


Total of 38 references

Silva Fennica 1987, vol. 21 no 3: 251–257

Behaviour of certain phosphorus and potassium compounds in a sedge peat soil

Markku Yli-Halla & Ilari Lumme

TIVISTELMÄ: ERAIDEN FOSFORI- JA KALIUMILANNOITEIDEN LIUKOUUSUUTTA SARATURPEESSA


The solubility of various phosphorus and potassium compounds in a sedge peat soil was studied in an incubation experiment aimed at screening potential fertilizers for the cultivation of fast-growing willows. (KPO₄)₃ proved not to be a source of the slow-release K regarded as most desirable for this kind of cultivation as it was hydrolysed completely in the soil during incubation. Phosphorus from easily soluble or hydrolyzable compounds (superphosphate, KH₂PO₄, (KPO₄)n) was bound in the soil largely by Al and Fe and elevated the level of readily soluble P considerably, whereas rock phosphates were found to be practically unchanged after incubation and did not contribute to the readily soluble P in the soil. This soil was high nutrient demand.


Keywords: fertilization, fast-growing willows, slow-release fertilizers ODC 232 423.1 147.1 Sulu +114.444+114.54

Correspondence: Markku Yli-Halla, Kemira Oy, Espoo Research Centre, Luoteisrinte 2, Box 64, SF-02270 Espoo, Finland; Ilari Lumme, University of Oulu, Research Institute of Northern Finland, SF-90570 Oulu, Finland.

Approved on 9. 10. 1987
1. Introduction

Fast-growing willows have a high biomass production potential, which makes them an attractive plant species for converting solar energy. Consequently their nutrient requirement is higher than that of birch, alder or coniferous trees, a willow stand producing 10–15 t dry matter/ha annually being known to consume 100–200 kg/ha N, 25–40 kg/ha P and 100–200 kg/ha K per year (Kaunisto 1983, Lumme et al. 1984, Saarasmine 1984). The areas planned to be used for willow cultivation consist mainly of mined peatlands, and it has been estimated that by the end of this century there will be approx. 5 000–10 000 hectares of such land available for this purpose in the northwestern part of Finland. The lower part of the peat layer in virgin peatlands is poor in phosphorus and potassium (Kaila 1956, Kaila and Kivekäs 1956, Lumme et al. 1984, Heikillä 1985), which means that successful willow cultivation will require both the use of suitable varieties and heavy applications of fertilizers. In addition, virgin peatlands are highly acid, whereas the most suitable pH for willows is estimated to be in the range 5.0–7.0 (Ericsson and Lindsjö 1981). Thus heavy liming (CaCO₃ 5–15 t/ha) is also needed.

It has been found in field experiments that phosphorus and potassium fertilization may be even more important than nitrogen fertilization on mined peat soils (Hytönen 1986, Lumme and Kiiukaami 1987). Willow plantations can be harvested every three to five years, and it would be cost-efficient to apply fertilizers only at the beginning of each such period.

This study forms part of a larger project run by the Research Institute of Northern Finland, University of Oulu, Kemira Oy and the Academy of Finland aimed at developing practices for the cultivation of fast-growing willows. The present work is concerned with evaluating the solubility of various phosphorus and potassium compounds in an incubation experiment and tracing in detail the reactions of the fertilizer phosphorus in the soil. The authors wish to thank Mrs Kirsir Hauasia, M. A., for performing the necessary laboratory work, Mr Malcolm Hicks, M. A., Technology Center of Oulu for correcting the English manuscript and Professor Eero Paavilainen, head of the Department of Peatland Forestry at the Finnish Forest Research Institute and Dr. Jukka Laine of the Department of Peatland Forestry, University of Helsinki, for making valuable corrections to the manuscript.

2. Materials and methods

The phosphorus and potassium compounds tested in the experiment are presented in Table 1.

Superphosphate, consisting mainly of Ca(H₂PO₄)₂, and K₂HPO₄ were monomeric compounds, while the others were polymeric and contained uncombined water-soluble orthophosphate (PO₄³⁻) and potassium. The Siliunjärvi apatite was a hard magmatic rock phosphate, while the soft rock phosphate, imported from China, was of sedimentary origin. Biotite, a mica-type mineral, was a by-product from the Siliunjärvi phosphate mine.

The Carex peat (H7) used in the experiment originated from Hirvineva near Oulu (location 64°42'N, 25°20'E). When peat mining at the site came to an end about 80 cm of surface peat had been removed and about 20 cm was left. For the experiment, the peat was mixed carefully and 313 g of moist peat, corresponding to 79 g of air-dried peat, was weighed into plastic boxes. The fertilizers added corresponded to 386 mg P and/or 486 mg K per kilogramme of air-dried peat (assuming the fertilizers to be mixed in the 0–20 cm peat layer with a bulk density of 200 g/l, the amount of fertilizers would correspond to 155 kg of P/ha and 195 kg of K/ha). Five replicates were run without liming and five with an admixture of 2.0 g Ca(OH)₂. The pots were watered to a moisture content of 80 % and incubated at 20–25 °C for one year.

After incubation the samples were dried, ground and extracted with 0.5 M CH₃COOH–0.5 M CH₃COOH–NH₃ (pH 4.65) (Vuorinen and Mäkitie 1955). This solution, abbreviated here as AAAc, is routinely used in agricultural fertility testing in Finland. The extracts were then analyzed for P, K, Ca and Mg. The pH of the samples was measured in a water suspension with a soil-solution ratio of 1:20 (v/v), and inorganic P was calculated according to the procedure of Chang and Jackson, as modified by Hartikainen (1979). Organic P was determined by the method by Kaila (1962). Amorphous Fe and Al were extracted with 0.05 M ammonium oxalate solution (pH 3.3), given a soil-solution ratio of 1:20 (w/v) and a shaking time of two hours. The cation exchange capacity (CEC) of the unfertilized samples was determined using 1 M AAAc (pH 7) (Kaila and Ryti 1968). The bulk density of the samples was also measured.

3. Results

Liming to the extent of 16 t CaCO₃ per hectare raised the exchangeable Ca content to a high level (Table 2), but the soil pH only by about one pH unit, indicating that the soil had a very high pH buffer capacity. As usual for peat, the samples had a high CEC (135 meq/100 g at pH 7.0) Liming increased the percentage of base cations (Ca, Mg, K) from 25 % to 56 %, implying that a considerable proportion of the cation exchange sites were occupied by Al⁴⁺ and H⁺ even after heavy liming. The peat concerned seemed to contain large amounts of Mg, the solubility of which was not influenced by liming. Instead liming reduced the extractability of Al and Fe.

Native K was very low, indicating an extreme K deficiency. K₂HPO₄ and (KPO₄)₃ in increased the amount of exchangeable K equally effectively, practically all the K added being exchangeable after the year of incubation. Due to an experimental error, only the results from the limed biotite treatment samples were available. These showed that the biotite had released about half of its K in exchangeable form during the incubation.

The original amount of readily soluble P was also extremely small (Table 2), and superphosphate, (KPO₄)₃ and KH₂PO₄ all increased the amount of P irreversibly to a considerable extent, whereas neither apatite had much effect. Magmatic apatite had no effect what-
Table 2. AAAC-soluble phosphorus, exchangeable potassium (mg/l) and pH in soils subjected to various treatments.

<table>
<thead>
<tr>
<th></th>
<th>pH</th>
<th>Ca</th>
<th>Mg</th>
<th>K</th>
<th>P</th>
<th>Fe</th>
<th>Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>4.0</td>
<td>870a</td>
<td>106</td>
<td>280a</td>
<td>1.5a</td>
<td>179.3a</td>
<td>95.6a</td>
</tr>
<tr>
<td>O+Ca(OH)2</td>
<td>4.7</td>
<td>2500a</td>
<td>5a</td>
<td>300a</td>
<td>1.6a</td>
<td>128.44a</td>
<td>80.0a</td>
</tr>
<tr>
<td>Superphosphate</td>
<td>3.8b</td>
<td>960a</td>
<td>206</td>
<td>275a</td>
<td>7.5a</td>
<td>177.5a</td>
<td>87.4a</td>
</tr>
<tr>
<td>Superphosphate+Ca(OH)2</td>
<td>4.7a</td>
<td>2600a</td>
<td>156</td>
<td>310a</td>
<td>9.1a</td>
<td>143.5a</td>
<td>78.5a</td>
</tr>
<tr>
<td>(KPO4)n</td>
<td>3.8b</td>
<td>905a</td>
<td>130a</td>
<td>285a</td>
<td>9.0a</td>
<td>190.7a</td>
<td>71.9a</td>
</tr>
<tr>
<td>(KPO4)n+Ca(OH)2</td>
<td>4.8b</td>
<td>2600a</td>
<td>125a</td>
<td>305a</td>
<td>10.2a</td>
<td>127.3a</td>
<td>74.1a</td>
</tr>
<tr>
<td>KH2PO4</td>
<td>3.8b</td>
<td>895a</td>
<td>135a</td>
<td>288a</td>
<td>8.1a</td>
<td>177.5a</td>
<td>89.6a</td>
</tr>
<tr>
<td>KH2PO4+Ca(OH)2</td>
<td>4.8b</td>
<td>2640a</td>
<td>125a</td>
<td>310a</td>
<td>9.4a</td>
<td>130.2a</td>
<td>68.9a</td>
</tr>
<tr>
<td>Siilinjärvi Apatite</td>
<td>3.8b</td>
<td>935a</td>
<td>106</td>
<td>285a</td>
<td>1.6a</td>
<td>182.1a</td>
<td>96.2a</td>
</tr>
<tr>
<td>Siilinjärvi Apatite+Ca(OH)2</td>
<td>4.8b</td>
<td>2655a</td>
<td>156</td>
<td>300a</td>
<td>1.5a</td>
<td>131.0a</td>
<td>83.0a</td>
</tr>
<tr>
<td>Soft rock phosphate</td>
<td>3.8b</td>
<td>930a</td>
<td>156</td>
<td>280a</td>
<td>3.2a</td>
<td>185.3a</td>
<td>94.0a</td>
</tr>
<tr>
<td>Soft rock phosphate+Ca(OH)2</td>
<td>4.7a</td>
<td>2615a</td>
<td>156</td>
<td>310a</td>
<td>1.7a</td>
<td>127.3a</td>
<td>70.3a</td>
</tr>
<tr>
<td>Biotite+Ca(OH)2</td>
<td>4.8b</td>
<td>2710a</td>
<td>79a</td>
<td>310a</td>
<td>1.6a</td>
<td>123.4a</td>
<td>63.3a</td>
</tr>
</tbody>
</table>

Values within a given column not sharing a letter (a, b, c, d) are significantly different at p<0.05 by the Waller-Duncan test.

Table 3. Inorganic and organic P (mg/kg air dry soil) in the incubated peat samples.

<table>
<thead>
<tr>
<th></th>
<th>NH4-P</th>
<th>NaOH-P</th>
<th>H2SO4-P</th>
<th>Sum of fractions mg/kg</th>
<th>Org. P mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>46a</td>
<td>24a</td>
<td>19a</td>
<td>89a</td>
<td>529d</td>
</tr>
<tr>
<td>O+Ca</td>
<td>40b</td>
<td>24a</td>
<td>25a</td>
<td>89a</td>
<td>555d</td>
</tr>
<tr>
<td>Superphosphate</td>
<td>192b</td>
<td>177a</td>
<td>85a</td>
<td>454a</td>
<td>552d</td>
</tr>
<tr>
<td>Superphosphate+Ca</td>
<td>144c</td>
<td>155a</td>
<td>87a</td>
<td>385a</td>
<td>582d</td>
</tr>
<tr>
<td>(KPO4)n</td>
<td>175b</td>
<td>204b</td>
<td>30a</td>
<td>409b</td>
<td>624d</td>
</tr>
<tr>
<td>(KPO4)n+Ca</td>
<td>132c</td>
<td>183c</td>
<td>67a</td>
<td>384c</td>
<td>703c</td>
</tr>
<tr>
<td>KH2PO4</td>
<td>147c</td>
<td>229c</td>
<td>25a</td>
<td>397c</td>
<td>660c</td>
</tr>
<tr>
<td>KH2PO4+Ca</td>
<td>126c</td>
<td>166c</td>
<td>81a</td>
<td>346c</td>
<td>652c</td>
</tr>
<tr>
<td>Siilinjärvi Apatite</td>
<td>73c</td>
<td>51f</td>
<td>136b</td>
<td>260b</td>
<td>533d</td>
</tr>
<tr>
<td>Siilinjärvi Apatite+Ca</td>
<td>58b</td>
<td>47c</td>
<td>190a</td>
<td>295b</td>
<td>594d</td>
</tr>
<tr>
<td>Soft rock phosphate</td>
<td>103c</td>
<td>112c</td>
<td>141b</td>
<td>356c</td>
<td>570d</td>
</tr>
<tr>
<td>Soft rock phosphate+Ca</td>
<td>46b</td>
<td>46c</td>
<td>133c</td>
<td>225c</td>
<td>614d</td>
</tr>
<tr>
<td>Biotite+Ca</td>
<td>35b</td>
<td>30b</td>
<td>40d</td>
<td>113c</td>
<td>555d</td>
</tr>
</tbody>
</table>

Values within a given column not sharing a letter (a, b, c, d, e, f, g) are significantly different at p<0.05 by the Waller-Duncan test.

soever on AAAC-extractable P, but the sedimentary apatite had obviously dissolved slightly in the unlimed peat.

Detailed analysis of soil P (Table 3) revealed that the majority of this anion in the organic matter, the pool of inorganic P, that principally available to plants, being very small. Addition of P to the soil increased the size of the various inorganic fractions, but had only a slight influence on the pool of organic P. Liming did not affect the distribution of P.

In the sequential fractionation method of Chang and Jackson (Harritkainen 1979) the inorganic P bound by Al compounds is extracted with NH4F solution and P attached to Fe compounds with a NaOH solution. These fractions reflect the amount of potentially soluble phosphates. The fertilizer P remaining in the soil accumulates in these two fractions. H2SO4 is assumed to dissolve the unweathered native apatite, which is very slightly soluble under normal soil conditions. The phosphorus added in the superphosphate, (KPO4)n and KH2PO4 was recovered almost completely (Table 4), the greatest additions being found in the fractions extractable with NH4F (i.e. Al-bound) and NaOH (i.e. Fe-bound). Superphosphate also showed some increase in the H2SO4-extractable fraction. The same phenomenon was also observed in the (KPO4)n and KH2PO4 treatments in the presence of liming.

The recovery of apatite P was only 33–78 %, the fractions of Fe and Al-bound P having scarcely increased at all upon either apatite treatment. Most of the P recovered was found in the H2SO4-extractable fraction. This shows that the apatites had not dissolved during incubation nor in the extractants used.

4. Discussion

Despite its high cation exchange capacity, peat does not retain K as tightly as do clay soils. Consequently part of the exchangeable potassium can be lost through leaching in spring and autumn, when floods can occur, especially if large amounts of readily soluble K salts are added (Ahti 1983). If all the K needed by willows during the growth period of three to five years were to be given in one dose, slowly soluble K fertilizers would be of use. The main problems with these are whether the fertilization effect is long enough and whether it is great enough for any one growing season compared with annual applications of readily soluble fertilizers.

Although chemical analysis showed
phosphate had dissolved only slightly during incubation. Hänninen and Kaila (1960) an Kaila (1961) have also shown that soft rock phosphate used in a five-year field experi-
ment remained mostly in the Ca-bound fraction of the soil. This suggests that the (KPO4) in species tested could not serve as a slow-release K fertilizer. Biotite seemed to be a more promising source of slow-re-
lease K, as its K was only partially exchange-
able after one year of incubation. Biotite has indeed proved to be a good source of slow-
release K in grassland fertilization (Zitting 1980).

References

Ahlt, E. 1963. Fertilizer-induced leaching of phosphorus and potassium from peatlands drained for for-


Eriksson, T. 1981 & Lindöj, I. 1981. Tillväxtns pH-


Hartikainen, H. 1957. Phosphorus and its reactions in


Agric. Soc. Fenn. 31: 537–624.

Heikkilä, R. 1983. Turpeen tukka turvetuontamosta va-

Huotonen, J. 1986. Fosforilainoitajaan vaikutus vesipajun

biomasstautuksseen ja ravinteen käyttöön tur-

perinnostosta vapaautuneella suolla. Summary: Ef-

Hänninen, P & Kaila, A. 1960. Field trials on the store-
dressing with rock phosphate. J. Sci.


1961. Fertilizer phosphorus in some Finnish soils. J.


1962. Determination of total organic phosphorus in


Fenn. 34: 183–195.


Fenn. 40: 133–141.

Kuusisto, S. 1983. Kortipajun (Salix discolor) biomasstau-

tos suonpojan ja veden käyttöä eri ta-