HERITABILITEETIN ARVIOIMINEN ERÄÄSSÄ MÄNNYN
(Pinus silvestris L.) JÄLKEÄISKOEESKA

CHRISTEL PALMBERG

SUMMARY:
THE ESTIMATION OF HERITABILITY IN OPEN-POLLINATED PLUS TREE
PROGENIES OF PINUS SILVESTRIS L.

Saapanut toimitukselle 26.5.1970

JOHDANTO

Eläkönnasssa ilmenevää monimuotoisuus johtuu eri ryhmien, lajin, roteutun ja yksilöiden geenipoliisista ilmenevistä eroista. Vaihtoehtoja lisää ympäristön vaikeudet, joka perintötekijöiden asettamien rajojen puitteissa modifioi ominaisuuksia. Tietty perimä ei siis ole absoluuttinen suure, vaan genotypin todellisen arvon määrittävät ne fenotypit, jotka se eri ulkoisissa oloissa herättävät. Samoin myös tietyn ympäristön arvo johtuu siitä genotypystä, jonka funktio on sitä kulkeutuneen arvostelaa. Jalostustyöntä yleisesti tehtävänä on määrittää perinnöllisen ominaisuuksien ja ympäristön väliset suhteet. Meneysteknollinen ja-lostustoininta vaatii geneettisesti vaihtelevan populatiota ja tehokkaan mene-
telmän parhaiden yksilöiden valitsemiseksi.

Heritabilitteet eli periytyvyys on merkittävin piiri populaation sisäistä muun-
telua kuvaavia tunnuksia, ekenkin kvantitativiisissa ominaisuuksissa. Heritabilit-
teettä ilmaisee perinnöllisen varianssin suhteen kokonaisvaihtelun ja kuva

KOEMATERIAALI

rolla 04 (tunnus 52—023) ja 36 (tunnus 49—036) kulkevat taimet, koska kumpaa-
kaan taimierää ei esiintynyt kaikkia toistossa. Koejärjestelmä käy ilmi kapio-

MAASTOSSA SUORITETUT MITTAUKSET

Jokaisesta koeroa varausten mitattu kieli taimat laajasti. Monijulaiset, pensasaimat tai muuten epänormaalisti kehittyneet taimet hy-

1. vuoden 1968 latvakasvain
2. taimen koko pituus
3. latuvuksen pisinmän oksan projekti
4. oksien lukumäärä viimeisessä oksakielikurassa

203
5. rungon läpimitta vuoden 1966 ja 1965 oksakiehkuroiden puolivälistä
6. rungon läpimitta vuoden 1965 ja 1964 oksakiehkuroiden puolivälistä
7. paksuin oksa vuoden 1965 oksakiehkurassa (yhtäältä lukien 4. oksakiehkurassa)
8. paksuin oksa vuoden 1964 oksakiehkurassa (yhtäältä lukien 5. oksakiehkurassa)
9. paksuimman oksan oksakulma vuoden 1968 oksakiehkurassa
10. paksuimman oksan oksakulma vuoden 1967 oksakiehkurassa.

Taulukko 1.

<table>
<thead>
<tr>
<th>Työnumero</th>
<th>Siemenen tunnus (Code of the seed)</th>
<th>Siemenen alkuperä (Origin of the seed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>R1-S1-079</td>
<td>K, 627, Sulkava</td>
</tr>
<tr>
<td>02</td>
<td>R1-S2-007</td>
<td>E, 225, Orivesi</td>
</tr>
<tr>
<td>03</td>
<td>R1-S2-022</td>
<td>E, 59, Lammi</td>
</tr>
<tr>
<td>04</td>
<td>R1-S2-023</td>
<td>E, 60, Lammi</td>
</tr>
<tr>
<td>06</td>
<td>R1-S2-003</td>
<td>K, 59, Pietiläsaari</td>
</tr>
<tr>
<td>07</td>
<td>R1-S1-008</td>
<td>E, 1101, Punkaharju</td>
</tr>
<tr>
<td>08</td>
<td>R1-S1-061</td>
<td>E, 620D, Suomenniemi</td>
</tr>
<tr>
<td>09</td>
<td>R1-S1-051</td>
<td>E, 638, Sulkava</td>
</tr>
<tr>
<td>10</td>
<td>R1-S1-047</td>
<td>E, 636C, Sulkava</td>
</tr>
<tr>
<td>11</td>
<td>R1-S1-046</td>
<td>E, 635C, Sulkava</td>
</tr>
<tr>
<td>12</td>
<td>R1-S1-044</td>
<td>E, 635, Sulkava</td>
</tr>
<tr>
<td>13</td>
<td>R1-A9-079</td>
<td>K, 8, Enko</td>
</tr>
<tr>
<td>14</td>
<td>R1-S1-037</td>
<td>E, 629, Sulkava</td>
</tr>
<tr>
<td>15</td>
<td>R1-S1-038</td>
<td>E, 630, Sulkava</td>
</tr>
<tr>
<td>16</td>
<td>R1-S1-039</td>
<td>E, 631, Sulkava</td>
</tr>
<tr>
<td>17</td>
<td>R1-S1-041</td>
<td>E, 632, Sulkava</td>
</tr>
<tr>
<td>18</td>
<td>R1-S1-042</td>
<td>E, 633, Sulkava</td>
</tr>
<tr>
<td>19</td>
<td>R1-A9-008</td>
<td>K, 5, Enko</td>
</tr>
<tr>
<td>20</td>
<td>R1-A9-007</td>
<td>K, 14, Enko</td>
</tr>
<tr>
<td>21</td>
<td>R1-S1-064</td>
<td>E, 16, Miehikkälä</td>
</tr>
<tr>
<td>22</td>
<td>R1-S1-060</td>
<td>E, 15, Miehikkälä</td>
</tr>
<tr>
<td>23</td>
<td>R1-A9-057</td>
<td>E, 103, Tammela</td>
</tr>
<tr>
<td>24</td>
<td>R1-A9-056</td>
<td>E, 102, Tammela</td>
</tr>
<tr>
<td>25</td>
<td>R1-053/9</td>
<td>Yleiskäylyistämen, Itä-Hämeen MHL</td>
</tr>
<tr>
<td>26</td>
<td>R1-A9-050</td>
<td>E, 104, Tammela</td>
</tr>
<tr>
<td>27</td>
<td>R1-A9-052</td>
<td>E, 202, Kisko</td>
</tr>
<tr>
<td>28</td>
<td>R1-A9-053</td>
<td>E, 138, Loppi</td>
</tr>
<tr>
<td>29</td>
<td>R1-A9-054</td>
<td>E, 67, Hyvinkää</td>
</tr>
<tr>
<td>30</td>
<td>R1-A9-055</td>
<td>E, 43, Loppi</td>
</tr>
<tr>
<td>31</td>
<td>R1-A9-048</td>
<td>E, 40, Loppi</td>
</tr>
<tr>
<td>32</td>
<td>R1-A9-047</td>
<td>E, 41, Loppi</td>
</tr>
<tr>
<td>33</td>
<td>R1-A9-045</td>
<td>E, 69, Hyvinkää</td>
</tr>
<tr>
<td>34</td>
<td>R1-A9-044</td>
<td>E, 28, Miehikkälä</td>
</tr>
<tr>
<td>35</td>
<td>R1-A9-039</td>
<td>K, 15, Enko</td>
</tr>
<tr>
<td>36</td>
<td>R1-A9-036</td>
<td>E, 42, Loppi</td>
</tr>
</tbody>
</table>

Mitatuista tunnuksista puun tuottoa kuvaat pituus, pituuskasvu ja latvakuvan leveys, oksien lukumäärän, oksien paksuuden, oksakulman, puun kapenemisen sekä puun pituuden ja latvakuvan leveyden välisen suhteen antaessa viitteitä laatuominaisuksista.

1. Ruutukesiirroilla suoritettu analyysi

<table>
<thead>
<tr>
<th>Varianssin lähde</th>
<th>V.a.</th>
<th>Neliösumma</th>
<th>Keskineliö</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toistot</td>
<td>r - 1</td>
<td>$\sum_{k} \frac{Z_{ik}^2}{g} - \frac{Z^2}{rg}$</td>
<td>R</td>
</tr>
<tr>
<td>Jälkeläiset</td>
<td>g - 1</td>
<td>$\sum_{i} \frac{Z_{ii}^2}{r} - \frac{Z^2}{rg}$</td>
<td>S</td>
</tr>
<tr>
<td>Virhe</td>
<td>(r - 1) (g - 1)</td>
<td>Erotus toistot -</td>
<td>I</td>
</tr>
<tr>
<td>Kokonaisvarianssi</td>
<td>rg - 1</td>
<td>$\sum_{ik} \frac{Z_{ik}^2}{rg} - \frac{Z^2}{rg}$</td>
<td></td>
</tr>
</tbody>
</table>
2. Ruutujen välinen- ja sisäinen analyysi

<table>
<thead>
<tr>
<th>Varianssin lähde</th>
<th>V.a.</th>
<th>Neliösumma</th>
<th>Keskineliö</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruutujen väl. var.</td>
<td>gr − 1</td>
<td>(\sum_{ik} \frac{Y_{ik}^2}{n_{ik}} - \frac{Y_{...}^2}{N_{...}})</td>
<td>F</td>
</tr>
<tr>
<td>Ruutujen sis. var.</td>
<td>N... − gr</td>
<td>Erotuksena</td>
<td>E</td>
</tr>
<tr>
<td>Kokonaisvarianssi</td>
<td>N... − 1</td>
<td>(\sum_{ik} \frac{Y_{ik}^2}{n_{ik}} - \frac{Y_{...}^2}{N_{...}})</td>
<td></td>
</tr>
</tbody>
</table>

3. Interpretaatio (johtopäätökset)

<table>
<thead>
<tr>
<th>Parametri</th>
<th>Estimaatti</th>
<th>Geneettinen parametri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kov PS</td>
<td>(1/(S - 1))</td>
<td>(1/4 V_A)</td>
</tr>
<tr>
<td>(\delta_g^2) + (\delta_e^2) PS</td>
<td>E + Kov</td>
<td>(V_G)</td>
</tr>
<tr>
<td>(\delta_e^2)</td>
<td>(1 - n_h E)</td>
<td>(V_E)</td>
</tr>
</tbody>
</table>

Heritabiliteetin määrittämisessä käytettiin kaavaa

\[
h^2 = \frac{\delta_g^2}{\delta_g^2 + \delta_e^2 + \delta_e^2} \quad \left(h^2 = \frac{V_A}{V_G + V_E} \right)
\]

Ympäristön vaihtelu johtuu kahdesta tekijästä:
1. yksilöllisestä tekijästä, f, joka on riippumaton muista yksilöistä. Tekijän varianssi = \(\delta_g^2 \).
2. yleisestä tekijästä, e, joka on yhteinen saman ruudun yksilöille mutta riippumaton toisista ruuduista. Tekijän varianssi = \(\delta_e^2 \).

Perityvyyttä arvioitaessa voidaan huomioida molemmat virhevarianssit, tai ainoastaan toinen niistä (KEMPHTONE 1957, TIGERSTEDT 1969). Jos ruudun sisäinen vaihtelu on suuri, on kuitenkin suositeltavaa käyttää molempia virhevariansseja, kuten kyseisessä kokeessa on tehty.

TUTKIMUSTULOKSET

Taimien keskimääräinen kuolleisuusprosentti on 10.4 Epänormaleja, mitaammata jätettyjä taimia oli yhteensä 46, joten loppuliisin testeihiin sisältyytki 2999. puun arvot.

Taimien pituudet on mitattu myös vuonna 1966. Eri alkuperien paremuus-

Figure 3. Mean height of the progenies in 1966 and 1968 and the standard deviation of the mean height in 1968 (3 \times standard deviation).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pituus (mm)</td>
<td>3.846</td>
<td>3.908</td>
<td>3.905</td>
<td>3.906</td>
<td>3.908</td>
<td>3.906</td>
<td>3.908</td>
</tr>
<tr>
<td>Av. Arvo 1964</td>
<td>0.641</td>
<td>0.641</td>
<td>0.641</td>
<td>0.641</td>
<td>0.641</td>
<td>0.641</td>
<td>0.641</td>
</tr>
<tr>
<td>Av. Arvo 1966</td>
<td>0.641</td>
<td>0.641</td>
<td>0.641</td>
<td>0.641</td>
<td>0.641</td>
<td>0.641</td>
<td>0.641</td>
</tr>
</tbody>
</table>

Pitkäkestävässä kasvatuksessa on nähty, että pituus kasvaa kasvattamisensa aikana. Tämä voi johtua monista tekijöistä, kuten oksien lähtöala, kasvutaito ja ilmanlämpötila. Kirjallisuudessa on käsitelty näitä tekijöitä ja niiden vaikutuksen mukaan on tehty joitakin esimerkiksi kasvattamisessa otetta.

Keskiarvot vuoden 1964-1966 välillä:

- Pituus: 3.846
- Av. Arvo 1964: 0.641
- Av. Arvo 1966: 0.641

Tämä tarkastelua voidaan käyttää tulevissa kasvattamissuunnitelmissa, jotta voidaan parantaa kasvattamisen tulevat tulokset.
Taulukko 3. Ominaisuuksien periytyvyys lasketulta yksittäisten taimien perusteella. *Table 3. Narrow sense heritability on individual plant basis.*

<table>
<thead>
<tr>
<th>Ominaisuus</th>
<th>Periytyvyys</th>
<th>Standard virhe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pituus/Leveys — Tree height/longest branch</td>
<td>0,297</td>
<td>0,013</td>
</tr>
<tr>
<td>Oksien lukumäärä — Nbr. of branches</td>
<td>0,249</td>
<td>0,0017</td>
</tr>
<tr>
<td>Latvuksen leveys — Longest branch</td>
<td>0,230</td>
<td>0,0084</td>
</tr>
<tr>
<td>Taimen pituus — Tree height</td>
<td>0,208</td>
<td>0,0078</td>
</tr>
<tr>
<td>Vuosikasvain — Terminal shoot</td>
<td>0,207</td>
<td>0,0027</td>
</tr>
<tr>
<td>Paksuiko sa — Branch diameter — 64</td>
<td>0,188</td>
<td>0,0063</td>
</tr>
<tr>
<td>Paksuiko sa — Branch diameter — 65</td>
<td>0,120</td>
<td>0,0059</td>
</tr>
<tr>
<td>Oksakulma — Branch angle — 68</td>
<td>0,076</td>
<td>0,0039</td>
</tr>
<tr>
<td>Oksakulma — Branch angle — 67</td>
<td>0,070</td>
<td>0,0039</td>
</tr>
<tr>
<td>Kapeneminen — Stem taper</td>
<td>0,052</td>
<td>0,0080</td>
</tr>
</tbody>
</table>

TULOSTEN TARKASTELUA

<table>
<thead>
<tr>
<th>Ominaisuus</th>
<th>Vilppula</th>
<th>Aikaisemmat tutkimukset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taimen pituus/Latvuksen leveys — Tree height/longest branch</td>
<td>0,30</td>
<td>»Merkitsevät jalkaeläistiljen välistet erot«³</td>
</tr>
<tr>
<td>Oksien lukumäärä kiekhurassa — Number of branches</td>
<td>0,25</td>
<td>0,09—0,43; 0,14—0,41³</td>
</tr>
<tr>
<td>Latvuksen leveys — Longest branch</td>
<td>0,23</td>
<td>0,14—0,83; 0,36—0,89³</td>
</tr>
<tr>
<td>Taimen pituus — Tree height</td>
<td>0,21</td>
<td>0,16—0,63³</td>
</tr>
<tr>
<td>Latvakasvaimen pituus — Terminal shoot</td>
<td>0,21</td>
<td>—</td>
</tr>
<tr>
<td>Paksuiko sa oksan läpimittä — Diameter of longest branch</td>
<td>0,19 (—64)</td>
<td>0,19³</td>
</tr>
<tr>
<td>Oksakulma suuruus — Branch angle</td>
<td>0,12 (—65)</td>
<td>0,14—0,39; 0,36—0,94³</td>
</tr>
<tr>
<td>Kapeneminen — Stem taper</td>
<td>0,05 (—65/64)</td>
<td>—</td>
</tr>
</tbody>
</table>

³) Strickland & Goddard 1965.

(h² = 0.29). On todettu, että jälkeläistöjen välillä esiintyy merkitseviä eroja vastaavissa oksakiehkurioissa, mutta että oksien lukumäärä jossain määrin vaihtee samassa yksilöissä vuodesta toiseen. Sekä oksakiehkuran kehittymistä edeltävän vuoden että kehittymisvuoden ilmastollisilla olosuhteilla on vaikutusta kunakin vuonna kehittyvien oksien lukumäärään.

Luvuksensa määrilevyyen perittyvyys vaihtelee suuresti eri kokeissa. Yleensä yksilöillä, joiden alemmilla oksakiehkurioilla luonnehtivat pitkät oksat, on suhteellisen hyvät oksat ylimmässä oksakulmassa. Oksien pituus antaa täten puuleluuentenomaisen yleishabituksen. Ominaisuus vakiintuu jo havaitsee laiminvalta (Renfeldt & Lester 1969). Kaltilamaan mäntykokeessa ominaisuudelle suhteen korkea perittyvyys (h² = 0.23) ei ole muista tutkimuksista poikkeava.

Kun luuvuksen leveyden perittyvyys vaihtelee kokeesta riippuen, on sitä vastoin taimen pituuden ja luuvuksen leveyden välisen suhteen todettu pysyvän samassa jälkeläistöissä jokseenkin vakiona. Tunnusmenen perittyvyys on todettu suhteellisen korkeaksi (Eklund Ehrenberg & Gustafsson 1957, Nilsson 1968). Kaltilamaan mäntykokeessa on tunnusmenen heritablettiä määrittelevä heritablettiariavista korkein (h² = 0.33). Ympäristön heterogenisuuden vaihtuu ilmeneen yhtä voimakkaasti kun ominaisuutta kojuu suhdeluku. Tämän vuoksi mainitun suhdeluvun perittyvyys lienee saadaan osoitusten vertailu- kelpoisin.

Tuloksia tarkasteltessa havaitaan, että ympäristön vaikutus on merkitsevä ja genotypin vaikutusta suurempi kaikissa mitatuissa ominaisuuksissa. Mutta on myös ilmeistä, että genotypipäällä on tietty vaikutus kaikkiin ominaisuuksiin, vaikkakin geenien ilmenemisesti eli espressiviteetti vaihtelee.
This investigation was carried out in Vilppula in 1968 and evaluates a field experiment of *Pinus silvestris* L. belonging to the Forest Research Institute in Finland. The material consists of seed from open-pollinated plus trees throughout the country (table 1). The 36 progenies represented were planted in 4 blocks as 2 × 2 year-old plants in the spring of 1969. Each plot contained 25 trees. The spacing between the plants is 2 × 2 meters (figure 1). Unfortunately the site of the experiment is edaphically very heterogeneous. In addition moose have caused considerable damage some years ago. The plants have, however, recovered well, although there are numerous changes of main stem, to which also the occurrence of *Melampsora pinitorqua Rostr.* has contributed.

All normally developed plants were measured. Abnormal plants were left unmeasured, as the results obtained from them would probably have been misleading. Thus 2999 trees were measured (figure 2):

1. length of terminal shoot
2. tree height 1968
3. length of the longest branch of the crown
4. number of branches in the whorl of 1968
5. stem diameter between the whorls of 1966 and 1965
6. stem diameter between the whorls of 1965 and 1964
7. diameter of the thickest branch in the whorl of 1965
8. diameter of the thickest branch in the whorl of 1964
9. angle of the thickest branch in the whorl of 1968
10. angle of the thickest branch in the whorl of 1967.

Two different analyses of variance were used, a genetic analysis based on plot means and an analysis within plots and between plots. The error of environmental variance was thought to consist of an individual factor, independent of other individuals (ε²), and a factor common to all individuals of the same plot (σ²).

RESULTS

Tree height has been measured twice, in 1966 and 1968. There were no considerable changes in the rank of the progenies in 1966 and 1968 (figure 3). In 1968 the differences in height between progenies were not significant, but there were significant differences between blocks both in tree height and length of terminal shoot (table 2). Obviously the edaphic heterogeneity has influenced mainly the juvenile growth of the plants, because in the length of the terminal shoot there were also significant differences between the progenies. There were no significant differences between the progenies in the length of the longest branch, in the angles of the thickest branches in 1968 and 1967, in stem taper (the difference in the stem diameters measured) and in the diameter of the thickest branch in 1965. Significant differences were, however, found in the diameter of the thickest branch in 1964. This contradiction can probably be explained by the damage caused by moose and rust, leading to the death of the main stem and to competition between lateral branches. The damage was most disastrous in 1965. As only one branch in each whorl was measured, the competition which has led to the formation of several stout branches can be noticed in the results. Consequently, only the diameter of the thickest branch in 1964 was
METSÄ- JA PUUTALOUDEN TEHTÄVÄT LUONNONSUOJELUSSA

(SITTELMÄ METSÄVIikon YLEISKOKOUSESSA 1. 4. 1970.)

PEITSA MIKOLA

SUMMARY:
THE ROLE OF FORESTRY AND FOREST INDUSTRIES IN CONSERVATION

Saapunut tokmituksele 1. 6. 1970

Metsä- ja puutalouden tehtävät on tähän saakka nähty melkein pelkästään taloudellisen luonnonsuojelun alaan kuuluvina, ts. tavoitteeksi on asetettu metsävarojen järkevää käyttämisen aineellisten tarpeiden tyydyttämiseksi. Ympäristön arvostuksen kasvaessa tulee metsäja puutaloudelle sekä vastuuta että tehtäviä myös sosiaalisen luonnonsuojelun alalla epi ympäristö hoidossa.

Metsäteollisuuden tärkein tehtävä luonnonsuojelun alalla on vesien suojelu. Suomen sisävesien pintaa-alasta on noin 10% jättevesien pilaamaa. Vesistöihin tulevasta jättevesikerroksista on metsäteollisuuden osuus noin 75%. Vesiesihiolliseksi tavoitteeksi on asetettava, että pilaantuneisuus ei saa lisääntyä ja jättevesikerroksista on pyrittävä alentamaan. Tähän on olemassa mahdollisuuksia mm. prosessiteknisten parannuksien, jättevesien puhdistusta tehostamalla ja jätteiden hyväksikäyttöä kehitettämällä. Ennustoiden mukaan selluteollisuuden jättekerroksista tulee vuoteen 2000 mennessä vähennään alle puoleen, jopa neljänneksen nykyisestä siitä huolimatta, että tuotanto edelleen lisääntyy.