiment (TDE) launched in autumn 2015 for studying the diffusion and sorption of 3H, 36Cl, 22Na, 133Ba and 134Cs in the Olkiluoto bedrock. The bedrock in the experimental site is mainly veined gneiss with veins of coarse-grained pegmatitic granite. The veined gneiss shows a weak to moderate banded foliation but locally also irregular foliation [15].

The radionuclides were chosen to cover different types of elements existing in the spent nuclear fuel. We decided to avoid radionuclides having several oxidation states because we wanted to “keep it simple”. 3H is a conservative tracer, 36Cl might show anion exclusion properties of rocks. 3H (HTO) and 36Cl are not assumed to have chemical reaction on the mineral surfaces in granitic rock. The scoping calculations done before the experiment showed that 3H and 36Cl could have a breakthrough from the injection borehole into the observation boreholes in a few years’ time during the in-situ experiment and possible anion exclusion could be seen as well [16]. For the sorbing tracers, it is likely that only slightly sorbing 22Na could be seen from the observation boreholes in reasonable timescales. Distribution coefficient of 22Na varied between 1×10^{-4} and 1×10^{-2} m3/kg in the granitic rock and its main minerals [14, 17]. 22Na is often used in in-situ experiments because it can be measured with online gamma measurements contrary to the beta emitters 3H and 36Cl. Besides these above mentioned three radionuclides, strongly sorbing elements 133Ba and 134Cs were added. Both cesium and barium are known to sorb by ion exchange mechanism having distribution coefficients between...
1×10^{-1} m3/kg and 1×10^{-3} m3/kg [3, 18-21]. 134Cs was chosen as an analogue for another cesium isotope, 135Cs, which is one of the most important radionuclides after 100 000 years of deposition and might found its way into the biosphere [22]. 133Ba is a chemical analogue of 226Ra which is safety relevant radionuclide in the spent fuel deposition because of the ingrowth of 226Ra from uranium [23].

In TDE, concentrated mixture of non-sorbing and sorbing radionuclides 3H, 36Cl, 22Na, 133Ba and 134Cs was injected to a meter long packed-off section of a drill hole filled with simulated groundwater (SGW) at a depth of 11–12 m from the niche wall. Some of the tracers used in the TDE experiment occur naturally in trace amounts in the groundwater. For example, 1.2 Bq/L 3H has been measured [24] in the Olkiluoto groundwater. 36Cl/total Cl ratio has been examined from 34 samples from the Olkiluoto groundwater taken from different depths (from ground level down to -819 m) and different locations in the Olkiluoto island, and the values of $(3-123) \times 10^{-15}$ were found [25]. Thus it is not possible that the background level of 36Cl disturbs the measurement of it in the in-situ experiment. Concentrations of 6.8×10^{-9} to 8.3×10^{-6} mol/L of stable natural cesium and 5.9×10^{-7} to 1.9×10^{-5} mol/L of stable natural barium has been measured from Olkiluoto groundwater in previous studies [26]. Breakthrough of the radionuclides is followed from the circulation SGW into two observation drill holes which are at a depth of about 10 centimeters from the injection borehole. In addition, the activity variation of the radioactive tracers is followed from the injection drill hole. In this work the activity of radionuclides in the injection hole was followed for 440 days.

The radionuclides 3H, 36Cl, 22Na, 133Ba and 134Cs cannot be measured straight from the TDE tracer cocktail because some of them are disturbing each other in the radioanalytical determination. 22Na, 133Ba and 134Cs are gamma emitting radionuclides, but they have also beta/electron emissions that will interfere the measurements of purely beta emitting 3H and 36Cl. Therefore, to measure beta emitting 3H and 36Cl from the SGW, 22Na, 133Ba and 134Cs need to be separated from the sample. 36Cl can be separated by AgCl precipitation which is a well-known method to separate chloride from solutions [27, 28]. 133Ba could be moved out from the SGW by precipitation as well and precipitation of barium as sulfates or carbonates [29, 30] is widely used procedure. 134Cs could be
separated from the SGW by ion exchange method, e.g. with cation exchange resin CsTreat® (Fortum, Espoo, Finland) [31, 32]. After the above-mentioned separation procedures, 3H could be measured together with 22Na by liquid scintillation counting (LSC) because 22Na interference is known to be low; only about 3-4 % of 22Na betas are shown in the energy window of 3H [28]. The 22Na activity (after gamma measurement) was subtracted from the LSC measurement results in the previous WPDE1&2 work [14, 28]. In this work, we decided to use another approach to separate 3H from the three gamma emitting radionuclides as well as from 36Cl. A distillation procedure, which is widely used for measuring 3H in natural waters, was introduced for analyzing the TDE tracers from the SGW solutions.

The aim of this work was to optimize the analysis procedure of the five radionuclides in the TDE tracer mixture, and to quantify the possible losses and interferences in the chemical separations. This procedure provides then analytically accurate data for the in-situ TDE experiment.

Materials and methods

The REPRO site

Fig. 1 presents the drill holes in the Repro niche where the in-situ experiments for studying radionuclides migration in Olkiluoto bedrock are done [14, 33]. Injection drill holes ONK-PP324, ONK-PP326 and ONK-PP327 were used in the TDE. ONK-PP326 is the injection drill hole and the observation drill holes are ONK-PP324 and ONK-PP327. The experiments are conducted at a depth of about 420 m in the REPRO-niche [33]. The bedrock of Olkiluoto is crystalline rock that is mainly composed of veined gneiss, diatexite and granitic pegmatoids [15]. In the REPRO niche at the depth where long term experiments are being performed, the main rock types are veined gneiss, pegmatitic granite, quartz gneiss and diatexitic gneiss [33].
Fig. 1 The experimental drill holes in REPRO niche Onkalo, Olkiluoto, Finland where the various in-situ experiments for studying radionuclides retention in Olkiluoto bedrock were performed. The locations of REPRO drill holes in the investigation niche ONK-TKU-4219 [14, 33]

Ground water

Before the TDE in-situ experiment, the groundwater sample was taken from the drill hole ONK-PP319 at Repro niche and it was analysed for chemical composition in the laboratory of TVO nuclear power company at Olkiluoto island. The SGW for the TDE was made to resemble this water. 260 mL of SGW was circulated in the injection drill hole and in the two observation drill holes each for 6 months before the experiment started and the radioactive tracers were injected into the SGW circulation. Circulation pumps with PEEK material in contact with the water were used for water circulation in all the three drill holes. The pumps ran continuously with a flow rate of 2 mL/min - 4 mL/min. During the 6 months equilibration period, four water samples from the circulated SGW were taken and the analysis of chemical composition were performed in Labtium Oy (Espoo, Finland). pH of the SGW was 7.9 ± 0.1 and the average chemical composition of the initial SGW and the one after the equilibration period are presented in
Table 1. It can be seen from the Table 1 that the concentrations of all components of the SGW decreased slightly during equilibration period. This is due to minor chemical processes between the elements of rock minerals and the synthetic ground water.

Table 1 The chemical composition of ONK-PP319 water and that of the SGW after six months equilibration period in the TDE in-situ injection drill hole

<table>
<thead>
<tr>
<th>Element</th>
<th>Concentration in ONK-PP319 water(^1) (mg/L)</th>
<th>Concentration in SGW after equilibration period of 6 months(^2) (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Br</td>
<td>34 ± 0.4%</td>
<td>33.8 ± 1.3</td>
</tr>
<tr>
<td>Ca</td>
<td>690 ± 0.3%</td>
<td>472 ± 6</td>
</tr>
<tr>
<td>K</td>
<td>14 ± 0.7%</td>
<td>10.7 ± 1.1</td>
</tr>
<tr>
<td>Sr</td>
<td>5.7 ± 0.6%</td>
<td>4.20 ± 0.04</td>
</tr>
<tr>
<td>Mg</td>
<td>34 ± 0.5%</td>
<td>28.2 ± 0.4</td>
</tr>
<tr>
<td>SiO(_2)</td>
<td>5.4 ± 0.5%</td>
<td>4.9 ± 0.3</td>
</tr>
<tr>
<td>Na</td>
<td>2 840 ± 0.9%</td>
<td>2 560 ± 20</td>
</tr>
<tr>
<td>Cl</td>
<td>5 890 ± 0.3%</td>
<td>5 310 ± 70</td>
</tr>
</tbody>
</table>

\(^1\)TVO laboratory

\(^2\)Labtium Oy, Espoo, Finland

Radionuclides

The rough activities of radionuclides that were injected into the TDE injection drill hole circulation in a 10 mL volume, were 200 MBq of \(^3\)H as tritiated water (HTO), 7 MBq of \(^36\)Cl as NaCl, 10 MBq of \(^22\)Na as NaCl, 1 MBq of \(^133\)Ba as BaCl\(_2\) and 1 MBq of \(^134\)Cs as CsCl [34]. Initially 11 mL of tracer solution was prepared, and 1 mL sample was saved for the accurate radioactivity analysis as well as this surplus solution was used to test the analysis methods.
Fig. 2 shows the beta/electron spectra of 3H, 36Cl, 22Na, 133Ba and 134Cs measured with LSC. As can be seen from the Fig. 2, the beta/electron emissions of 22Na, 133Ba and 134Cs are interfering with the 36Cl spectrum. They all are also interfering somewhat the 3H measurement and therefore it was decided that tritium will be separated from the sample solution by distillation [35] and measured with LSC alone. LSC measurements of 3H are sensitive to quenching effects as well as to other radionuclide’s interference. Distillation is a good method to separate 3H from other radionuclides since most of the impurities vaporize poorly at the boiling point of water [36]. Possible radionuclides that would vaporize are iodine isotopes as iodine gas and 14C as carbon dioxide but these were not used in this experiment. 36Cl has been separated from a weakly acidic water solution by AgCl precipitation in previous experiments [27, 35]. The same method was used also in this work. After precipitation, the AgCl precipitate was separated from the liquid phase and dissolved to ammonia and the solution was measured by LSC.

Fig. 2 Beta/electron spectra of 3H, 36Cl, 22Na, 133Ba and 134Cs measured with Tri-Carb 2910 TR liquid scintillation counter (Perkin Elmer)
The radionuclides 3H (37 MBq/g 29.7.2015) and 22Na (7.609 MBq/g 15.11.2012) were purchased from Perkin Elmer (Boston, USA). The producer gives 10% uncertainty for the product; these are not precision calibrated solutions. 36Cl (9.612 ± 0.106 MBq/g 20.12.2013), 133Ba (5.00 ± 0.12 MBq/g 1.3.2008) and 134Cs (35.22 ± 0.35 MBq/g 25.9.2014) were purchased from EuroStandard CZ (Prague, Czech Republic). Table 2 shows the decay-modes, energy information and half-lives of the radionuclides used in this work. Activities of gamma emitting radionuclides 22Na, 133Ba and 134Cs were measured directly from the subsamples taken from the ONK-PP326 circulation water by using a HPGe-detector (Canberra XtRa; Extended Range Coaxial HPGe Detector with spectral analysis program Gamma Acquisition & Analysis Genie/Canberra). 3H and 36Cl were measured with LSC (Perkin Elmer Tri-Carb 2910 TR, spectrum analyzer SpectraWorks). Liquid scintillation cocktail used in this work was OptiPhase HiSafe 3 (Perkin Elmer) that is capable of handling a broad range of solutes, particularly high ionic strength ones.

Table 2 Radionuclides used in the TDE and their main decay-modes, energies and half-lives [37]

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Main decay-mode/intensity (%)</th>
<th>Energies of γ and β emissions used in analyses (keV)</th>
<th>Half-life (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3H</td>
<td>$\beta^- / 100$</td>
<td>β 18.591 ± 0.003</td>
<td>12.32 ± 0.02</td>
</tr>
<tr>
<td>22Na</td>
<td>$\beta^- / 90.38 ± 0.03$</td>
<td>γ 1 274.537 ± 0.007</td>
<td>2.602 ± 0.002</td>
</tr>
<tr>
<td>36Cl</td>
<td>$\beta^- / 98.10 ± 0.14$</td>
<td>β 709.55 ± 0.05</td>
<td>30 000 ± 2 000</td>
</tr>
<tr>
<td>133Ba</td>
<td>ϵ / 100%</td>
<td>γ 356.0129 ± 0.0007</td>
<td>10.551 ± 0.011</td>
</tr>
<tr>
<td>134Cs</td>
<td>$\beta^- / 99.9997 ± 0.0001$</td>
<td>γ 604.721 ± 0.002</td>
<td>2.0652 ± 0.0004</td>
</tr>
</tbody>
</table>

AgCl precipitation for 36Cl measurement and 3H distillation were tested with two sets of samples. One set (four samples) included only radioactive 36Cl (1 400-2 400 Bq) in 5 mL of SGW for testing AgCl precipitation. Another set (ten samples) included only 3H (240 – 36 000 Bq) in 10 mL SGW for testing of the distillation. The three gamma emitting
radionuclides were not included into the test samples because by this way the recoveries of beta emitting radionuclides could be determined accurately without interferences.

AgCl precipitation tests

The testing of the separation of 36Cl by AgCl precipitation was performed adding 0.5 mL of 2 mol/L AgNO$_3$ to 5 mL SGW which chloride concentration was about 5 g/L. SGW contains 5310 mg/L of chloride (see Table 1) and no additional carrier for 36Cl was needed because in 5 mL of SGW there is 26.55 mg of chloride which is equivalent for 0.15 mol/L and thus the AgNO$_3$ concentration (0.0005 L×2 mol/L/0.005 L = 0.2 mol/L) was sufficient to precipitate all chloride from the solution. After mixing the solutions together, the mixture was stirred vigorously to ensure precipitation of all 36Cl. AgCl precipitate was separated from supernatant by centrifugation (4500 rpm for 15 minutes, Sigma centrifuge 3-16KL, Rotor 1180). Then the precipitate was washed twice with 5 mL of 18Ω MilliQ-H$_2$O and dissolved into 5 mL of 17% NH$_3$ solution. The dissolved precipitate was first measured with HPGe detector to check if there is any leak of gamma-emitting nuclides into the precipitate. After that, the dissolved chloride solution was mixed with 15 mL of liquid scintillation cocktail and beta activity of 36Cl was measured by LSC. The quenching curve for 36Cl was determined with 800 Bq 36Cl in 5 mL of SGW, 15 mL OptiPhase HiSafe 3 liquid scintillation cocktail and CCl$_4$ as a quenching substance.

Distillation tests for separating 3H

In the distillation procedure for determining 3H, the 10 mL SGW samples with known amount of 3H was heated with thermophore and the vapor was condensed in the water circulation condenser. The distillate that contained 3H as tritiated water was collected into a round-bottomed glass flask. These samples were distilled to near dryness to ensure good recovery for 3H. After that 5 mL aliquots were taken from the distillates (Fig. 3 step 3.2) and the 3H activity was measured with LSC. The quenching curve for 3H was determined with 3H internal standard capsules (Perkin Elmer, Boston, USA) with activity of 3 100 ± 40 Bq dissolved in 5 mL of SGW, 15 mL OptiPhase HiSafe 3 and CCl$_4$ as a quenching substance.
Final procedure for water sample analysis

The activities of radionuclides in the TDE injection solution were analysed with the developed procedure. In addition, the TDE water samples from the injection drill hole for following the variation of tracer activities were measured. Fig. 3 shows the schematics used for the accurate activity analysis of the TDE injection tracer solution (1 mL) and the TDE water samples (0.2 mL).

Fig. 3 Analysis scheme for activity measurements of water samples taken from the injection drill hole of the TDE. Separation of 36Cl is done by AgNO$_3$ precipitation and 3H by distillation.

The tracer activities of the TDE injection solution

The activities of the tracers in the TDE injection solution were analysed from a 1 mL surplus tracer solution (called now-on S1) that was made at the same time as the initial tracer solution. The S1 solution had to be diluted before analysis and first it was diluted to 10 mL with SGW (called now-on S2 dilution). Secondly 0.5 mL of the S2 dilution was diluted to 100 mL with MilliQ-H$_2$O (called now-on S3 dilution). From this S3 dilution two about 0.2 mL samples were taken for the activity analysis of 3H, 36Cl, 22Na, 133Ba and 134Cs. One of these 0.2 mL samples was further diluted with SGW to 5 mL for AgCl precipitation (called now-on S4a dilution) (marked to Fig. 3 as step 2) and the other
sample was diluted to 10 mL for distillation (called now-on S4b dilution) (marked to Fig. 3 as step 3). The S4a dilution has a chloride content of 25.48 mg and concentration of 0.14 mol/L so the 0.2 mol/L AgNO₃ concentration in the solution is sufficient for precipitate all chloride in the sample. Every dilution was weighed for the accurate calculation of injected tracer activities. Gamma activities of ²²Na, ¹³³Ba and ¹³⁴Cs were first measured from the S4a dilution (Fig. 3 step 1) by using HPGe-detector with measurement time of 4.4 hours. In long measurements with Ge-detector the background activities consist mainly of daughters of ²³⁸,²³⁵U and ²³²Th and of ⁴⁰K, from the surrounding building materials and of daughters of ²²²Rn. No background gamma peaks were overlapping with the energies of gamma-emitting radionuclides analysed in this work.

After gamma measurement, 0.5 mL of 2 M AgNO₃ was added (Fig. 3 step 2) to the 5 mL S4a dilution sample to precipitate AgCl. The AgCl precipitate was diluted to 5 mL of 17% NH₃ solution and the dilution was measured with Ge-detector (5 mL measurement geometry) for any gamma-active residue that could have been left to the sample despite the washing of the precipitate. After the gamma measurement, 15 mL of liquid scintillation cocktail was added (Fig. 3 step 2.2) and the sample was measured for ³⁶Cl activity with LSC.

The 10 mL S4b dilution sample was distillated to near dryness and the distillate was measured with HPGe-detector for any gamma active residue. 15 mL of liquid scintillation cocktail was added and the ³H activity of injection tracer solution was measured from 7 mL distillate sample with LSC.

Analysis of the water samples from TDE injection drill hole ONK-PP326

The decrease of the activities of tracers were followed by taking about 0.2 mL water samples from the injection drill hole ONK-PP326. Water samples were weighed for accurate mass. The first groundwater samples from the TDE injection drill hole was taken 6 hours after the experiment started in November 2015. Groundwater samples from the drill hole ONK-PP326 were taken frequently in the first week of the experiment. In total, 7 samples were collected in the first week. After that samples were taken every two weeks and after three months of the experiment samples were taken once a month.
nine months on samples were taken once per every two months. Total amount of 23 samples (until spring 2017) have been collected in 440 days.

Before measurements, the 0.2 mL TDE groundwater samples were diluted to 5 mL with SGW (Fig. 3 step 1) and activities of ^{22}Na, ^{133}Ba and ^{134}Cs were measured by HPGe-detector. The separations of ^{36}Cl and ^3H were performed as described in Fig. 3. All samples were weighed before and after dilutions and distillations and all the results were corrected to the initial 0.2 mL sample.

Results and discussion

AgCl precipitation tests

Table 3 shows the results of AgCl precipitation tests. ^{36}Cl from the supernatant, precipitate dissolved in NH$_3$ and two washing solutions was measured by LSC with a measurement efficiency of 89 ± 1%. The average yield of AgCl precipitation was 98 ± 2% in the four measured test samples.

When ^{36}Cl was analyzed from the water samples with all five tracer radionuclides, no gamma emitting radionuclides were present in the AgCl precipitate. A disturbance from ^3H possibly staying in sample is ruled out by setting the lower level of the ^{36}Cl counting window to exceed the maximum energy of ^3H betas. A detection limit of 0.15 Bq/g with a measurement time of 2 h was obtained for ^{36}Cl. The yield results are in good agreement with results of Hou et al. [26] and Qian et al. [27].

Table 3 The separation of ^{36}Cl by AgCl precipitation. Activity of ^{36}Cl in different solutions and the yield of AgCl precipitation are given

<table>
<thead>
<tr>
<th>Sample</th>
<th>Initial ^{36}Cl activity (Bq)</th>
<th>^{36}Cl activity in supernatant (Bq)</th>
<th>^{36}Cl activity in wash 1 (Bq)</th>
<th>^{36}Cl activity in wash 2 (Bq)</th>
<th>^{36}Cl activity in AgCl precipitate (Bq)</th>
<th>^{36}Cl yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 380 ± 15</td>
<td>64 ± 1</td>
<td>0.289 ± 0.01</td>
<td>0.30 ± 0.01</td>
<td>1 340 ± 15</td>
<td>97 ± 1</td>
</tr>
</tbody>
</table>
Distillation tests for separating 3H

Fig. 4 shows the quench correction curve for 3H. The recovery of 3H was calculated by comparing the known activity concentration of the 10 mL distillation sample to the measured activity concentration in the distillate. An average recovery of 97 ± 3 % was obtained, that is in good agreement with Atkinson et al. [38], who have reported distillation recoveries of >98% for 3H from environmental water samples. No gamma emitting radionuclides nor 36Cl were observed to leak to the distillate. Therefore 3H could be measured clean from disturbing spectral components with low detection limit of 0.4 Bq/g (measurement time 2 h).
Fig. 4 Quench correction curve for 3H. 5 mL SGW sample mixed with 15 mL of OptiPhase HiSafe 3 liquid scintillation cocktail. Samples measured with TriCarb 2910 TR (Perkin Elmer)

Activity of the TDE injection tracer solution

Activity of the injection tracer solution was analysed from the S4a and S4b dilutions. Gamma emitting radionuclides 22Na, 133Ba and 134Cs were measured from the S4a dilution by Ge-detector with detection limits of 0.45 Bq/g for 22Na (1275 keV), 0.65 Bq/g for 133Ba (365 keV) and 0.50 Bq/g for 134Cs (604 keV) with a measurement time of 4.4 h. Beta emitting radionuclide 36Cl was separated from S4a dilution and 3H was distilled from S4b dilution. Results of the TDE tracer solution analysis are shown in Table 4. The total amount of injected tracer activities of gamma emitting nuclides 22Na, 133Ba and 134Cs as well as beta emitting radionuclides 3H and 36Cl were corrected to the injected tracer volume which was 9.7 g.

Table 4 Injected tracer solution activities in TDE
<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Injected activity (MBq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3H</td>
<td>198 ± 3</td>
</tr>
<tr>
<td>36Cl</td>
<td>5.5 ± 0.2</td>
</tr>
<tr>
<td>22Na</td>
<td>22.4 ± 0.2</td>
</tr>
<tr>
<td>133Ba</td>
<td>2.09 ± 0.04</td>
</tr>
<tr>
<td>134Cs</td>
<td>1.92 ± 0.06</td>
</tr>
</tbody>
</table>

Analysis of the water samples from the TDE injection drill hole ONK-PP326

The variation of radionuclide activities (Bq/g of 3H, 36Cl, 22Na, 133Ba and 134Cs) in the TDE injection drill hole as a function of time are shown in Fig. 5. All activities are half-life corrected to the start of the experiment (19.11.2015). The general trend in all activities is falling; 133Ba and 134Cs the most and 36Cl the least. After 440 days from the start of the experiment, about 69% of the initial 36Cl concentration and about 52% of the initial 3H concentration is still present, whereas only 3% of initial 133Ba and 0.4% of the initial 134Cs is left in the injection drill hole circulation SGW. This is explained by the non-sorbing nature of 3H and 36Cl which decrease in the system only by diffusion into the pores of surrounding rock whereas the sorbing 133Ba and 134Cs activity decrease fast in the SGW due to the chemical reactions with the mineral surfaces of the rock. 133Ba and 134Cs distribution coefficients ($K_d = 1 \times 10^{-1} - 1 \times 10^{-3}$ m3/kg) [3, 26] are found to be large on veined gneiss which is the dominant rock type in the TDE area. Approximately 47% of 22Na is present in the injection drill hole circulation SGW after 440 days of the experiment. No radionuclides migration into the two observation drill holes ONK-PP324 and ONK-PP327 were observed during the 440 days of the experiment. Not even the non-sorbing radionuclides 3H and 36Cl had diffused through the 10 cm distance in the rock.
Fig. 5 Activities (Bq/g) of 3H (plus), 36Cl (minus), 22Na (star), 133Ba (dot) and 134Cs (squares) in the TDE injection drill hole as a function of time (in days)

Conclusions

Analysis method for 3H, 36Cl, 133Ba, 134Cs and 22Na from synthetic groundwater solution was introduced. It includes separation of 36Cl by AgCl precipitation and 3H separation by distillation. Gamma emitting nuclides are measured precisely from the groundwater samples without any sample treatment. The developed separation procedure for analysis of 3H, 36Cl, 133Ba, 134Cs and 22Na for the TDE in-situ experiment at ONKALO was found to be effective and simple, with detection limits for all the nuclides close to 0.5 Bq/g.

The radionuclide analyses show that the activities of 3H, 36Cl, 22Na, 133Ba and 134Cs in TDE injection hole are decreasing during the observation period of 440 days. Anyhow there were anomalies in the decreasing trend. These are most probably originated from strong pressure changes in the packed off drill hole sections in the early part of the experiment.
133Ba and 134Cs have adsorbed strongly onto the rock matrix which is shown in fast
decrease of their activity concentrations in the beginning of the experiment. 96% of the
initial 133Ba and >99% of 134Cs has been retained to the surroundings after 440 days
experiment. From the weakly sorbing 22Na and non-sorbing 3H and 36Cl app. 31-53% of
the activity is retained in the rock matrix of the injection drill hole surface and its
surroundings, but no activity has migrated to the observation holes at the time of this
analysis. All activities in the injection drill hole are still well above the detection limits.

Acknowledgements

The work described here was funded by Posiva Oy, Finland.

References

fuel at Olkiluoto – Radionuclide migration parameters for the geosphere. Posiva Report
2012-41
Radioanal Nucl Chem 311: 439-446
Solutions to and validation of matrix-diffusion models. Transport Porous Med 87(1):125-
149
tracer tests to determine retention properties of a block scale fracture network in granitic
rock at the Åspö Hard Rock Laboratory, Sweden. J Cont Hyd 70:271-297

