Tannic acid inhibits electrogenic Na+/HCO3− co-transporter activity in embryonic neural stem cell-derived radial glial-like cells

Tommy Nordström, Gao Zhenyu, Leif C. Andersson and Karl E.O. Åkerman

Self-renewing neural stem cells and progenitor cells are cell populations that generate radial glial cells and neurons through asymmetric division. Regulation of intracellular pH in stem cells with high metabolic activity is critical for both cell signaling and proliferation. We have recently found that a S0859-inhibitable electrogenic Na+/HCO3− co-transporter (NBCe1, Slc4a4), is the primary pH regulatory mechanism in stem cell-derived radial glial-like cells. Here we show, by using the voltage-sensitive fluorescent dye DiBAC4(3) and BCECF, a pH-sensitive dye, that an antioxidant, tannic acid (100 µM), can inhibit potassium- and calcium-dependent rapid changes in membrane potential and NBCe1 mediated pH regulation in brain-derived glial-like cells in vitro. Furthermore, neural stem cell differentiation and neurosphere formation (proliferation) were completely inhibited by tannic acid. The present study provides evidence that tannic acid is a natural inhibitor of NBCe1. It is tempting to speculate that tannic acid or related compounds that inhibits NBCe1-mediated pH regulation in glial-like cells may also have bearing on the treatment of glial neoplasms. NeuroReport 31: 57–63 Copyright © 2019 The Author(s). Published by Wolters Kluwer Health, Inc.

Keywords: calcium, hyperpolarization, Na+/HCO3− co-transporter, NBCe1, pH, stem cell, tannic acid

Introduction

Tannins represent a large family of water-soluble phenolic compounds that are present in many plants. Non-hydrolysable condensed tannins (proanthocyanidins) and hydrolysable tannins like tannic acid (TA) are known to have strong antioxidant properties [1]. The antioxidant properties are due to the fact that they can bind redox active metals such as iron and copper and thereby inhibit the formation of reactive oxygen species (free radicals) through the Fenton reaction [2–4].

During the past decade, it has been shown that TA can inhibit proliferation and migration of prostate and colon cancer cells [5,6]. Moreover, TA has been reported to affect cell cycle progression and induce G1 arrest in squamous cell carcinoma, breast cancer and leukemic T cells [7] and to induce apoptosis in prostate and glioma cell lines [8–10]. TA has also been shown to protect brain tissue during ischemia [11] and protect brain tissue exposed to heavy metals [12].

In some reports, specific intracellular signaling steps (involving kinases and transcription factors) have been shown to be affected by TA [13–16]. However, to these reported intracellular effects, TA has also been shown to interfere with a variety of anion and cation channels in the cell membrane. A calcium-sensitive chloride channel TME16A can efficiently be blocked by TA [17–19]. Effects on potassium channels hERG and Kv channels [20,21] and L-type calcium channels have also been reported [22].

Here we have studied the effects of TA on the electrogenic Na+/HCO3− co-transporter (NBCe1), which is the primary pH regulatory mechanism in stem cell-derived glial-like cells [23]. Our results show that TA has strong impact on NBCe1 mediated pH regulation in glial-like cells. The scenario that TA depresses cell proliferation and progression through the cell cycle by inhibiting NBCe1 mediated pH regulation is discussed.

Materials and methods

Cell culture

Neural progenitor cells (NPCs) were generated as previously described [24]. Cells were scraped from the anterior portion of the lateral wall of the lateral ventricles of E14 embryonic mouse brains. The cells were grown as free-floating aggregates termed neurospheres. Dissociated cells were plated in DMEM/F-12 ‘complete’ culture medium (Gibco, Life Technologies) containing 2 mM L-glutamine, 15 mM HEPES, 100 U/ml penicillin, 100 µg/ml Streptomycin (all from Sigma-Aldrich, Helsinki, Finland), B27 supplement (Gibco), 20 ng/
ml epidermal growth factor (EGF; PeproTech EC Ltd, London, UK) and 10 ng/ml basic fibroblast growth factor (bFGF, PeproTech EC Ltd) and maintained in a humidified 5% CO₂, 95% air incubator at 37°C. Within 3–5 days, the cells grew as free-floating neurospheres and were passaged after mechanical dissociation.

Materials
2′,7′-bis(carboxyethyl)-5,6-carboxyfluorescein acetoxymethyl ester (BCECF-AM) and bis-(1,3-dibutylbarbituric acid) trimethine oxonol (DiBAC₄(3)), were from Invitrogen, Life Technologies (Molecular Probes). All other chemicals used in the study were purchased from Sigma-Aldrich.

Solutions
The HEPES buffered medium (HBM) consisted of (in mM): 137 NaCl, 5 KCl, 2 CaCl₂, 0.44 KH₂PO₄, 4.2 NaHCO₃, 10 glucose, 10 HEPES and 0.5 MgCl₂. The pH was adjusted to 7.35 with NaOH. Low K⁺ medium contained 0.44 KH₂PO₄ (medium from which the KCl had been omitted). All experiments were performed at 37°C under normal atmospheric conditions (21% O₂, 0.038% CO₂ in air).

Measurement of intracellular pH
Intracellular pH was measured in NPCs cell migrat- ing outside the neurosphere using the cell-permeable probe BCECF-AM and a dual-wavelength InCytIm2 fluorescence imaging system (Intracellular Imaging Inc., Cincinnati, Ohio, USA) [25]. Cells differentiated for 3 days on poly-ornithine coated 25 mm round coverslips were loaded with 4 μM BCECF-AM in HBM for 12 minutes at 37°C. The cells were then washed three times with HBM, placed in the measuring chamber and transferred to a temperature-controlled chamber holder on the microscope (Nikon, TMS, 20x objective). During the experiment, the cells were superfused (1 ml/min) with warm (37°C) HBM pH 7.35. The cells were excited alternately with 490 and 440 wavelength light for 80 ms (rate of data capture 30/min) and the emitted fluorescence captured at 530 nm. The data were collected and analyzed with the Till Vision software and further processed with Origin 6.0 (OriginLab Corp.) software. At the end of each experiment, the cells were treated with depolarizing (20, 40 or 140 mM) K⁺-solutions containing 500 nM DiBAC₄(3) and the fluorescence signal was monitored. Membrane potential (E) was calculated using the Nernst equation assuming an intracellular potassium concentration of 140 mM and a temperature of 37°C. E = 2.303 × RT/zF × log10 ([K+]ᵢ/[K+]ₑ).

Neurosphere formation assay
NSCs spheres were dissociated by vigorous pipetting using a Pasteur pipette, centrifuged and re-cultured in DMEM/F-12 ‘complete’ culture medium (Gibco) containing 2 mM L-glutamine, 15 mM HEPES, 100 U/ml penicillin, 100 μg/ml Streptomycin (all from Sigma-Aldrich), B27 supplement (Gibco), 20 ng/ml EGF (PeproTech EC Ltd) and 10 ng/ml bFGF (PeproTech EC Ltd), and maintained in a humidified 5% CO₂, 95% air incubator at 37°C. For the assay, suspensions of single cells were plated in 24-well plates (2 ml/well) and incubated for 3 days. Neurospheres formed in the cultures were visualized and photographed by using an Axiovert 135 inverted microscope equipped with a Zeiss AxioCam HRm digital camera. The diameter of the neurospheres formed in the culture (indicative of proliferation potential) was measured by using the ImageG software.

Neuronal differentiation
For neuronal differentiation neurospheres were plated on poly-L-ornithine (Sigma) coated glass 25 mm round cover slips in the absence of EGF and FGF. Growth factor withdrawal induced spontaneous neuronal differentiation. The differentiated NPCs selected for pH and membrane potential measurements were single cells migrating towards the periphery, outside the neurosphere body. In the cell differentiation experiments, cells were allowed to differentiate for 3 days. Images were taken by using an Axiovert 135 inverted microscope equipped with a Zeiss AxioCam HRm digital camera (40x objective).
Statistics
Data are presented as means ± SEM (n = number of cells, N = number of independent experiments). In each experiment, 100 individual cells located from the neurosphere body edge to the outer edge of the culture were randomly chosen. Each experimental condition was repeated at least three times with independent NPC preparations. In all experiments, pH was allowed to decline for 4 minutes followed by calcium removal to initiate the pH recovery phase. Student’s unpaired t-test was used to compare differences between the two cell populations.

Results
Effect of tannic acid on low potassium induced hyperpolarization and repolarization after calcium removal
In a previous study, we used low extracellular potassium (K⁺ 0.44 mM) to trigger changes in the membrane potential in differentiated neural stem cells [23]. We found that, lowering extracellular potassium in the presence of 2 mM extracellular calcium-induced a prompt hyperpolarization (10–15 mV/min) in the whole cell population. A typical cell response in two cells that were hyperpolarized by superfusion with low extracellular K⁺ (0.44 mM) is shown in Fig. 1a and b. These cells, which are radial glial-like cells, were located in the inner area close to the neurosphere edge. In control cells, removal of extracellular calcium-induced a rapid depolarization of the membrane potential (Fig. 1a). In our hands, this depolarization is dependent on extracellular Na⁺ since it does not occur in medium where all Na⁺ is replaced with N-methyl-D-glucamine (data not shown). However, in the presence of 100 µM TA, the depolarization process was inhibited (Fig. 1b). Washout of TA triggered depolarization in a fraction of the cell population (Table 1).

Change in membrane potential and pH in stem cell-derived radial glial-like cells upon exposure to low extracellular K⁺ in the presence or absence of TA. (a) Low 0.44 mM K⁺ induced a hyperpolarization while a prompt depolarization occurred after removal of extracellular calcium. (b) In the presence of 100 µM TA, the depolarization induced by calcium removal was inhibited. Washout of TA after 7 minutes perfusion allowed depolarization in a fraction of the cells. (c) Intracellular pH response in inner radial-glial-like cells exposed to low extracellular K⁺ (0.44 mM K⁺) in the presence of 2 mM extracellular calcium. After 4 minutes of superfusion, extracellular calcium was removed. (d) In the experiment where TA was present, TA free perfusion with Ca²⁺ free medium containing 0.44 mM K⁺ was started at 7 minutes. In each individual experiment, membrane potential and pH responses from 100 cells were recorded. Representative traces are shown. Statistics of these experiments (three independent experiments) are shown in Table 1. TA, tannic acid.
Tannic acid affects NBCe1 mediated pH regulation in glial-like progenitor cells

We have previously shown that NBCe1 mediated pH regulation can be studied in stem cell-derived radial glial-like cells by manipulating the extracellular K⁺ concentration [23]. When this cell population is exposed to low extracellular K⁺, an intracellular acidification takes place due to electrogenic HCO₃⁻ extrusion, whereas H⁺ ions are left behind (Fig. 1c).

However, if extracellular calcium is removed, a rapid sodium-dependent depolarization takes place which in turn induces a rapid pH recovery due to HCO₃⁻ influx via the electrogenic Na⁺/HCO₃⁻ cotransporter NBCe1 (Slc4a4) [23] (1Na⁺/2HCO₃⁻ stoichiometry) (Fig. 1c). As shown in Fig. 1d, 100 µM TA slowed down the acidification process and completely inhibited the pH recovery process after calcium removal. However, rapid washout of the TA allowed pH recovery in a fraction of the cells (Fig. 1d and Table 1).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Effects of tannic acid on membrane potential and cytosolic pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Control cells</td>
</tr>
<tr>
<td>Effects of tannic acid on membrane potential</td>
<td></td>
</tr>
<tr>
<td>Low K⁺ induced membr. pot. change (mV)</td>
<td>−15.23 ± 0.65</td>
</tr>
<tr>
<td>Cells hyperpolarized (% of all cells)</td>
<td>100</td>
</tr>
<tr>
<td>Cells depolarized after Ca⁺⁺ removal (%)</td>
<td>28.0 ± 1.29</td>
</tr>
<tr>
<td>Cells depolarized after TA washout (%)</td>
<td>7.20 ± 3.75</td>
</tr>
<tr>
<td>Effects of TA on cytosolic pH</td>
<td></td>
</tr>
<tr>
<td>Low K⁺ induced pH change</td>
<td>−0.48 ± 0.65</td>
</tr>
<tr>
<td>Cells acidified (%)</td>
<td>36.97 ± 2.59</td>
</tr>
<tr>
<td>pH recovery after Ca⁺⁺ removal (%)</td>
<td>18.88 ± 1.57</td>
</tr>
<tr>
<td>pH recovery after TA washout (%)</td>
<td>8.73 ± 2.70</td>
</tr>
</tbody>
</table>

Values are means ± SEM calculated on the whole cell population; n = 3, N = 100 cells in each experiment.

TA, tannic acid.

*P < 0.005 vs. control (Student t-test).

Fig. 2

Inhibition of sodium/bicarbonate cotransporters (NBCs) with tannic acid affects neural stem cell proliferation. Images show neurospheres formed within 72 hours in control cell culture (a) and cells treated with 100 µM (b), 50 µM (c), 25 µM (d), 5 µM (e) and 1 µM TA (f). Representative images (10× objective) from one experiment are shown. The experiment was repeated three times with similar results.
cells form a network of radial processes that support neuronal migration and axon guidance. A typical cell differentiation pattern with an inner cell layer consisting of radial glial-like cells and an outer layer with radial glia cells and migrating neurons is shown in Fig. 3a. The presence of 5 µM TA, almost completely inhibited the formation of the glial layer and neurons and dead cells were found outside the neurospheres (Fig. 3c). However, treatment of neurospheres with 5 µM (Fig. 3e) or 25 µM TA (Fig. 3f) for 24 hours, followed by a washing step and re-culturing for 48 hours, resulted in cell differentiation in both cultures.

Discussion

We have recently shown that the dominating pH$_i$ regulating system in stem cell-derived radial glial-like cells is the electrogenic sodium bicarbonate co-transporter NBCe1 (Slc4a4) [23]. We reported that neural stem cell differentiation and proliferation could be inhibited by S0859, a potent NBCe1 inhibitor. To our knowledge, a natural inhibitor for NBCe1 has not yet been described.

Since, TA, a natural antioxidant, has previously been shown to affect various intracellular signaling systems, including cell proliferation and progression through the cell cycle, we here looked at its effects on pH$_i$ regulation.

![Fig. 3](image-url)

Inhibition of Na$^+$/HCO$_3^-$ cotransporter activity by tannic acid (TA) affects neural stem cell differentiation. Images show radial glia cells and migrating neurons formed within 72 hours after growth factors removal in control cell culture (a) and cells treated with 1 µM (b), 5 µM (c) and 25 µM (d) TA. Cells treated with 5 µM (e) and 25 µM (f) TA for 24 hours, washed and re-cultured for 48 hours in normal differentiation medium. A representative set of gray-scale images (40× objective) from one experiment out of three conducted are shown.
Here we show for the first time, that TA can interfere with a critical pH$_1$ regulating system in radial glial-like cells by blocking the NBCe1 activity. The block was evident in glial-like cells that had been acidified by low K$^+$ induced hyperpolarization. The rapid depolarization that took place in hyperpolarized cells after removal of extracellular calcium was efficiently blocked by TA. Our data indicate that during our experimental conditions, TA induced block on NBCe1 is either on a calcium-regulated Na$^+$ channel that is responsible for the depolarization or due to a direct effect on the NBCe. We think that the effect observed is directly on the NBCe1 since addition of 20 mM extracellular K$^+$ in the presence of TA allowed pH$_i$ recovery to control levels (recovery 0.005 pH/min as compared to 0.2 ± 0.03 pH/min in control cells). Washout of TA allowed pH$_i$ recovery to control levels (recovery rate 0.04 pH/min).

In addition to interfering with Na$^+$-dependent membrane potential changes and pH$_1$ regulation, we found that the effect observed is directly on the NBCe1 since addition of 20 mM extracellular K$^+$ in the presence of 100 µM TA to cells acidified with low extracellular potassium, triggered a rapid depolarization (19.5 ± 1.6 mV/min) but a very modest pH$_i$ recovery (0.005 pH/min as compared to 0.2 ± 0.03 pH/min in control cells). There are no conflicts of interest.

Acknowledgements

We are grateful for the laboratory assistance provided by Jarno Hörhä.

Supported by grants from the K. Albin Johansson foundation and the Magnus Ehrnrooth Foundation.

References

14. Yang EB, Wei L, Zhang K, Chen YZ, Chen WN. Tannic acid, a potent inhib-
Effects of tannic acid on pH regulation

Nordström et al.

