
!
!
!
!
!
� !)�!)��%��+* &(���%�(�*���,�()!&%��
�
� ���!%�#�'+�#!��*!&%�!)��,�!#��#���*�#!%"�)'(!%��(��&$�
�
!�#!&�(�' !��!%�&($�*!&%��
�
�%%���$!(%&,����/(��%��/%� ���!� ��#��*+''�(!� ������%,�)��&(��)*��#!) !%��
�#&��#��&�*-�(����,�#&'$�%*��&##��&(�*!&%)���%��(&����!%�)�&��* ��	�* �
�%*�(%�*!&%�#��&%��(�%���&%��%�&($�*!&%��%���&�*-�(����� %&#&�!�)��������
	��
����������'(!%��(���(#����	��
��



A Canvas for Establishing Global Software

Development Collaborations

Inna Smirnova1, Jürgen Münch1, and Michael Stupperich2

1Department of Computer Science
University of Helsinki

Helsinki, Finland
2Daimler Research & Development Ulm

Daimler
Ulm, Deutschland

inna.smirnova@helsinki.fi,juergen.muench@cs.helsinki.fi,michael.

stupperich@daimler.com

Abstract. There is an increasing need and interest for organizations to
collaborate with internal and external partners on a global scale for cre-
ating software-based products and services. Potential risks and di↵erent
strategies need to be addressed when setting up such collaborations. As-
pects such as cultural and social features, coordination, infrastructure,
organizational change processes, or communication issues need to be con-
sidered. Although there are already experiences available with respect to
setting up global collaborations, they mainly focus on specific areas. It is
di�cult for companies to quickly assess if they have considered all rele-
vant aspects. An overall aid that guides companies in systematically set-
ting up global collaborations is widely missing. In this paper we present
a study based on the snowballing method as a systematic approach to
literature review. Based on this literature review and inputs from indus-
try we investigated what aspects and practices need to be considered
when establishing global software development collaborations and how
to prioritize them. Based on that we created activity roadmaps that ag-
gregate existing experiences. Reported experiences were structured into
nine main aspects each containing extracted successful practices for set-
ting up global software development collaborations. As a result we came
up with an initial version of a canvas that is proposed as guidance for
companies for setting up global collaborations in the software develop-
ment domain.

Keywords: Global software development, global collaborations, activ-
ity roadmaps

1 Introduction

Today’s era of globalization already a↵ected and is still in the process of influ-
encing many fields. Particularly software development has a great impact [8].
Nowadays the phenomenon of Global Software Development (GSD) with pro-
cess’ distribution all over the world is seen as a normal way of doing things [8].



A major benefit that companies expect from global distribution and joint inter-
national collaborations is the access to low-cost resources, particularly a large
remote labor pool with diverse expertise and working skills that could scale up
development teams fast and might potentially lead to financial savings - “Hourly
onshore costs are typically three to four times higher than o↵shore rates” [11].
Other reasons could include potential expectations on speeding up the time for
product development, shortage of onsite resources, freeing up local resources for
new projects, overall optimization of resources, accessing new huge markets, for-
eign know-how and technologies, and gaining valuable market competitiveness
[12–17].

However, along with potential benefits GSD brings many new challenges,
especially regarding communication, culture, coordination and project manage-
ment areas [18]. For practitioners who do not yet have enough experience with
setting up GSD collaborations it is necessary to be aware of the challenges and
risks, di↵erent strategies and aspects along with existing practices and expe-
riences. Such knowledge might help to reduce possible future negative e↵ects
leading to GSD projects’ failures such as cost overruns, exceeding timeframes,
low product quality, and overall decreased customer satisfaction [6, 8, 19]. As
GSD collaborations su↵er from geographical, temporal, socio-cultural distance,
the organizations should adapt their current software development practices in
order to benefit and gain competitive advantage in new Global Software Engi-
neering conditions [20].

Although there are already many scientific papers and experiences available
with respect to challenges, risks, mitigation advice, best actions and practices
regarding establishing GSD collaborations, they are mainly focusing on specific
areas such as examining trust or communication aspects [21–24]. Therefore the
question how they can be used and integrated in an overall guide for setting
up GSD collaborations still remains unclear. An overall holistic approach that
synthesizes knowledge and guides companies in systematically setting up global
collaborations for software-based products and services is widely missing [21].

To address the need for a holistic approach to setting up GSD collabora-
tions, we performed a literature study and cooperated closely with a partner
company from the industry side that operates in the automotive domain. Based
on the results from the literature study and advice from the industrial partner we
investigated what principal aspects and practices need to be considered when
establishing global collaborations in the software development domain. After-
wards, we prioritized them and created activity roadmaps that aim at aggregat-
ing existing experiences that are relevant, credible and helpful for practitioners.
Reported experiences were structured into nine main aspects. Each of them con-
tains extracted practices for setting up GSD collaborations. Furthermore, we
present the initial version of a worksheet, the so-called “Global canvas”, that is
proposed to be practically used as a guidance for companies intending to start
global collaborations in the software development domain.

The original and new contribution of this study is the creation of a holistic
“shopping list” of things to think of when establishing global collaborations



in the software development domain. The goal is to provide a worksheet that
presents scientific results to industry in an e↵ective way and helps to identify
what needs to be considered when setting up global collaborations. The aim of
this study is to come up with an initial proposal for such a holistic prescriptive
worksheet that is driven and validated against the needs and requirements of our
case company. A mature and detailed validation of the configuration of aspects
and practices is out of the scope of this study and planned as future work.

The article is structured as follows. Section 2 gives an overview of existing
research with a focus on establishing global collaborations. Section 3 explains the
research method that was used for collecting data. Section 4 presents the results
found through literature study and industry consultation. This section explains
in detail what aspects and practices were discovered with respect to establishing
GSD collaborations. The proposed worksheet “Global canvas” is described in
section 5. Finally, section 6 discusses the conclusions, limitations of the study
and the potential for future research.

2 Related Work

There already exist many studies that analyze globally distributed software de-
velopment projects, new challenges and risks compared to traditional co-located
development, risk-mitigation advice, practices and experiences. Most studies fo-
cus on presenting an overview of challenges and problems which might occur as
an impact of the distance that brings global orientation to software development,
or examine in detail a specific aspect of GSD collaborations. In contrast, our re-
search is aimed at a synthesis of relevant aspects with the purpose of creating
a guide for companies that want to set up global collaborations and require a
holistic view of the relevant aspects that need to be considered.

Nurdiani et al. performed a systematic literature review among GSD research
literature that resulted in a checklist of 48 GSD challenges and 42 mitigation
recommendations [6]. Another systematic literature review was done by Verner
et al., who reported the risks of GSD collaboration with some mitigation recom-
mendations structured into 12 areas starting from vendor selection and require-
ments engineering and finishing with coordination and control areas [7]. Šmite
et al. conducted a systematic literature review of GSD experiences and came
up with seven most commonly discussed practices that are aimed at overcoming
GSD problems [8]. Mettovaara et al. performed interviews at Nokia and Philips
and identified 10 common problems and 11 success factors based on the expe-
riences in interorganizational collaborations in the two studied companies [25].
However, all those studies are risk- and problem-oriented in the first place. Our
study takes these findings into account. However, instead of identifying relevant
risks, we aim at providing a constructive guide that contains helpful practices
and a sequence of activities for setting up global collaborations.



3 Context and Research Method

This study was performed in collaboration with the automotive OEM “Daimler
AG” that served as case company for this study. The respective business unit
of the company that was the contact point for this study is intending to set-up
a long-term, multi-national distributed global collaboration for software-based
products in the automotive domain.

The company identified a set of aspects (such as collaboration structure,
product structure, communication, infrastructure) that were seen as highly im-
portant when setting up global collaborations. The company also provided a
proposal for a sequence in which these aspects should be considered. These as-
pects and the information about the sequence were elicited from project leaders
and reflect their experience from leading global projects in the business units
“Daimler Trucks” and “Daimler Buses”. The elicitation was done at Daimler
via interviews and through company-internal workshops with the project lead-
ers. The interviews and workshops were conducted by the one co-author of the
paper who works at Daimler. In addition, members of the case company attended
several ICGSE (International Conference on Global Software Engineering) con-
ferences and input from these conferences implicitly influenced the selection of
the aspects.

The aspects provided by the case company are used in this study as means
for structuring the areas with practices for setting up global collaborations in
the software development domain. This was the main rationale for selecting the
aspects. We used existing systematic literature reviews (SLRs) to make small
adjustments to the list of aspects provided by the case company, especially with
respect to their definition and naming.

The research of this study was performed as backward snowballing [1, 2, 47].
Snowballing as a research method for data collection was chosen as an instance of
a systematic approach to literature review that helps to collect all the necessary
literature without performing a full systematic literature review. The chosen
topic of interest was originally very broad, so that we decided not to perform a
full SLR, but to choose a di↵erent systematic approach. Snowballing was found
to be suitable for the exploratory research we aimed at.

Based on Webster and Watson [1] as well as Wohlin [47] the starting point for
the backward snowballing research approach is the analysis of main contributions
to the topic. We have decided to analyze four key SLRs related to setting up
GSD collaborations as a starting point [5–8]. These SLRs aggregate already
existing knowledge with respect to topics such as risks, mitigation solutions,
and strategies. Therefore, they were seen as a suitable starting point. The next
step in the backward snowballing method according to Webster and Watson as
well as Wohlin is to “go backward” by reviewing the citations in the papers that
serve as the starting point with the goal to identify topic-relevant studies that
need to be considered [1, 2, 47]. We have performed a review of the bibliographic
reference lists of the four SLRs and selected studies that fit to the aspects defined
by the case company. This snowballing step was iteratively performed up to four
times depending on the suitability of the results found.



In order to identify more topic relevant literature, we additionally reviewed
scientific papers from major GSD conferences, i.e, from the International Con-
ference on Global Software Engineering (ICGSE, 2006-2013), and from the In-
ternational Conference on Software Engineering Approaches For O↵shore and
Outsourced Development (SEAFOOD, 2007-2010).

After the search for relevant literature, the found set of papers was examined
with respect to content relevance. As a result, a collection of primary studies
was defined as a literature pool for our study. The next step of the research
study represented data extraction from the found literature, followed by further
analysis regarding the identification of strategies and practices that need to be
addressed in global software development projects. Following Whittemore and
Knafl [3], the gathered strategies and practices were grouped together in an in-
tegrative way, and prioritized and described as a guidance framework that aims
at supporting practitioners in setting up global software development collabora-
tions.

As an initial validation, the results were frequently presented to the key
stakeholders in the case company and reviewed. Feedback was used to revise the
worksheet “Global canvas” and create the final version presented in the article.

4 Results from the Literature Study

In the following section we present the results found in the literature study. The
results are structured into nine main aspects that are proposed to be addressed
by the companies while setting up global collaborations in the software develop-
ment domain. Each aspect contains extracted success practices and experiences.

4.1 Strategy

“Global Software Engineering becomes part of the everyday business”, many soft-
ware companies today recognize the need for globalization [5]. Organizations that
have the intention of transferring software development work into a global con-
text, need to understand how to start global software development, the reasons,
first steps and actions for setting up global collaborations [5, 27]. Thus the first
important aspect that we identified in our study is Strategy that is aimed to
be the initial step and help software companies to answer such questions as -
Why do we collaborate globally? What are the benefits that global collabora-
tions might bring to the business? How do we do the collaborations, according to
what model and where to? This step represents the whole high level framework
of establishing global software development collaborations and therefore cannot
be avoided by the companies engaged in performing such collaborations.

We identified five principal practices that need to be considered at the very
initial stage of global collaborations.

First of all, the organization needs to see distinctly what the goals and po-
tential benefits of collaboration are [17]. Based on the investigations of Forbath
et al. [17] the main benefits and therefore goals of doing global collaboration for



software-based products can be classified into three areas. The primary driver is
financial savings. Development costs might lower due to access to a large labor
pool in countries with lower wages or access to many resources needed for devel-
opment and easily available for use at the o↵shore destination. Another potential
could be the access to foreign know-how, expertise, new technologies that might
not be obtainable onshore. Furthermore, the proximity to new o↵shore markets
could be a driver for customization and localization of products that might lead
to new customers and bigger revenues.

Next, after understanding the reasons for setting up global collaborations,
the organization has to choose an appropriate collaboration model that suits a
specific company context and goals. Based on the inputs from the industrial part-
ner, we have identified and focused on three possible scenarios for launching GSD
collaboration named O↵shore outsourcing, O↵shore insourcing and Innovative
o↵shoring [5, 7, 19, 29]. O↵shore outsourcing refers to consuming of resources and
development services from an external 3rd party that is located in a di↵erent
country, often representing client-subcontractor relationships [5]. O↵shore in-
sourcing means consuming of internal organizational resources that are located
in a foreign country [5, 19, 29]. The company establishes, for instance, a foreign
branch in a di↵erent country, in order to customize products for a dedicated mar-
ket. The model of Innovative o↵shoring refers to consuming of innovative R&D
services from the o↵shore partner company that is situated abroad. Those inno-
vative services could, for instance, aim at improving the headquarter’s product
[5, 19, 29].

The following recommended steps that organizations should follow at the
beginning of setting up global collaborations are the investigation of the for-
eign legal system regarding contract and IP laws; the selection of a suitable
vendor with desired expertise, e�cient capabilities and su�cient technological
infrastructure; and the planning of financial budget for collaboration including
possible risks and therefore hidden costs [7]. One of the main motivations for
performing GSD collaborations by the company could be cost savings, therefore
financial planning should be considered early on [7].

4.2 Collaboration Structure

In order to maximize the potential positive e↵ects that global software devel-
opment collaborations might promise and minimize possible negative risks, it is
necessary to choose the right way for establishing collaborations, to determine
the most advantageous form of dividing task distribution, responsibilities, peer-
to-peer connections between involved sites. Our defined aspect Collaboration
structure is dedicated to these questions of global collaborations. This aspect is
aimed at determining the approach of development task allocation between lo-
cations based on collaboration goals, at creating roles and responsibilities along
with the way of distributing them; at defining an organizational structure and
peer-to-peer connections between sites [16, 20, 31–33, 46]. Clear understanding
of work division, roles and responsibilities might help to decrease coordination
and project management e↵orts when actual global software development takes



place. Therefore it is important to address this aspect already at the planning
stage of setting up global collaborations.

Regarding the aspect of Collaboration structure we identified two main prac-
tices which need to be considered. Those are to define the approach to distributed
process breakdown and task allocation and to determine and specify the orga-
nizational structure and peer-to-peer links between sites.

Based on Šmite’s case study in a Latvian software company [16, 26], Nissen’s
case study report from an inter-organizational cooperation in telecommunica-
tions domain [31], and the research of Faiz et al. [32] we have identified three
models of process-based task distribution between sites which are suitable for
collaboration scenarios described in the aspect Strategy. The first model was
considered as a typical outsourcing model where most of the intellectual work
stays onsite and only actual software development tasks are transferred o↵shore.
In this model, requirements creation, system analysis, design are done onsite,
while coding and testing phases can be performed jointly with work division,
for example, by modules [16, 31–33]. The main challenges of this kind of task
distribution consist of troublesome system requirements clarification, system in-
tegration and bug fixing along with coordination and control e↵orts. The second
model is considered to be more suitable for the O↵shore insourcing collabora-
tion model where, in contrast to the first model, requirements creation, system
analysis, design are performed as joint activity between collaboration partners
[16, 31–33]. Such task distribution might suit product customization goals and
help to create better common understanding and social ties between locations.
However, this model requires good domain business knowledge from the vendor
site that might be e↵ortful to create. The last third model was considered to
be used for the Innovative o↵shoring scenario that represents close collaboration
between locations where the o↵shore partner performs most of the intellectual
and implementation work such as R&D, requirements creation, system analysis
and design, actual implementation [16, 31–33]. This model might be based on
a prototyping strategy that refers to creation of innovative prototypes by the
o↵shore site. Later the developed prototype can be used onsite as a base for
building new functionality or a complete product on top.

Another practice that was aimed to be a part of the Collaboration struc-
ture aspect is to specify organizational structure and peer-to-peer links between
collaboration sites. The main aim of the organizational structure is to clearly
list roles, responsibilities and to draw communication channels between loca-
tions involved in collaboration at management, project and team levels. The
examples on what roles and sites’ connections the global collaboration can in-
clude were presented in the studies of Braun [34] and Faiz et al. [32]. Defined and
documented organizational structure is aimed to achieve easier coordination and
control, to make the information flow more transparent and traceable. It helps to
make communication between parties less challenging and reach project-related
common understanding faster, which eventually might reduce some e↵orts and
investments needed for setting up distributed collaboration [24, 32–34].



4.3 Product Structure

The development process breakdown and the following task distribution, which
were considered to be identified in the aspect of Collaboration strategy, a↵ect the
definition of the product architecture. The aspect Product structure addresses
how the product architecture could be adapted for global software development
compared to co-located development, the product ownership boundaries between
locations, and how modifications to the product part at one location can a↵ect
work at other locations. Therefore it has an impact on work division between
GSD teams at di↵erent locations. Clearly identified work division and product
ownership boundaries between collaboration sites are expected to improve com-
munication, reduce project coordination e↵orts, and help to avoid rework and
duplications [7, 20, 26, 35, 46]. Thus the aspect Product structure is an important
step for companies and needs to be already considered at the preparation and
planning stages of global collaborations. It is strongly connected with the Col-
laboration structure aspect, especially with detailed definition of organizational
structure, roles and responsibilities.

We have distinguished the following practices that need to be considered by
the organizations. Those are to determine the product architecture, to specify
product ownership between locations and to define product-based work distri-
bution among GSD teams at di↵erent locations.

Depending on the collaboration scenarios we have identified in the aspect
Strategy, the possible way for a Product structure definition might di↵er greatly.
Referring to the O↵shore outsourcing model, the strategy with one core product
and full onsite ownership where the o↵shore partner is responsible for allocated
tasks in the product development lifecycle is considered to be most suitable [36,
41, 45]. In contrast, the model of O↵shore insourcing can be based on a product
line architecture with variants which are built on top of a core product. The
ownership of the core product can be kept onsite, while the o↵shore site might
be responsible for the full development of one of the variants from the product
line [9]. Such a variant can be customized and market-specific. In this model the
o↵shore site has a great responsibility for the whole product variant, and thereby
global collaboration might have a form of peer-to-peer partnership [26, 36]. The
Innovative o↵shoring scenario is intended for the development of new innovative
products or prototypes by the o↵shore site with di↵erent possibilities of product
ownership boundaries depending on the initial collaboration goals and model.

Considering the approach to detailed software system architecture and fol-
lowing development work distribution between locations, our main suggestions
are to use modular architecture and decoupling that allow having well-defined
software work packages which can be distributed between di↵erent locations
based on available resources and expertise. Salger [35] demonstrates an example
structure of the software work package based on the experience at Capgemini
sd&m. The software work package might consist of the following parts: Software
requirement specifications describing use cases, user interface, domain objects,
and specifications of functional test cases; Design artefacts including an exter-
nal technical view on a software module and internal high level design view;



Project management artefacts containing a list of work units described in earlier
parts, schedules, budget, definition of quality objectives and work acceptance
criteria [35]. Such a well-defined work package structure promises to ease work
transfer between locations and to achieve low dependencies between locations
during actual implementation work [7, 8, 12, 14, 20, 26, 36–41]. This way it might
be possible to reduce communication and coordination needs between di↵erent
locations. However, system integration could become a troublesome bottleneck.

4.4 Coordination

Global software development brings geographical distance and cultural diver-
sity into the software development process compared to co-located development.
Thus globally distributed software development teams need to be e↵ectively
managed and controlled in order to complete software projects successfully, to
be inside a financial and technological budget, and to use available resources
and capabilities beneficially for the collaboration goals [20]. Therefore compe-
tent coordination, communication and control procedures should be attentively
planned and later performed by companies on an everyday basis. Coordination
can be seen as work integration in a way that each involved unit contributes
to the completion of the overall task [12, 40]. Coordination procedures describe
how collaboration sites communicate between each other in order to complete
commonly defined tasks and to achieve collaboration goals [12, 40]. The Coordi-
nation aspect represents the set of activities that aim at managing dependencies
within the global software development project workflow, so the work can be
completed faster and more e↵ectively. According to a study by Nguyen-Duc and
Cruzes [39] such dependencies in a GSD context might include technical views
such as system integration, configuration change management; temporal issues
such as synchronization of schedules, deliveries between sites; software develop-
ment process organization; resource distribution such as infrastructure, budget,
or development tools. This aspect promises to be very important for setting
up global collaborations, because coordination and project management e↵orts
might become a cause of project hidden costs. Therefore coordination challenges
need to be minimized by the organizations starting from a planning phase. For
instance, di↵erences in organizational policies, lack of common processes, vari-
ation of coding and testing standards between collaboration sites might a↵ect
coordination and project management e↵orts, and also might lead to insu�cient
end product quality and additional costs [39].

Within the aspect of Coordination we have specified two main practices that
need to be addressed by organizations, i.e., Project management and Project
control.

Project management aims at planning and organizing software development
project-related activities in such a way that they lead to successful work comple-
tion. Such activities might include creating shared synchronized understanding
of main milestones between collaboration sites, concrete tasks to perform, deliv-
eries schedules, project budget constraints, peer-to-peer contact links between



collaboration sites, and managing the whole project execution [39]. Project man-
agement can be seen as a mechanism that integrates software, human, and eco-
nomic relations in order to use existing technology, resources, time, capabilities
in the most productive and e↵ective way [43]. Project control procedures refer to
the process of monitoring work status and ensuring that the work process goes in
the right direction according to the planned budget, timeframes and quality ex-
pectations [12]. Among project control procedures, a formal reporting structure
concerning updates, changes and escalation path can be seen to play an impor-
tant role for achieving visibility of software project status and work progress, for
detecting project bottlenecks and work conflict situations and reacting to them
early on [7, 10, 20, 39].

Di↵erent collaboration scenarios might have di↵erent coordination mecha-
nisms working better in particular situations. Based on a case study by Hossain
et al. in an Australian-Malaysian cooperation [44] we have identified di↵erent
possible ways of performing coordination processes and discovered how they can
suit di↵erent global collaboration models. For instance, the O↵shore outsourcing
model might require a high degree of defined standard policies, direct supervision
and centralized project organization for the o↵shore team from the headquarter
company. For the O↵shore insourcing and the Innovative o↵shoring scenarios
the software development work might be managed better with a high degree
of mutual adjustment when collaboration is based on building trust and social
relationships between sites, thus, many software project activities and decisions
are often performed jointly [7, 9, 12, 20, 23–26, 29, 33, 35–40, 43, 44].

4.5 Development Process

As soon as the collaboration model, the process breakdown, the product struc-
ture, the task distribution, the coordination and the control mechanisms are
identified, a solid foundation for defining and/or customizing a development
process is laid. The aspect Development process aims at defining the model for
software development activities between the collaboration sites. Based on ex-
perience from the authors it is recommended to mainly define the processes at
the interfaces between the collaborating sites and not to aim at unification of
all processes at all sites, especially when the sites belong to di↵erent organiza-
tions. Typically the specific local characteristics at each site make it hard to
prescribe unique internal processes at all sites. Defining a software development
process model also helps to clarify roles and responsibilities, the level of inde-
pendency between sites, and the product quality expectations. Frictions such as
role confusions can be avoided. Moreover, a development process can a↵ect coor-
dination and communication e↵orts, infrastructure needs, change management
mechanisms and system integration e↵orts. In the O↵shore outsourcing scenario
or the Innovative o↵shoring scenario the collaboration sites might keep their
own development processes if these processes are already established and well-
working [20, 24]. However, it is essential to synchronize project milestones and
schedules for important software product deliveries in order to achieve project
transparency, continuous frequent integrity and early feedback on the quality of



developed software [20, 24]. In the case of the O↵shore insourcing scenario that
has peer-to-peer close partnership orientation, it could be suitable to establish
standardized guidelines for a common software development process and tools
between sites. This promises to create a joint corporate level of work standards
[7, 37, 43].

4.6 Communication

Communication can be seen as the exchange of information that helps to reach
a common shared understanding between remote sites, including information
and knowledge sharing [12, 40]. The aspect Communication addresses all kinds
of communication activities between the di↵erent development sites. As global
software development collaborations are to a large degree human-based, commu-
nication becomes crucial and needs to be considered early on, i.e., starting from
the planning and negotiating phases of the collaboration till its full establishment
and maintenance. Numerous studies based on industrial project investigations
report the importance of communication in the GSD context and usually come
to the conclusion that it is the number-one problem. Studies focusing on com-
munication include the study by Mettovaara et al. in Nokia and Philips [25],
the case study by Leszak and Meier on embedded product development in the
telecommunications domain in Alcatel-Lucent between Germany and China [36],
the study by Paasivaara and Lassenius based on interviews in 8 global software
projects distributed across Europe, North America and Asia [24], and the study
by Oshri et al. at LeCroy (Switzerland and USA), SAP (India and Germany),
and Baan (India and The Netherlands) [30].

Geographical distances between teams often cause di�culties with using tra-
ditional communication paths such as face-to-face meetings and informal com-
munication. Remote sites often need to rely on asynchronous ways of commu-
nication (tools such as E-mails, chats, blogs) or phone/video conferences that
bring certain risks like misunderstandings, delays, unnecessary work, reduced
trust, or absence of team spirit and partnership feeling. Those challenges might
result in additional project costs, customer dissatisfaction, and barriers to main-
taining long-time global collaborations. Thus companies need to consider and
plan communicational strategy early on in the first stages of collaborations.

With the aspect Communication we have identified five practices that aim
at building a successful communication strategy when establishing GSD collab-
orations.

Communication protocol aims at identifying who is supposed to communi-
cate with whom within the company such as, communication channels, interface
points among collaboration teams and team members, su�cient frequency of
communication, information exchange paths, o�cial corporate language [24, 42].
A detailed description of a communication protocol based on the organizational
structure should be documented and distributed among team members at all col-
laboration sites. It is expected to create awareness of team members from whom
they will get work inputs and to whom they need to distribute work output re-



sults. This way the software development project might gain more transparency
and traceability [24, 42].

Team awareness channels aim at making collaboration team members be-
come more familiar with remote colleagues and their skills, their expertise and
availability, as well as their project activities and work status. It is expected that
teamness and trust between remote collaboration sites help to achieve project
visibility and to reduce delays for finding the right person to contact in case of
some questions [38]. Team awareness can be supported, for instance, by organi-
zational charts, project websites, or shared calendars [23, 24].

Social relationships between collaboration sites represent the result of all
communication activities and e↵orts. Relationship building is a long process
and therefore needs to be seen as a constant activity when doing global col-
laborations. Face-to-face meetings are a highly e�cient way for building social
interrelations between collaboration sites, thereby frequent visits and sta↵ ex-
changes between sites are necessary. Even though face-to-face visits might cause
additional investment and time, they need to be present especially in the first
phases of global collaborations [7, 12, 14, 23–25, 33, 36, 40, 44].

Rich communication tools aim at supporting all the above-mentioned com-
munication practices. Collaboration sites are often located at remote places, so
tools often provide the only way for software development teams to get con-
nected. Thus a variety of di↵erent communication tools such as web meetings,
phones, e-mails and mailing lists, chats, file transfer tools, groupware and shared
services tools should be provided by organizations [28, 37, 42].

All communication activities are expected to make global collaborations more
peer-to-peer partnership-oriented. Thus it helps to build up a common knowledge
base between collaboration sites. This promises to create the “organizational
memory”, shared collective understanding of the domain knowledge, technology
and business needs. It accumulates the experience of a collaboration in a specific
organizational context and might help collaboration sites to learn and improve
their way of working together [28, 37, 42].

4.7 Social Aspects

Global distribution of software development implies that individuals are usu-
ally not only geographically dispersed but also culturally. Thus the process of
socialization and cultural integration is important when setting up global col-
laborations. With Social aspects we refer to the process through which team
members gain the knowledge on behavioral and communication norms, atti-
tudes, cultural and social patterns of each other in order to work together in
cooperation [30]. The process of socialization and getting to know the partners
is expected to create a mutual vision on the collaboration and specific project
goals, to create the understanding of remote partners’ way of working and be-
havior, and to make global collaboration function successfully and beneficially
for all the sites. “When there is a win-win situation the motivation is usually
high and the chances of success get better” [25]. Socio-cultural distance might
bring many challenges and negative e↵ects into the collaboration process such



as di�culties and inability of sites to communicate, unawareness of remote col-
leagues’ qualification, unwillingness to exchange information, conflicts of tasks
interpretation and unsuccessful end results. These challenges might have a great
negative impact on the collaboration process between sites and the quality of
the end product. Therefore, organizations need to consider social aspects and
stimulate socio-cultural integrity between collaboration sites [7].

Within Social aspects we have specified two categories that need to be con-
sidered - Trust and Cultural understanding.

Trust is considered to be one of the keys for establishing e↵ective, produc-
tive, reliable, and longitude collaborative social relationships between teams in
global software development contexts [22, 23, 40]. Trust can be defined as the
willingness of individuals to cooperate with others based on the belief that part-
ners are reliable, competent and will do actions which are beneficial for the
cooperation rather than for individual purposes [40]. “Trust is a pre-requisite
for globally distributed software development” [40]. Trust promises to create the
ability of remote collaboration sites to work together, and to build up the feeling
of teamness. Trust stimulates the willingness of sites to communicate and work
towards the completion of shared project goals - not “we and you” relations but
“us” [22, 29]. Lack of trust might lead to a situation of non-cooperation, social
conflicts, absence of information exchange, overall decrease in productivity and
end product quality, and eventually to job dissatisfaction among employees [29].
Thus a lot of e↵orts are needed to be done by organizations in order to build
trust between collaboration sites. Such e↵orts, for instance, are face-to-face vis-
its, frequent remote communication via a rich variety of tools, sta↵ exchanges,
socio-cultural trainings, social activities. Trust needs to be built and maintained
through the whole partnership history from the first collaboration stages till its
end [11, 22, 25, 29, 33, 40].

Cultural understanding represents shared norms and beliefs which are histor-
ically situated and followed by people belonging to a concrete society [4]. In the
context of global collaborations socio-cultural diversity among sites might be in-
terpreted as a facilitator for promoting creativity, innovativeness, and knowledge
sharing. However, at the same time cultural diversity might become a barrier for
communication and e↵ective coordination. Cultures di↵erentiate especially with
respect to the sense of time, social hierarchy, power distance, and preferable com-
munication styles. All these distinctions a↵ect the norms for organizational and
working culture. Therefore culture-specific understanding and training should
be addressed by organizations in order to create mutual awareness and avoid
conflicts and misinterpretations [4, 25, 30, 40, 42].

4.8 Infrastructure

Infrastructure refers here to all tools, platforms, and other technical means that
support technical, organizational, and managerial activities in the context of
distributed software development, maintenance, and operation. The term infras-
tructure subsumes here, for instance, tool support for coordination and com-
munication, IDEs, and quality assurance tools. Although the infrastructure al-



ready plays an important role in co-located development, the global distribution
of development tasks imposes additional and new requirements that should be
considered early on. It is necessary for organizations to identify infrastructure-
related requirements, to analyze the existing infrastructure, and to invest into
the infrastructure in order to reach the stated requirements. In addition, there is
a need to analyze how the existing infrastructure at di↵erent sites can be mod-
ified so that it fits to a new distributed setting. One essential requirement for
the infrastructure is the compatibility between sites. For instance, collaboration
sites should have equal internet connections, bandwidths, and communication fa-
cilities. Compatibility is important, for instance, for configuration management
environments, for development tools, and for coordination support. Coordina-
tion tools and communication tools promise to help mitigate communication
risks that are due to temporal, geographical, and cultural distances. A rich set
of groupware tools is expected to help reduce the impact of distance in global
software development, to increase the frequency and ease the communication
between sites, to lessen coordination e↵orts, and to provide equal accessibility
to all project-related artefacts. A compatible infrastructure at all collaboration
locations is highly important for conducting the distributed development process
e↵ectively and e�ciently [7, 28].

4.9 Organizational Change Process

When organizations start setting up global software development collaborations,
there is clear evidence that a su�cient amount of time is needed in order to gain
desired e�ciency [27]. At first, challenges such as communication, coordination,
trust building, awareness of partners and integration of working procedures imply
significant reductions of the overall e�ciency. Reasons for the decrease in the
work e�ciency in the first collaboration stages are usually the time necessary for
building a compatible infrastructure, establishing the necessary communication
ways, providing domain, technology and cultural training, as well as building
social relationships and teamness. After the first stages of a global collaboration,
there is typically a period of time when partners learn to know each other and
better understand the ways of working together. In this phase, the software
development e�ciency is usually recovering gradually. After this phase, global
collaborations might exploit scaling e↵ects with respect to e�ciency that go
beyond the e�ciency of co-located development [9, 27, 41]. Gaining these scaling
e↵ects requires the establishment of systematic process improvement procedures.

The accumulated working history with respect to the transfer from co-located
software development into a GSD working style gives a lot of insights and thus
should later be examined by organizations for potential improvements [9, 26, 27].
New ideas for process changes and improvement actions should be discussed and
analyzed jointly by the collaboration sites on a regular basis during the whole pe-
riod of the collaboration. The improvement of the distributed collaboration can
follow di↵erent process improvement approaches such as the continuous or the
model-based improvement. However, there is a lack of improvement approaches



and experience that are focused on global collaborations. Therefore, we rec-
ommend to deploy a problem-oriented, continuous improvement approach. The
continuous process improvement aims at reaching a high level of standardization
of the overall global software development process that might lead to improved
end product quality and customer satisfaction [19].

5 Canvas

While setting up global software development collaborations di↵erent phases
can be distinguished. Each collaboration phase can be characterized by a spe-
cific set of activities that need to be performed by the organizations. We have
distinguished four main phases that organizations face when setting up global
collaborations. Based on defined collaboration phases and aspects that need to
be addressed by organizations, we have structured them as activity roadmaps
that can be adjusted for specific organizational contexts. The initial sequence
of activities was provided by the case company and refined at a joint work-
shop of Daimler and the University of Helsinki. The final order of activities was
created mainly based on experiences reported by project leaders from the case
company and results from the literature study. Some relations between activities
also have an underlying inner logic. The proposed activity roadmaps are aimed
to be a guidance and reminder for organizations about activities that need to
be performed when setting up global collaborations and moving from a local
to a globally distributed working mode. For practical industry use, we propose
an initial version of a visualized structure of activity roadmaps that we named
“Global canvas” (Fig.1). The proposed activity roadmaps for organizations in-
tending to establish global software development collaborations are described as
follows.

Phase 1. Initiate: In this phase an organization intends to transfer co-located
software development into a global context as one of its business strategies. Thus
the organization should investigate the potential benefits of transition into a
GSD environment, what models of global collaboration exist and what model
will suit the specific organizational context. Moreover, the organization makes its
first decisions on the partnership type and selects collaboration partners. Thus,
the proposed sequence of activities to be addressed by the organization at the
initiation phase might look as follows:

a) Identify needs and goals for doing a global software development collabo-
ration. Analyze carefully what benefits and outcomes are expected of the
global collaboration.

b) Choose a global collaboration model that is suited for the specific organiza-
tional context and the business needs.

c) Investigate the foreign legal system(s) concerning IP and contract laws.
d) Choose appropriate partner(s)/vendor(s) with su�cient infrastructure, ca-

pabilities and expertise needed for the chosen collaboration model.
e) Define a budget plan for doing global software development projects. Include

possible hidden costs such as communication tools or face-to-face visits.



Fig. 1. Global canvas

Phase 2. Plan and Prepare: This phase aims at building all the conditions
needed for global collaboration to start functioning. An organization defines a
product structure, a work distribution, and responsibilities between collabora-
tion sites based on available resources. The model for work coordination and the
development process organization is chosen. In this phase, the organization still
keeps ongoing product development mainly onsite. However, at the same time,
the organization pilots first practices of setting up global software development
collaboration. The potential set of activities that need to be done by companies
at the preparation phase is described as follows:

a) Identify a development process breakdown and subsequent task distribution.

b) Define and document the organizational structure including specific roles,
responsibilities and peer-to-peer contact channels.

c) Identify an architecture and the product ownership between sites (based on
the collaboration model defined earlier and the process breakdown).

d) Define a product-based task distribution between sites based on available
resources and capabilities.



e) Define the coordination mechanisms between collaboration sites. Choose an
appropriate project management model that suits the agreed partnership
model.

f) Specify project control procedures for monitoring work progress and detect-
ing problems as early as possible. For instance, the data on channels for
status reporting should be assigned, documented and distributed to team
members.

g) Choose a model according to which the software development process will
be working.

Phase 3. Pilot: This phase focuses on systematic testing of practices. This
phase aims at detecting the problems of collaboration - if some things do not work
at first, they can be changed early on. The proposed activities to be performed
are described as follows:

a) Provide a rich variety of communication tools in order to stimulate commu-
nication between sites and to avoid misunderstandings.

b) Start gradual building of social relationships between sites (e.g., organize
face-to-face visits, joint social activities, sta↵ exchanges).

c) Ensure that the remote partner(s) has su�cient infrastructure needed for
software development projects. Provide compatibility of internet connec-
tions, bandwidths, communication facilities (for instance, video conference
rooms) between sites.

d) Introduce groupware tools that are aimed to ease the collaboration process
between sites.

e) Consider socio-cultural aspects between partners. Start building trust be-
tween sites early on.

f) Ensure the teams’ awareness of cultural di↵erences and perceptions that
might occur in collaboration between partners belonging to distinct societies.

g) Establish rules for a communication protocol. Identify who should commu-
nicate with whom and how often. Make team members understand that
communication is an important part of everyday work.

h) Ensure team awareness channels. Team members need to be aware of re-
mote colleagues’ contact details, expertise, roles and responsibilities, work
schedules. Ensure that the teams are aware of the project status.

i) Accumulate the experience based on the working history between sites, and
create a collective shared knowledge base - the “organizational memory”.

Phase 4. Operate and Improve: The overall operation of a global software
development process is ongoing. Partners accumulate working history, learn,
propose and handle process changes and improvements. This phase aims at a
seamless operation and a continuous improvement of the collaboration. The set
of activities at this stage is suggested as follows.

a) Analyze the working history, discuss potential process changes and improve-
ments.



b) Improve the process continuously and thereby aim at achieving a high level
of process standardization.

The proposed prioritization of activities in the di↵erent phases is not a strict
order but meant as guidance for practical use. The order of activities can be
customized based on specific organizational context and needs.

6 Conclusions

In this article we investigated and aggregated the aspects and main practices
that need to be addressed by companies when establishing global software de-
velopment collaborations. Furthermore, necessary activities were grouped into
collaboration phases and structured in a form of activity roadmaps that can be
used by industry as guidance for setting up global projects. The initial version
of a “Global canvas” presents the visualization of activity roadmaps. The canvas
provides a holistic view on setting up global collaborations, aggregates all the
main necessary aspects and presents the activities as feasible roadmaps.

However, the sequence of activities proposed in our canvas is not manda-
tory and based on assumptions, literature findings, and industry inputs. The
presented aspects are derived from the case company and might di↵er in other
contexts. Therefore, the general applicability is limited and more experience
is needed to better understand context-specific customization needs. As global
software development is gaining a growing interest and many companies in the
domain search for new business opportunities in a transition from co-located de-
velopment into the global environment, a practice-oriented worksheet that guides
decision making such as the canvas promises high potential. Besides using the
canvas for guidance, it could also be used for other purposes. Another use case
could be, for instance, using the canvas as an assessment scheme. We are plan-
ning to further evolve the canvas based on findings from applications in industry.
In addition, we are planning to systematically analyze the dependencies between
di↵erent practices and strategies as well as the suitability of the canvas for other
purposes than guidance.

References

1. J. Webster and R. T. Watson, Analyzing the past to prepare for the future: Writing
a literature review. MIS quarterly, 26(2), 2002.

2. S. Betz, S. Fricker, A. Moss, W. Afzal, M. Svahnberg, C. Wohlin and T. Gorschek,
An Evolutionary Perspective on Socio-Technical Congruence: The Rubber Band
E↵ect. In Replication in Empirical Software Engineering Research (RESER) Work-
shop, 2013, pp. 15-24.

3. R. Whittemore and K. Knafl, The integrative review: updated methodology. Journal
of advanced nursing, 52(5), 2005, pp. 546-553.

4. H. Huang and E. M. Trauth, Cultural Influences on Temporal Separation and Co-
ordination in Globally Distributed Software Development. In ICI, 2008.



5. D. Šmite, C. Wohlin, Z. Galvina and R. Prikladnicki, An empirically based terminol-
ogy and taxonomy for global software engineering. Empirical Software Engineering,
2012, pp. 1-49.

6. I. Nurdiani, R. Jabangwe, D. Šmite and D. Damian, Risk identification and risk mit-
igation instruments for global software development: Systematic review and survey
results. In Global Software Engineering Workshop (ICGSEW), 2011, pp. 36-41.

7. J.M. Verner, O.P. Brereton, B.A. Kitchenham, M. Turner, M. Niazi. Risks and
risk mitigation in global software development: A tertiary study. Information and
Software Technology 56 , 2014, pp. 5478, in press.

8. D. Šmite, C. Wohlin, T. Gorschek and R. Feldt, Empirical evidence in global soft-
ware engineering: a systematic review. Empirical Software Engineering, 15(1), 2010,
pp. 91-118.

9. A. Bhadauria, S. Bhattacharjee, C. B. Anandkumar and S. Puthiyonnan, Sustaining
High Performance in an O↵shore Team in Globally Distributed Development: A
Success Story. In Global Software Engineering (ICGSE), 2013, pp. 120-123.

10. D. Bhadade, A Guide to Escalation in Project Management, February 27, 2013,
unpublished.

11. J. W. Rottman, Successfully outsourcing embedded software development. Com-
puter, 39(1), 2006, pp. 55-61.

12. P. J. Agerfalk, B. Fitzgerald, H. Holmstrm, B. Lings, B. Lundell and E. O.
Conchuir. A framework for considering opportunities and threats in distributed
software development. In International Workshop on Distributed Software Develop-
ment, 2005, pp. 47-61.

13. W. Kobitzsch, D. Rombach and R. L. Feldmann, Outsourcing in India. Software,
IEEE, 18(2), 2001, pp. 78-86.

14. B. Lings, B. Lundell, P. J. Agerfalk and B. Fitzgerald, A reference model for
successful Distributed Development of Software Systems. In Global Software Engi-
neering, ICGSE 2007, pp. 130-139.

15. D. Šmite, C. Wohlin, A. Aurum, R. Jabangwe and E. Numminen, O↵shore in-
sourcing in software development: Structuring the decision-making process. Journal
of systems and software 86, 2013, pp. 1054-1067.

16. D. Šmite, Global software development projects in one of the biggest companies
in Latvia: is geographical distribution a problem?. Software Process: Improvement
and Practice, 11(1), 2006, pp. 61-76.

17. T. Forbath, P. Brooks and A. Dass, Beyond cost reduction: Using collaboration
to increase innovation in global software development projects. In Global Software
Engineering, ICGSE 2008, pp. 205-209.

18. J. D. Herbsleb, D. J. Paulish and M. Bass, Global software development at siemens:
experience from nine projects. In Software Engineering, ICSE 2005, pp. 524-533.

19. R. Prikladnicki, J. L. N. Audy, D. Damian and T. C. de Oliveira, Distributed
Software Development: Practices and challenges in di↵erent business strategies of
o↵shoring and onshoring. In Global Software Engineering, ICGSE 2007, pp. 262-274.

20. I. Richardson, V. Casey, F. McCa↵ery, J. Burton and S. Beecham, A process frame-
work for global software engineering teams. Information and Software Technology,
54(11), 2012, pp. 1175-1191.

21. S. Beecham, P. OLeary, I. Richardson, S. Baker and J. Noll, Who are we do-
ing Global Software Engineering research for?. In Global Software Engineering
(ICGSE), 2013, pp. 41-50.

22. A. Piri, T. Niinimäki and C. Lassenius, Fear and distrust in global software en-
gineering projects. Journal of Software: Evolution and Process, 24(2), 2012, pp.
185-205.



23. J. Pyysiäinen, Building trust in global inter-organizational software development
projects: problems and practices. In International Workshop on Global Software
Development, 2003, pp. 69-74.

24. M. Paasivaara and C. Lassenius, Collaboration practices in global interorganiza-
tional software development projects. Software Process: Improvement and Practice,
8(4), 2003, pp. 183-199.

25. V. Mettovaara, M. T. Siponen and J. A. Lehto, Collaboration in Software Devel-
opment: Lesson Learned from Two Large Multinational Organizations. In PACIS,
2006.

26. D. Šmite, A case study: coordination practices in global software development. In
Product Focused Software Process Improvement, 2005, pp. 234-244.

27. D. Šmite and C. Wohlin, Lessons learned from transferring software products to
India. Journal of software: Evolution and process, 24(6), 2012, pp. 605-623.

28. M. R. Thissen, J. M. Page, M. C. Bharathi and T. L. Austin, Communication
tools for distributed software development teams. In Proceedings of the 2007 ACM
SIGMIS CPR conference on Computer personnel research: The global information
technology workforce, 2007, pp. 28-35.

29. N. B. Moe and D. mite, Understanding a lack of trust in Global Software Teams:
a multiplecase study. Software Process: Improvement and Practice, 13(3), 2008, pp.
217-231.

30. I. Oshri, J. Kotlarsky and L. P. Willcocks, Global software development: Exploring
socialization and face-to-face meetings in distributed strategic projects. The Journal
of Strategic Information Systems, 16(1), 2007, pp. 25-49.

31. H. W. Nissen, “Designing the inter-organizational software engineering coopera-
tion: an experience report.”2004, pp. 24-27.

32. M. F. Faiz, U. Qadri and S. R. Ayyubi, O↵shore software development models. In
Information and Emerging Technologies, ICIET 2007, pp. 1-6.

33. J. Cusick and A. Prasad, A practical management and engineering approach to
o↵shore collaboration. Software, IEEE, 23(5), 2006, pp. 20-29.

34. A. Braun, A framework to enable o↵shore outsourcing. In Global Software Engi-
neering, ICGSE 2007, pp. 125-129.

35. F. Salger, On the use of handover checkpoints to manage the global software de-
velopment process. In On the Move to Meaningful Internet Systems: OTM 2009
Workshops, pp. 267-276.

36. M. Leszak and M. Meier, Successful Global Development of a Large-scale Embed-
ded Telecommunications Product. In Global Software Engineering, ICGSE 2007,
pp. 23-32.

37. F. Q. Silva, R. Prikladnicki, A. C. C. Frana, C. V. Monteiro, C. Costa and R.
Rocha, An evidence-based model of distributed software development project man-
agement: results from a systematic mapping study. Journal of Software: Evolution
and Process, 24(6), 2012, pp. 625-642.

38. K. T. Chang, and K. Ehrlich, Out of sight but not out of mind?: Informal networks,
communication and media use in global software teams. In Proceedings of the 2007
conference of the center for advanced studies on Collaborative research, 2007, pp.
86-97.

39. A. Nguyen-Duc and D. S. Cruzes, Coordination of Software Development Teams
across Organizational Boundary–An Exploratory Study. In Global Software Engi-
neering (ICGSE), 2013, pp. 216-225.

40. G. Hofner and V. S. Mani, TAPER: A generic framework for establishing an o↵-
shore development center. In Global Software Engineering, ICGSE 2007, pp. 162-
172.



41. A. Mockus and D. M. Weiss, Globalization by chunking: a quantitative approach.
Software, IEEE, 18(2), 2001, pp. 30-37.

42. S. Deshpande and I. Richardson, Management at the Outsourcing Destination-
Global Software Development in India. In Global Software Engineering, ICGSE
2009, pp. 217-225.

43. V. Casey, Virtual software team project management. Journal of the Brazilian
Computer Society, 16(2), 2010, pp. 83-96.

44. E. Hossain, M. A. Babar and J. Verner, How Can Agile Practices Minimize Global
Software Development Co-ordination Risks?. In Software Process Improvement,
2009, pp. 81-92.

45. J. Hyysalo, P. Parviainen and M. Tihinen, Collaborative embedded systems devel-
opment: survey of state of the practice. In Engineering of Computer Based Systems,
13th Annual IEEE International Symposium and Workshop, 2006, pp. 1-9.

46. A. Lamersdorf, J. Münch, D. Rombach, Towards a Multi-criteria Development Dis-
tribution Model: An Analysis of Existing Task Distribution Approaches. In Global
Software Engineering (ICGSE), 2008, pp. 109-118.

47. C. Wohlin, Guidelines for Snowballing in Systematic Literature Studies and a
Replication in Software Engineering. EASE14 18th international conference on Eval-
uation and assessment in software engineering, 2014, pp. 321-330.


