Gradients of vibrational coordinates from the variation of coordinates along the path of a particle

Pesonen, Janne

American Institute of Physics
2001-09-01

http://link.aip.org/link/?jcp/115/4402

Copyright (2001) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.
Gradients of vibrational coordinates from the variation of coordinates along the path of a particle

Janne Pesonen

Laboratory of Physical Chemistry, P.O. Box 55 (A. I. Virtasen aukio 1), FIN-00014 University of Helsinki, Finland

(Received 26 December 2000; accepted 14 June 2001)

The elements of the reciprocal metric tensor \([g]\), which appear in the exact internal kinetic energy operator,\(^1,2\)

\[
\dot{\gamma}^{(\text{int})} = \sum_{ij} \left[-\frac{\hbar^2}{2} \frac{\partial}{\partial q_i} + \frac{1}{J} \frac{\partial J}{\partial q_j} \right] g^{(q_i q_j)} \frac{\partial}{\partial q_j}
\]

\[
-\frac{1}{2} g^{(L_i L_j)} \dot{L}_j - \frac{\hbar}{2} g^{(L_i q_j)} \dot{L}_j \frac{\partial}{\partial q_j}
\]

\[
-\frac{\hbar}{2} \frac{\partial}{\partial q_i} + \frac{1}{J} \frac{\partial J}{\partial q_j} g^{(q_i q_j)} \dot{L}_j
\]

of a polyatomic molecule can, in principle, be written as the mass-weighted sum of the inner products of the measuring vectors \(e_a^{(q_i)}\) associated with the coordinates \(q_i\), (or, in the case of rotational degrees of freedom, to the body-frame components \(\hat{L}_i = u_i \cdot \hat{1}\) of the angular momentum operator \(\hat{1}\)), and to the nuclei of the molecule as

\[
g^{(q_i q_j)} = \sum_{a} \frac{1}{m_a} e_a^{(q_i)} e_a^{(q_j)}
\]

where \(N\) is the number of the particles, and \(m_a\) is the mass of the particle \(\alpha\). The \(J\) in Eq. (1) is the (absolute value of the) Jacobian, the indices \(i\) and \(j\) run from 1 to \(3N - 6\) for the shape coordinates, and from 1 to 3 for the angular momentum components, and to be precise, it is supposed that the integrations are performed using the volume-element \(d\tau = Jdq_1 dq_2 \cdots\). The values of the measuring vectors \(e_a^{(q_i)}\) at the reference configuration are the familiar Wilson’s \(s\)-vectors.\(^3\) In the case of vibrational degrees of freedom, the measuring vectors are the gradients of the vibrational coordinates,

\[
e_a^{(q_i)} = \nabla_a q_i
\]

It has been shown in Ref. 1 that the gradients can be directly and easily obtained for any geometrically defined shape coordinates by the vectorial differentiation. However, there is in some cases a more practical way to obtain these gradients from the variation of the coordinate \(q\), along the path \(x_a(t)\) of the particle \(\alpha\) as (p. 108 of Ref. 4)

\[
\dot{q} = \sum_{a} \dot{x}_a(t) \cdot \nabla_a q_i
\]

where I use the short-hand notation \(F = dF/dt\), and \(t\) is some scalar parameter. It should be mentioned, that all the rules of the scalar differentiation apply, with an exception of the commutativity. For example, the product rule reads as

\[
\frac{d}{dt}(FG) = \dot{F}G + FG\dot{G}
\]

because generally \(FG \neq GF\) unless one of them is a scalar (or a trivector). In order to give the reader a chance to compare the present method to other methods, I rederive the known gradients for the bond stretching.\(^1,3\)

Example 1: The most basic of all possible internal coordinates is the bond length \(r_{ab} = |r_{ab}| = (r_{ab} - r_{ab}^0)^{1/2}\), where \(r_{ab} = \mathbf{x}_b - \mathbf{x}_a\). When both sides of the equation,

\[
r_{ab}^2 = r_{ab} \cdot r_{ab}
\]

are differentiated with respect to some scalar parameter \(t\), the result

\[
2r_{ab}\dot{r}_{ab} = 2r_{ab} \cdot \dot{r}_{ab}
\]

follows. When the terms are rearranged, one obtains

\[
\dot{r}_{ab} = \frac{r_{ab} \cdot \dot{r}_{ab} - \dot{r}_{ab} \cdot (\mathbf{x}_b - \mathbf{x}_a)}{r_{ab}}
\]

where the coordinate gradients are easily picked with the help of Eq. (4) as

\[
\nabla_a r_{ab} = \frac{r_{ab} - \dot{r}_{ab}}{r_{ab}} = -\nabla_a r_{ab}.
\]

The present approach can often be used effectively to find the gradients of the shape coordinates, which are given as implicit functions of the nuclear positions, and would be...
very difficult (or impossible) to obtain by other methods. As an example of this kind, I derive the gradients of the eigenvalues \(\lambda_1, \lambda_2, \) and \(\lambda_3 \) of the moment tensor

\[
\mathcal{M}(\omega) = \sum_a m_a y_a y_a \cdot \omega,
\]

where \(y_a \) is the internal (center-of-mass) position

\[
y_a = x_a - X,
\]

and

\[
X = \sum_a \frac{m_a x_a}{M}
\]

is the center-of-mass of the molecule \((M = \sum_a m_a \) is the mass of the molecule). Incidentally, the eigenvectors \(u^t_1, u^t_2, \) and \(u^t_3 \) of the moment tensor are the principal axes of the molecule, because the moment tensor is related to the inertia tensor \(\mathcal{I}(\omega) \) as

\[
\mathcal{I}(\omega) = \sum_a m_a y_a^2 \omega - \mathcal{M}(\omega).
\]

The eigenvalues of moment tensor (or related coordinates, such as principal moments of inertia) have been used successfully to describe many of the most interesting features of reactive scattering involving three and four particle systems (such as atom and diatom reaction); see, e.g., Refs. 5–8. To my knowledge, the gradients of the eigenvalues of moment tensor have not been presented before in the literature.

Example 2: To find out the gradients of the eigenvalues of the moment tensor, we differentiate both sides of the eigenequation,

\[
\mathcal{M}(u^t_i) = \lambda_i u^t_i.
\]

By substituting \(u^t_i = \omega \times u^t_i \) (p. 100, Ref. 4) to the result, which in turn is dotted with \(u^t_i \), an equation

\[
\sum_a m_a u^t_i \cdot (\hat{\omega}_a y_a \cdot u^t_i + y_a \hat{y}_a \cdot u^t_i + y_a y_a \cdot \omega \times u^t_i) = \lambda_i
\]

follows. Because

\[
u^t_i \cdot \mathcal{M}(\omega \times u^t_i) = u^t_i \cdot \mathcal{M}(\omega) - \omega_j u^t_i \times u^t_j = 0
\]

(where \(\omega = \omega \cdot u^t_1 \), and the indices \(i, j, k \) are in cyclic order in the second last term in the right-hand side) as seen by the direct substitution of Eq. (14), one concludes that

\[
\lambda_i = \sum_a 2m_a y_a \cdot u^t_i \cdot y_a
\]

\[
= \sum_a 2m_a y_a \cdot u^t_i \cdot \left(\hat{x}_a - \frac{\sum_\beta m_\beta \hat{x}_\beta}{M} \right)
\]

and the coordinate gradients are extracted as

\[
\nabla_a \lambda_i = 2m_a \left(1 - \frac{m_a}{M} \right) y_a \cdot u^t_i \cdot u^t_j - \sum_\beta 2m_\beta \frac{m_a}{M} y_\beta \cdot u^t_i \cdot u^t_j
\]

\[
= \sum_\beta 2m_\beta \delta_{\alpha \beta} \frac{m_a}{M} y_\beta \cdot u^t_i \cdot u^t_j,
\]

where \(\delta_{\alpha \beta} \) is the Kronecker’s delta (\(\delta_{\alpha \beta} = 1 \) if \(\alpha = \beta \), and zero otherwise). However, because \(\sum_\beta m_\beta y_\beta = 0 \), the sum over the index \(\beta \) may be omitted, and the result can be simplified to

\[
\nabla_a \lambda_i = 2m_a y_a \cdot u^t_i \cdot u^t_j.
\]

It should be emphasized that Eq. (19) applies to a general \(N \)-body system without any restriction to number of particles. Because the eigenvectors \(u^t_i \) can be calculated relatively straightforwardly as functions of \(y_a \) (see Ref. 4), it should be simple to obtain the explicit expressions for the kinetic energy operator of an arbitrary \(N \)-body system (at least if it is simple to express \(y_a \cdot y_\beta \) in terms of the coordinates used). On the other hand, if the reciprocal metric tensor \(g^{(q_\alpha q_\beta)} \) is obtained as the inverse of covariant metric tensor \(\delta_{q_\alpha q_\beta} \) (as in Ref. 8), the expressions depend crucially on the number of nuclei, and in practice one needs to invert \(g^{(q_\alpha q_\beta)} \) separately for the systems of different size.

The method presented here also has the advantage that the gradients of the implicitly defined coordinates can often be obtained without the need to represent the coordinate in question explicitly in terms of the nuclear positions. Furthermore, the scalar differentiation used in this method is commutative operation, unlike the differentiation with respect to the position vector \(x_a \), i.e., \((d/dt)(CF) = CF \), where \(C \) is any multivector independent of \(t \). Thus, the reader who is not familiar with geometric algebra may find the current method more readily adopted than the method presented in Ref. 1.

I wish to thank both The Academy of Finland and The European Commission (Contract No. HPRN-CT-1999-00005) for financial support. I wish to thank Professor V. Aquilanti, Dr. Simonetta Cavalli, and Dr. Andrea Beddioni for kind discussions during my visit to the University of Perugia. I am also grateful to Professor L. Halonen for useful discussions and valuable comments on the manuscript.