
MAAN KUNNOSTUS MÄNNYN VILJELYSSÄ LAPISSA

ELIAS POHTILA & TAPANI POHJOLA

Summary

SOIL PREPARATION IN REFORESTION OF SCOTTS PINE IN LAPLAND

Saapunut toimistoksele 12. 4. 1985

Hajoakylvö onnistumiseen voidaan vaikuttaa paljon kylvöjankohdan valinnalla. Runsain taimetunnin saatiin kylvettäessä kesäkuussa. Pyriityksessä täsytettiin tapahtuu, taimikoina ja käytettäessä tavanomaisia maankunnostusmenetelmiä sekä tuloaikaa kylvöaikaa mäntyvaaltaisilla kasvupaikoilla tarvitaan riittävän 3–1 kg/ha, kuivuusalilla 2–6 kg/ha. Täysmuotoilla maila sievenneet on puolta pienempiä.

Muokatun maan tekemysten negatiivinen vaikutus on selvää sitä huomattavasti, mitä pitempä on muokkausen ja viljelyn välinen aika.

1. JOHDANTO

Uudet tutkimukset organisoitiin vuonna 1969 kahden päänäkymän mukaan.

Aurauksen ollessa vallitseva uudistusalojen maan kunnostusmenetelmä useimmat viljelykoete perustettiin aurautulle aloille. Vertailu-levytilaisuudet pohjautuivat mukaan kaikista kysymyksiin tulevat maan kunnostus- ja viljelytapojen yhdistelmistä.

Kun männyllä saatiin Lappiassa hyvä site- mensato v 1977, ja siitä onnistuttiin keräämään varastoihin niin paljon, että siementä riitti pitkään aikaan myös maastonkelpoihin, heräädellä ja mituttajahyvänä. Uusien maanmuokkausmenetelmien avulla on mahdollista parantaa tavallisia tuotteita, pieneniä siemenmekkiiä ja tehdä hajottamista siten aikaismiehitykköä.

Tutkinnon arvostelut ovat maan- ja kasvuttien työta

21. Tutkimusalueet

Tutkimusalueet, yhteensä 12 kpl, valitiin eri puolilta Lappia silloin pitäen männyn viljelyssä, ylityskynyn kunnostukseen tulevala kasvupaikka- vaihtelua (kuva 1). Puolet alueesta valittiin männyn välittömyysvaikutteista, puolet kuivusuolaisista kasvupaikoista (lilite 1). Alueiden korkeus meren

22. Maan kunnostus

Tutkimusalueilla 1–8 kokeijärjestelyssä on noudattettu arvottujen lohkojen ja sisääkkästen ruohtien periaatteita. Kesällä 1974 kulke-

246

247

Tutkimusalueet

21. Tutkimusalueet

Tutkimusalueet, yhteensä 12 kpl, valitiin eri puolilta Lappia silloin pitäen männyn viljelyssä, ylityskynyn kunnostukseen tulevala kasvupaikka- vaihtelua (kuva 1). Puolet alueesta valittiin männyn välittömyysvaikutteista, puolet kuivusuolaisista kasvupaikoista (lilite 1). Alueiden korkeus meren

22. Maan kunnostus

Tutkimusalueilla 1–8 kokeijärjestelyssä on noudattettu arvottujen lohkojen ja sisääkkästen ruohtien periaatteita. Kesällä 1974 kulke-
25 % lautasauran jäiliitä. Vähiten, n. 9 % sitä oli auratauilla ruuduilla.

Maan pintareliefiä muuti eniten aurun. Vakoa syntyi keskimäärin n. 8 % aurattujen ruutujen pintaa-alasta, vaon luiskaa n. 16 %, pienmittaa n. 6 % ja paletta n. 30 %. Koskematomaksi jää n. 40 % pintaa-alasta. Vastavasti lautasaurauksessa tuli vakoa n. 16 %, vaon reuna-aluetta n. 10 %, ja paletta n. 25 % pintaa-alasta. Koskematomaksi jää keskimäärin n. 50 %. Laikutuksessa varsinaisen laikan osuus oli keskimäärin n. 25 % ja miättäiden n. 24 % pintaa-alasta. Koskematomaksi laikutuksessa jää 51 % pintaa-alasta.

23. Koeviljelyt

Hajakyvön ajanjaksokoksi noudatettiin tutkimusalueilla 9 ja 12 12 täydellisesti arvotun kokeen periaatteet. 1,2 ha:n alueet jaettiin 12:een yhtä suureen ruutuun, joihin arvottiin kolme kyvöjäjakohta neljänä toistona. 80 %-settiä itävää siemenä kylveytti 1,5 kg/ha, tutkimusalueilla 10 ja 11 noudatettiin arvottujen lohkojen ja sisäkkäiden ruutujen periaatteita. Lohkoja muodostettiin kolme, joihin kuhunkin arvottiin ensin neljä ajan-jakohaa. Kukan 0,2 ha:n ajanjaksojakut suoritettiin vielä kahtia ja puolisikhoi arvottiin 1:n ja 3 kg/ha siemenmäärät. Alueet 9 ja 12 kyvötarvitiin vuonna 1977 ja 10 ja 11 vuonna 1978. Sekä kyvössä että tutkimuksessa käytettiin mahdollisimman tarkan tapahtimaa alkuperä a tavallisien siemenä, tai tai niitä. Siemen oli vuoden 1972 satoa ja laadultaan hyvä. Tutkimusalueittain siemenen alkuperä ja laboratorioitävyyys olivat:

<table>
<thead>
<tr>
<th>Väljyys-</th>
<th>Taimi-</th>
<th>Verso-</th>
<th>Vuosi</th>
<th>Jaeren sana</th>
<th>Kohvahippot, g</th>
<th>Jurista</th>
<th>Ylemmän</th>
<th>Neulasten ravinnepitoisuus</th>
</tr>
</thead>
<tbody>
<tr>
<td>vuosi</td>
<td>laji</td>
<td>pituus, cm</td>
<td>koko</td>
<td>nukan</td>
<td>talla, cm</td>
<td>Root</td>
<td>Root</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Root</td>
<td>Root</td>
<td>diameter, mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>1M+1A</td>
<td>12,9</td>
<td>2,5</td>
<td>1,40</td>
<td>0,42</td>
<td>1,82</td>
<td>1,4</td>
<td>1,7</td>
</tr>
<tr>
<td></td>
<td>1Mk</td>
<td>7,3</td>
<td>1,1</td>
<td>0,20</td>
<td>0,10</td>
<td>0,30</td>
<td>0,8</td>
<td>1,4</td>
</tr>
<tr>
<td>1976</td>
<td>1M+1A</td>
<td>13,6</td>
<td>2,4</td>
<td>1,40</td>
<td>0,43</td>
<td>1,83</td>
<td>2,1</td>
<td>1,5</td>
</tr>
<tr>
<td></td>
<td>1Mk</td>
<td>11,8</td>
<td>1,4</td>
<td>0,46</td>
<td>0,08</td>
<td>0,54</td>
<td>1,3</td>
<td>1,6</td>
</tr>
<tr>
<td>1977</td>
<td>1M+1A</td>
<td>10,7</td>
<td>2,6</td>
<td>1,13</td>
<td>0,31</td>
<td>1,43</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1Mk</td>
<td>10,2</td>
<td>1,3</td>
<td>0,37</td>
<td>0,10</td>
<td>0,47</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hajakyvössä ajanjaksokoksi noudatettiin tutkimusalueilla 9 ja 12 kyvöjäjaksi oli neljä ja ette olisi tallennuut siemenmaisikauden impulssiperäisiä vaihteita.

24. Tulosten inventointi

Muilla paikoilla hajakyvöjävöissä onkin kuitenkin vallinnut esihoidon muutaman 50 tainaa tai kyvöläikkuissa sisältyä 200 m:n ympäröikästä. Tällöin laskettiin

Kuva 2. Vertailutavat maanmunostutavat: kulutus, laikutus, lautasauraus ja ausaur. Figure 2. Soil preparations: prescribed burning, scalping, disc ploughing and ploughing.
tainnelliset kylvölaikut ja elossen pysyneet istutustaimet ja mitattiin elävien taimien pituuskasvun 1 cm:n tarkkuudella. Kylvöüppaista seurattiin vain valtataimen kasvua.

25. Tutkimusjaksan säätöt

Kesä 1975, jolloin tehtiin ensimmäiset koeviljelyt, alkoi sateisena ja suhteellisen lämpimänä. Heinä-elokuussa säät viileni ja kävi kuivemmaksi. Sysykuussa satoi taas keski-
31. Taimettuminen ja taimien eloonjäänti

Taimettuminen ja taimien eloonjäämisen kokonaisvaahdetusta (liite 2) ei voitu erottaa maan kunnostuksen tilastollisuus merkitsevä päävaikutusta (taulukko 3). Tilastollisuus mitti merkintävää yhteisvaikutusta maan kunnostuksen ja viljelyvastakseen kesken aiheutetulla lähinnä siitä, että kylvö onnistui parhaiten kulutetulilla ruuduilla ja huoru-imoinninauraatulla, kun taas istutuksessa tulos oli päinvastainen. Kuuden kasvukauden kuluttua taimien keskimääräinen yksikköaikaperiaatteita ja Tukey "honestylyylikäsite differentiä" (HSD) menetelmän kaksikulmaisessa tärkein erottelut:

<table>
<thead>
<tr>
<th>Vakoruutukylvö</th>
<th>Istutus</th>
<th>Istutus 1M+1A</th>
<th>Istutus 1MK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Külkotus</td>
<td>66</td>
<td>59</td>
<td>65</td>
</tr>
<tr>
<td>Laikutus</td>
<td>63</td>
<td>66</td>
<td>73</td>
</tr>
<tr>
<td>Lautasaaurus</td>
<td>59</td>
<td>65</td>
<td>67</td>
</tr>
<tr>
<td>Auraus</td>
<td>57</td>
<td>69</td>
<td>74</td>
</tr>
</tbody>
</table>

HSD = 19

Table 3. Analysis of variance for the survival percentages of the seeded or planted seedlings after six growing seasons on research areas 1-8. Transformation arc sin V'Y was used. Broadcast sowing were not included in the analysis.

<table>
<thead>
<tr>
<th>Vakiavuori</th>
<th>Degree of freedom</th>
<th>Mean square</th>
<th>F-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutkimusvalot - Research areas</td>
<td>7</td>
<td>2623,94</td>
<td>10,96 ***</td>
</tr>
<tr>
<td>Maan kunnonivakerot - Soil preparations</td>
<td>3</td>
<td>157,34</td>
<td>0,66</td>
</tr>
<tr>
<td>Jäänninivakerot</td>
<td>21</td>
<td>238,87</td>
<td></td>
</tr>
<tr>
<td>Viljelyvastakset - Methods of reforestation</td>
<td>2</td>
<td>841,74</td>
<td>14,35 ***</td>
</tr>
<tr>
<td>Maan kunnonivakerot x viljelyvastakset</td>
<td>6</td>
<td>218,14</td>
<td>3,72 **</td>
</tr>
<tr>
<td>Jäänninivakerot x viljelyvastakset</td>
<td>56</td>
<td>58,64</td>
<td></td>
</tr>
<tr>
<td>Viljelyvastakset - Years of reforestation</td>
<td>2</td>
<td>4412,65</td>
<td>26,47 ***</td>
</tr>
<tr>
<td>Maan kunnonivakerot x viljelyvastakset</td>
<td>6</td>
<td>144,81</td>
<td>0,87</td>
</tr>
<tr>
<td>Soil preparations x years of reforestation</td>
<td>4</td>
<td>539,99</td>
<td>3,24 *</td>
</tr>
<tr>
<td>Methods of reforestation x years of reforestation</td>
<td>12</td>
<td>42,73</td>
<td>0,26</td>
</tr>
<tr>
<td>Jäänninivakerot x years of reforestation</td>
<td>168</td>
<td>166,72</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5. Average survival of seeded and planted seedlings with different soil preparation methods.

Mäntyvaltaisilla alueilla oli koneellisista maanpintojärjestelmistä taimien yksikköaikaperiaatteita muutamista paras lautasaauraisa, joka kuusivaltaisilla kasvupaikoilla oli kaikkein huonom. Yhdistelmien välistä eroa olivat mäntyvaltaisilla alueilla pienempiä kuin kuusivaltaisilla. Kuuden kasvukauden kuluttua viljelystä elossa oli entisen istutetujen kannottaajia (1 MK). Keskimääräinen ero muihin viljelytapoihin oli tilastollisesti merkittävä (taulukko 3). Myös vakoruutukylvön ja pal-
4. MAAN KUNNOSTUS HAJAKYLVÖSSÄ

41. Taimettuminen hankikylvössä

Tutkimusalueilla 1–8 perinteinen hajakylvö hangelle tuotiin hyvin vaihtelevia tuloksia. Syntyneiden taimien lukumäärän keskiarvoissa havaittiin kuitenkin maankunnostusmenetelmän välillä tilastollisesti merkittäviä eroja. Syksyllä 1978 tehdyn inventoinnin mukaan taimia syntyi vähiten kultetuille ja eri

taimutauille ruu duille:

<table>
<thead>
<tr>
<th>Kulttuur</th>
<th>Laikuru</th>
<th>Lautasaarua</th>
<th>Auraus</th>
<th>HSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>835</td>
<td>2 773</td>
<td>3 167</td>
<td>5 330</td>
<td>2014</td>
</tr>
</tbody>
</table>

Tutkimusalueittain välillä ei suuria eroja. Mäntyvaltaisille kasvupaikoille taimia syntyi keskimäärin 2–3 kerta enemmän kuin kuusi

valtaisille. Kylvövuosien välissä eroa tarkastellaan läheisimmässä luvussa 5. Aurauksessa paljastui kivennäismaa enemmän kuin muissa menetelmissä (luku 22), mikä oli ilmeinen syy aurattujen ruutujen muita korkeampi taimimäärän.

Koneellisia maankunnostusmenetelmiä käytetäessä taimia syntyi ensimmäisen vuoden kyvöstä alustalaaduittaan keskimäärin seuraavasti:

<table>
<thead>
<tr>
<th>Kivennäismaa</th>
<th>Kivennäismaa ja humuksen sekoitus</th>
<th>Humus</th>
<th>HSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,0</td>
<td>1,3</td>
<td>0,3</td>
<td>1,2</td>
</tr>
</tbody>
</table>

Selvästi huonoina taimettumisalusta oli humus. Taimien lukumäärissä havaittiin myös maankunnostusmenetelmän ja alustalaadun kesken tilastollisesti jokseenkin merkittäviä yhteisvaikutuksia (P<0,05), joka aiheutui sitä, että lautasaarauksessa paljastunut kivennäismaa oli yleensä parempi taimettumisalusta kuin laikuruksessa tai aurauksessa paljastunut kivennäismaa (kuva 8).

32. Taimien pituuskasvu

Taimien pituuskasvuyksi oli nopeinta kulotettuilla tai aurauilla ruu duilla sekä hitainta yleensä lautasaaruita ruu duilla (kuva 7). Kuuden kasvukauden kuluttua viljelystä elävien taimien keskimääräinen pituus yli 2-metrin laatuksi evintäsauna 3 mm ja HSD maankunnostusmenetelmän välillä eroille olivat:

<table>
<thead>
<tr>
<th>Vaihe</th>
<th>Kulttuur</th>
<th>Laikuru</th>
<th>Lautasaarua</th>
<th>Auraus</th>
<th>HSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kuluttus</td>
<td>31</td>
<td>78</td>
<td>59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laikuru</td>
<td>20</td>
<td>65</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lautasaarua</td>
<td>20</td>
<td>55</td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auraus</td>
<td>28</td>
<td>79</td>
<td>59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSD</td>
<td>7</td>
<td>14</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keskimääräisiä kasvueräjä on nopeita kulottua nopeat kaloiluu. Taimet olivat kasvanut pituutta kuusivaltaisilla ja mäntyvaltaisilla kasvupaikoilla kuudessa vuodessa liikmaan yhä paljon.

Paljusiunośćksien (1M+1A) taimet olivat jo istutettessa kookkaampia kuin kennotaimet (1 Mk).

Kuva 7: Taimien keskimääräinen pituuskasuva eri maankunnostusmenetelmän käytämisessä.

Viljelytaipujen vlaidetaien kivennäismen esitetään olivat kuuden kasvukauden kuluttua:

<table>
<thead>
<tr>
<th>Vaihe</th>
<th>Vaihe</th>
<th>Kulttuur</th>
<th>Laikuru</th>
<th>Lautasaarua</th>
<th>Auraus</th>
<th>HSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kuluttus</td>
<td>25</td>
<td>69</td>
<td>53</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kuva 8: Eri maankunnostusmenetelmiä syntyvien alustalaatujen suhdeet ja niille hajakylvöstä syntyneiden taimien määrää.

Figure 8. Proportions of different substrates in the compared soil preparations and the average number of seedlings on different substrates emerged from broadcast sowings.
Suhteellisesti eniten taimia syntyi lautasauran vakoon. Lähes yhtä hyvää taimettumisaluista oli aurauvan piantar. Vähiten taimia syntyi lautasaurauksen palteeseen ja laikutussa nurin kääntynesseen humukseen.

Koneellisia maanmuokkausmenetelmiä käytetään alamaisi, että mitä peittäväämpi oli käsittely, sitä korkeampi oli myös taimettumissadanneen. Mäntyvaltaisilla kasvupaikoilla korkeimmat taimettumissadanneet saatiin lautasaurauksella ja kuusivaltaisilla kasvupaikoilla aurauksella.

42. Kylövääjokahdon ja simenmäärän vaikutus

![Diagram](image-url)
5. MAAN TEKEYTMINEN

Kyllöitäminen kasvattaa kasvukahdutuksen, vaikka kyövön kasvukahdutuksen on parantavat erilaiset toimintatilat. Toisinaan maankunnostuksen jälkeisessä vuodenaista kasvukahdutuksessa on nähty merkittäviä eroja, jotka voivat johtua erilaisista yhteisvaikutusten ja niiden vaikutusten, jotka voivat vaikuttaa taimien kasvukahdutukseen. Kuva 12. Taiteistumisessa on esitetty merkittäviä eroja, jotka voidaan yhtymään erilaisiin tilastollisiin merkittäviin eroihin.

6. TARKASTELU

Hajavyöreitä on kuvaellut aloilla selvästi kuinka huonokuntoisia. Kahdella laitosta sitä tai sitä lähellä tapahtumia.

Hajavyöreitä on kuvaellut aloilla selvästi kuinka huonokuntoisia. Kahdella laitosta sitä tai sitä lähellä tapahtumia.

Hajavyöreitä on kuvaellut aloilla selvästi kuinka huonokuntoisia. Kahdella laitosta sitä tai sitä lähellä tapahtumia.

Hajavyöreitä on kuvaellut aloilla selvästi kuinka huonokuntoisia. Kahdella laitosta sitä tai sitä lähellä tapahtumia.

Hajavyöreitä on kuvaellut aloilla selvästi kuinka huonokuntoisia. Kahdella laitosta sitä tai sitä lähellä tapahtumia.

Hajavyöreitä on kuvaellut aloilla selvästi kuinka huonokuntoisia. Kahdella laitosta sitä tai sitä lähellä tapahtumia.

Hajavyöreitä on kuvaellut aloilla selvästi kuinka huonokuntoisia. Kahdella laitosta sitä tai sitä lähellä tapahtumia.

Hajavyöreitä on kuvaellut aloilla selvästi kuinka huonokuntoisia. Kahdella laitosta sitä tai sitä lähellä tapahtumia.

Hajavyöreitä on kuvaellut aloilla selvästi kuinka huonokuntoisia. Kahdella laitosta sitä tai sitä lähellä tapahtumia.

Hajavyöreitä on kuvaellut aloilla selvästi kuinka huonokuntoisia. Kahdella laitosta sitä tai sitä lähellä tapahtumia.
KIRJALLISUUS

Borg, A. 1931. Selostus omakotaisista kokemuksista
sa runsasta, tulisi kunkimmalle edeltävän kesän lämpösumman Sarvaksen (1970) mukaan ola-
na vähintään 910 d.d. Kukkimista ja pölystystä seuraavan siemenen tulentumiseen läm-
pösumma taas pitäisi olla 845 d.d., jotta sie-
men olisi vähintään 56 d.d. lämpösumman tule-
tunna. Jos lämpimien kesien esiintyminen noudattaa normaalijakuaamaa, runsaan kun-
kimisen todennäköinen frekvenssi esiintyy.
Kännykkästä on sääfälltöjen perusteella n. 0,18 ja riittävän tulentumisen frekvenssi 0,33 sekä molemmassa yhteen todennäköinen frekvenssi 0,6. Tällä vuosiosalla lieenni ollut vain pari kolme sellaista vuosisäkermää, jolloin mäntyllä on tulipalaa metsäraajalle saaka hyvä, tulettunut siemenas.

Suajokin metsän tehokkuus vaikuttaa nykyiseen lämpösummon ja luonnollisen metsätekniseen ainaan, koska nykyinen aineistos Deve-
lopment of piped field track and vegetation on reforestation areas in Finnish Lapland. For. Fenn. 199: 1–19.
Hagner, S. 1962. Några faktorer av betydelse för rotmanskapes skadeorör. Summary: Some factors of impor-
Hagner, S. 1962. Ett exempel på beståndstätthets bety-
Hertz, M. 1934. Kaukasialaiset merkitys männyn usit-
tutkimus Suurtaajakasta. Bedeutung der Unter-
Huuri, O. 1972. Istutuksen suoritustavan vaikutus männ-
Kinnunen, K. 1976. The effect of sowing date on the initial development of seedlings in a plastic greenhouse. Selostus: Kyklikövänkohdaka uis- tettua kunnostettua kiskoehnkertyä muovisuu-
& Lähde, E. 1971. Kyklikövänkohdaka uisettua kunnostettua kiskoehnkertyä suunnitella vau-
& Lindh, J. & Lähde, E. 1974. Eri ajankohdista istutettujen männyn kunnostettua alkukyettelyä Pohjois-Suomessa. Summary: Initial develop-
Kolehmainen, V. 1955. Hauvanota kulloin merkity-
kaisen metsämetsiin uudistamisessa. Referat: Be-
obhakomminen över beskaffheden af Skovtras-
dens i beundring af finniska norden. Silva Fenn. 83: 1–32.
Leikola, M. 1970. Muuokausien metsänkaan puutuokset metsänluonnossa. Summary: Mykös- ja selostusmetsien hallintosalin metsäpurjeen voitto. Summary: Selostetut metsänkään puutuokset metsänluonnossa. Summary: The influ-
Lähdet J. 1974. Tusimetsäintotaukoita lapsien hoidon ja käytön suunnatuja. Summary: The role of nursery-
Lähde, E. 1974 a. The effect of grain size distribution on the condition of natural and artificial sapling stand. Selostus: Maa leikkuokset ja metsän luonnokset. Summary: The effect of seed size and shape on germination of pine (Pinus silve-
ris L.) seed. Selostus: kyklikövauksen ja kyklikö-
vasen tai kyklikövauksen tappion metsänraja-
SUMMARY

SOIL PREPARATION IN REFORESTATION OF SCOTS PINE IN LANPDEL

Introduction

The purpose of the research was to find out a favourable combination of various soil preparation and reforestation methods in Lapland. The most favourable time of the year for broadcast sowing and the effect of stabilisation after soil preparation on resecting were studied as special problems.

Research areas

Research areas, twelve in all, were chosen across all Lapland (Figure 1). The variety of sites connected to reforestation of Scots pine was taken into consideration. There were six pine-dominated and six spruce-dominated sites (Appendix 1). Most research areas were clearly cut in the winter of 1974. The areas where the date of broadcast sowing was studied were cut in the years 1975–1977. The areas were cleared and on most areas the stumps of hardwood trees were treated with phenoxyl-herbicides.
Experimental design

The experimental design was randomized block, with the details corresponding to a split-plot design. In the summer of 1974 all blocks of 4.8 hectares were marked out in the experimental areas. The blocks were divided into four plots of 60 x 200 meters. The main treatments, prescribed burning, scalping, disc ploughing and ploughing (Figure 2) were randomized among the plots in each block. Soil preparation was done in the summer of 1974 with the exception of scalping and prescribed burning which were done in the following spring. One area (research area 3) could not be burned until the spring of 1976. The areas where the date of broadcast sowing was studied were just ploughed in the years 1976–1977.

Soil preparation methods

When surveying the broadcast sowings in the summer of 1978 the effect of the different soil preparations was studied in detail. The treatments covered 50–87 per cent of the total area of the plots depending on the preparation method. The percentage was highest in the prescribed burning which, however, suffered from rainy weather and in many areas the lack of logging residue. 25 per cent of the area of the plots was thoroughly burned and 61 per cent poorly burned.

The mechanical soil preparation methods were used according to prevailing practice. Most mineral soil was exposed on the ploughed plots, on an average 39 per cent of the area. On the scalped plots the corresponding number was 14 per cent and on the disc ploughed ones 10 per cent. There was a 10–15 per cent mixture of mineral soil and humus in all mechanical methods. The humus layer was most turned upside-down by disc ploughing, 25 per cent, and least, 9 per cent, on the ploughed plots.

The relief of the soil surface was most affected by ploughing. Ploughing produced furrow 8 per cent, slope of the furrow 16 per cent, shoulder 10 per cent and tilt 25 per cent. 50 per cent was untouched on an average. In scalping mineral patches covered on an average 25 per cent and hummocks 24 per cent of the area. 31 per cent of the area was untouched in scalping.

Reforestation methods

The soil preparation plots were usually divided into two sub plots of 50 x 60 meters, among which the reforestation methods: broadcast sowing, band sowing, planting with 1M + 1A bare-rooted transplants and planting with 1 MK paper-pot seedlings were randomized.

The reforestation was spaced over a three-year period and for this the sub plots were divided into three sections, among which the years of reforestation: 1975, 1976 and 1977 were randomized. Seeds and nursery stock for sowing and planting were as strictly as possible local in origin. Each batch of stock a sample of 5–30 seedlings was taken to the laboratory for detailed studies (Table 1).

25 germinating seeds were sown per sowing spot in hand sowing, 1.5 kilo of seed of 80 per cent germination were used per hectare in general in broadcast sowing. The experimental design of the date of broadcast sowing was either total randomization or randomized blocks, with the details corresponding to a split-plot design. The amount of seeds varied from one to three kilos per hectare. These broadcast sowings were carried out in the years of 1977–1978. In general the broadcast sowing was done according to old traditions on snow in April, but for the experiments of the date of reforestation it was spaced over from March to July.

Different techniques were used in sowing. Bare-rooted transplants were planted in a semicircular planting hoe and paper-pot seedlings with a planting tube. A drill punch first presented by Melders was used in hand sowing. The scalping of the burned plots was done with a peat hoe immediately before band sowing and planting. In general the broadcast sowing was scalped. A special device designed for trefoil sowing, Mörwald's "Kleegerät" (Figure 3) was used in broadcast sowing.

Seedling inventories

A circular sample plot of 200 m² with 50 seedlings or sowing spots was marked in the middle of every plot with the exception of broadcast sowing. An inventory of the sample plots was done annually. On the broadcast sowing plots the systematic circular plot survey method with sample plots of 0.2 m² and sample plot interval of 2 meters was used. Besides the number of seedlings also the distance from the central point of the sample plot to the nearest seedling was measured in some of the broadcast sowing plots. On the scalped, disc-ploughed and ploughed plots the distance was measured both including and excluding the disturbed areas in between. The

disturbed area on the the scalped plots was used as control.

The weather during the research period was variable as usual in Lapland (Table 2).

Interaction of soil preparation and reforestation

It was not without importance how the different soil preparation and reforestation methods were combined (Appendix 2, Table 3). Prescribed burning, scalping with hoe and sowing proved to be a favourable combination, which was also found out in some previous experiments (Figure 5). Planted seedlings succeeded worse than sown ones on burned areas. The evident cause of the difference was thoroughly discussed in previous researches (e.g. Pohtila 1977). Planted seedlings dry up more easily than sowed ones, which probably is the main reason for the difference. There is no evidence than Rhizina root rot (Rhizina undulata Fr.) has contributed to the results.

The best soil preparation method with plating was ploughing, which on the other hand proved to be relatively poor with sowing. One important cause for the failure of sowings on the ploughed plots seems to be frost heaving. The height growth of both sowed and planted seedlings was, however, faster in these areas than on the scalped or disc-ploughed plots.

A general conclusion was that prescribed burning, scalping and disc ploughing made a better combination with sowing than planting, and ploughing on the other hand a better combination with planting than sowing. In closely studied the possibility of the distribution proved to be an important factor (Figure 6). The combination of ploughing and planting was favourable for moist spruce-dominant sites. On sub-dry pine-dominant sites there was more choice of methods because there were only minor differences in success between the different combination of methods.

On an average the best results was reached with planted paper-pot seedlings. The bigger seedlings or transplants were the faster the height growth after planting was (Figure 7).

Bare-rooted transplants seemed to suggest that the nutrient content of seedlings at the moment of planting had an effect on their later development. The needles of the most successful transplants had higher nitrogen, potassium and phosphorus contents than usual (Table 1).

Stabilization of soil

Stabilization of the soil after preparation had a negative effect on reforestation results (Figure 12). Especially stocking with sowed seedlings was clearly the poorer the longer the time lapse between soil preparation and sowing was. E.g. rain makes the upper mineral soil layer waterlogged thus decreasing the number of spots suitable for the germination of seeds. Earlier the stabilization of the soil was considered to be favourable because of diminished frost heaving damages. Not to lose the productivity cultivated areas should be sown as soon as possible.

The results of the broadcast sowing experiments can be extended to natural regeneration. Only immediate germination assures the best possible result (Figure 13). In natural regeneration there is no certainty about the seed crop in Lapland and therefore it is difficult to choose the optimal date for preparation. The time lag between soil preparation and natural seeding may be so long that the investment on soil preparation will be misspent. Regeneration areas with soil preparation should in general be sowed instead of waiting for natural seeding.

Soil preparation in broadcast sowing

Broadcast sowing on snow gave inconsistent results. There emerged on pine-dominant sites on an average 2–3 times more seedlings than on spruce-dominant ones. On an average restocking was best on ploughed plots with the most of mineral soil (Figure 8). Seedlings were recorded most of all on the shoulder of the ploughed ditch and in the funnel of the disc plough. The poorest substrate for restocking in all soil preparation methods was humus.

Prescribed burning alone does not guarantee adequate restocking in broadcast sowing. On the noncultivated plots seedlings did not emerge but on thoroughly burned spots with mineral soil (Figure 10).

The results of broadcast sowing can be affected by the choice of sowing date. The longer the period was between sowing and germination the fewer seedlings emerged. The best restocking was clearly resulted from sowings in June which also is the peak for the natural seed fall of Scots pine in Lapland (Figure 11). Aiming at a fully stocked stands using normal soil preparation and the most efficient sowing date, the minimum amount of seeds needed (laboratory germination 80 per cent) seems to be 0,5–1,0 kilo per hectare on sub-dry pine-dominant sites in Lapland. On moist spruce-dominant sites the need of seeds is higher, 2–6 kilo per hectare depending on the soil preparation methods. On completely cultivated soils the corresponding need of seeds is probably about half of the amounts mentioned above.
Liite 1. Turkimusalueiden yleiskuvaus.

Appendix 1. General description of the research areas.

<table>
<thead>
<tr>
<th>Havainnollistus</th>
<th>Type of ornation</th>
<th>Turkimusalue - Research area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Korkeus merenpinnasta</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
<td>240 290 240 195 190 180 180 190 210 205 190 150</td>
</tr>
<tr>
<td>Elevation</td>
<td>Keskimääräinen tehdos</td>
<td>744 710 777 862 831 823 823 857 753 757 858 912</td>
</tr>
<tr>
<td>lämpötilan summa, d.d.</td>
<td>An average number of degree days, d.d.</td>
<td>HMT EMT HMT EMT EMT EMT EMT EMT HMT EMT EMT</td>
</tr>
<tr>
<td>Metsätuotteen</td>
<td>Forest site type</td>
<td>HMT EMT HMT EMT EMT EMT EMT EMT EMT HMT EMT EMT EMT</td>
</tr>
<tr>
<td>Humuskerros, cm</td>
<td>Humus layer, cm</td>
<td>3 4 5 4 4 5 4 3 2 4 6 3</td>
</tr>
<tr>
<td>A-horizontti, cm</td>
<td>A-horizon, cm</td>
<td>6 9 7 15 8 12 10 12 5 7 7 10</td>
</tr>
<tr>
<td>B-horizontti, cm</td>
<td>B-horizon, cm</td>
<td>17 12 15 9 24 16 13 17 25 19 22 27</td>
</tr>
<tr>
<td>Kivivuus, %</td>
<td>Kiviness, %</td>
<td>53 63 27 47 46 35 33 60 13 23 37 27</td>
</tr>
<tr>
<td>Maalaijat</td>
<td>Soil class</td>
<td>HMr HMr HK HK</td>
</tr>
<tr>
<td><0.02 mm fraktiilien osuus, %</td>
<td>Proportion of particles <0.02 mm, %</td>
<td>39 32 39 15 21 26 29 9 18 23 7 5</td>
</tr>
<tr>
<td>Kaltevuus ja suunta</td>
<td>Inclination and exposition</td>
<td>28 2E 2E 2SW 7NE 2SW 28 18 0 18 2E 1SE</td>
</tr>
<tr>
<td>Puulajisuhteet, %</td>
<td>Tree species composition, %</td>
<td>Mänty 0 10 0 5 80 50 50 100 10 70 20 40</td>
</tr>
<tr>
<td>Pine</td>
<td></td>
<td>75 80 60 75 10 30 30 0 60 10 60 40</td>
</tr>
<tr>
<td>Spruce</td>
<td></td>
<td>Lehtipuut</td>
</tr>
<tr>
<td>Harwoods</td>
<td></td>
<td>Metsätuotteen: HMT-Hylocomium-Myrtillus</td>
</tr>
<tr>
<td>Forest site type: EMT-Emetrium-Myrtillus</td>
<td>Soil class: HMr = Sandy mire</td>
<td></td>
</tr>
<tr>
<td>ETV-Emetrium-Vaccinium</td>
<td>HK = Sand</td>
<td></td>
</tr>
</tbody>
</table>

Liite 2 a. Taimien elossenno (%) turkimusalueilla 1-8 kauden kasvukauden kuluttua viljelyystä.

Appendix 2 a. Survival (%) of seedlings on research areas 1-8 after six growing season from reforestation.

<table>
<thead>
<tr>
<th>Mean I kunnostus</th>
<th>Vielävöntapaa</th>
<th>Vielävöntaas</th>
<th>Vielävönta</th>
<th>Turkimusalue - Research area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil preparation</td>
<td>Wge of reforestation</td>
<td>Year of reforestation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 2 3 4 5 6 7 8</td>
<td>1 2 3 4 5 6 7 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Vakoruutukylävö</td>
<td>1975</td>
<td>52 72 62 92 88 84 62 94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>52 72 32 40 68 94 82 90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Band burning</td>
<td>1977</td>
<td>52 40 4 30 88 80 80 70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Isutus 1M+1A</td>
<td>1975</td>
<td>68 72 74 18 76 76 64 94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planting</td>
<td>1976</td>
<td>90 52 66 39 96 62 42 90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1M+1A</td>
<td>1977</td>
<td>36 48 26 62 56 52 24 82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isutus 1Mk</td>
<td>1975</td>
<td>76 62 33 50 72 84 84 94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planting</td>
<td>1976</td>
<td>70 78 12 48 94 20 44 94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Mk</td>
<td>1977</td>
<td>54 68 8 88 70 78 56 92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Vakoruutukylävö</td>
<td>1975</td>
<td>70 76 46 64 98 70 88 74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>76 60 78 76 90 71 76 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Band burning</td>
<td>1977</td>
<td>20 62 20 24 78 56 62 80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Isutus 1M+1A</td>
<td>1975</td>
<td>82 74 56 98 90 56 44 96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planting</td>
<td>1976</td>
<td>76 94 64 88 72 30 74 86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1M+1A</td>
<td>1977</td>
<td>38 54 8 74 46 48 40 68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isutus 1Mk</td>
<td>1975</td>
<td>80 80 60 80 98 50 76 96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planting</td>
<td>1976</td>
<td>70 100 78 58 94 54 68 92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Mk</td>
<td>1977</td>
<td>58 38 30 76 86 68 56 96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Vakoruutukylävö</td>
<td>1975</td>
<td>58 74 64 32 76 78 96 82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>50 62 8 96 84 78 76 90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Band burning</td>
<td>1977</td>
<td>2 48 6 12 62 64 40 74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Isutus 1M+1A</td>
<td>1975</td>
<td>52 52 76 84 86 70 76 96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planting</td>
<td>1976</td>
<td>80 80 64 66 94 72 72 92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1M+1A</td>
<td>1977</td>
<td>38 56 22 24 66 46 10 76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Isutus 1Mk</td>
<td>1975</td>
<td>56 88 40 52 96 88 90 94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planting</td>
<td>1976</td>
<td>84 80 10 16 90 78 66 96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Mk</td>
<td>1977</td>
<td>66 54 12 46 76 62 66 94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Vakoruutukylävö</td>
<td>1975</td>
<td>60 28 22 80 80 90 90 78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>58 68 50 82 62 78 32 24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Band burning</td>
<td>1977</td>
<td>54 80 6 60 76 42 52 22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Isutus 1M+1A</td>
<td>1975</td>
<td>86 60 78 72 88 64 58 94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planting</td>
<td>1976</td>
<td>76 85 77 92 88 70 64 90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1M+1A</td>
<td>1977</td>
<td>38 40 36 68 60 44 62 72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Isutus 1Mk</td>
<td>1975</td>
<td>72 58 90 90 82 92 90 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planting</td>
<td>1976</td>
<td>54 86 58 82 86 54 68 90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Mk</td>
<td>1977</td>
<td>58 68 44 98 88 70 58 96</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A UTILITY MODEL FOR TIMBER PRODUCTION BASED ON DIFFERENT INTEREST RATES FOR LOANS AND SAVINGS

Josua Lappi & Markku Sihonen

Suomen teiskuntakoulu 29.4.1985

We discuss the evaluation of timber production policies with different income (timber drain) schedules. Special attention is given to the temporal smoothness of the income flow. A utility model is formulated in which the objective is to maximize a fixed consumption pattern, and money can be saved and borrowed at different interest rates. We thus have smoothness requirements only for consumption, the capital market then determines the smoothness of the optimal income flow. Present discounted value and maximization of even income flow criteria are special cases of the utility model. Consumption can be maximized by linear programming. A sample problem is presented.

INTRODUCTION

Long-term planning of timber production is possible if there are available:

1. a forest model that describes the biological and technical possibilities,
2. a price model that describes the price development for the inputs and outputs of timber production (excluding capital),
3. a capital model for the price of the capital, and
4. a utility function which quantifies the preferences of the decision maker, and
5. a suitable optimization method.

In this paper the capital model and utility function are treated simultaneously and are called a utility model. We assume, that the utility can be measured with money. The model is based on the differentiation between income and consumption and on two different interest rates, one for saving and a different one for borrowing. We impose constraints for the temporal smoothness of consumption, which is the only variable in the utility function. More specifically, for each time period we have a minimum consumption requirement and we have fixed the proportions of the additional consumptions. The interest rates for savings and loans determine, how the capital market can transfer money from the time of earning to the time of consumption. If the interest rate for savings is very low and the interest rate for loans is very high, the utility model is a simple generalization of the maximization of even flow of incomes. Even flow of income is a natural economic interpretation of the 'sustained yield' concept, which seems to have a special appeal among foresters. If the interest rates for savings and loans...