Vegetation and stand development of mesic forest after prescribed burning

Tapio Lindholm & Harri Vasander

This study deals with the succession of vegetation and tree stand in 16 mesic M. nitida site type Scots pine plantations after prescribed burning in Evo, southern Finland. The oldest tree stands studied were about 30-years-old. The growth of trees followed the height site index of M. nitida site type. The vegetation was first mesic, dominated by grasses and herbs, turning more xeric after four years. This change was accelerated by treatment with herbicides. After the closure of tree stand, vegetation became more characteristic of forest vegetation, but pioneer species and composition disappeared slowly. The basic characters of vegetation succession could be clearly described by DCA ordination and TWINSPLAN classification. The study confirmed that M. nitida site type has succession phases which are typical for each age phases as Cajander’s forest site type theory has proposed. However, differences in primary and secondary site factors have their own effects on the vegetation of the succession phases.

Tutkimus osoitti, että Cajanderin metsätyyppejärjestelmiä voidaan mainiosti selventää suksionpiooratolla. Ne on järkevistä perustaa sekä puuston kehityksen että kulkevin ikävähesille ominaisiin kasvuyhdistykseen. Lisäksi on otettava huomioon maaperän ja ilmaston sekä metsänkasittelyn aiheuttamat erityspiirteet.

Keywords: prescribed burning, succession, forest site types, boreal zone

ODC 454+182.2+566+54+114.521.7

Authors’ addresses: Lindholm: Department of Botany, University of Helsinki, Unioninkatu 44, SF-00170 Helsinki, Finland. Vasander: Department of Forestland Forestry, University of Helsinki, Unioninkatu 40 B, SF-00170 Helsinki, Finland.

Approved on 18. 9. 1987
1. Introduction

Before silviculture was widely practiced in Finland Scots pine (Pinus sylvestris) was mostly regenerated after forest fires. Especially xeric coniferous forests are known to have burnt rather often (e.g. Högbom 1934, Haapanen & Sintonen 1978). It has been estimated that almost all pine stands encountered during the 19th century in Finland were situated on burned or slashed and burned areas (Heikinheimo 1915, Saari 1923, Kalela 1937). Due to fire suppression forest fires are rare today.

Prescribed burning is no longer widely carried out as a method to facilitate artificial regeneration and growth of new tree stands, being replaced by mechanical site preparation. Prescribed burning was most common in the 1950s, when the area burned annually was some 30 000 ha. Today only some 1000s of ha are burned.

The succession after prescribed burning consists not only of the growth of planted or seeded trees but also of naturally regenerated trees and herbs, the importance of which may be significant to the forester.

The aim of this study was to investigate the early succession of vegetation and development of tree stands after prescribed burning in mesic sites. The study was carried out in southern Finland and is part of a project looking into the ecology and structure of plant communities after prescribed burning (Ruuhiärvi et al. 1983, 1986).

The study was financed by the Foundation for Research of Natural Resources in Finland. We are indebted to the leader of the project, Rauno Ruuhijärvi for the initiation of the study, Dr. Michael Starr for advice when planning the study, and to Lammi Biological Stations, University of Helsinki, for kindly providing assistance with material and personnel. We would like to thank Sinikka Mononen, Virpi Vuorinen and Markku Nironen for their assistance in field work. Evo forestry training school and the Hämeenlinna district of the National Board of Forestry kindly gave us information about the study sites. Professors Matti Leikola and Juhani Päivänen and Drs. Jussi Kuusipalo, Olavi Laito and especially Michael Starr kindly commented on earlier drafts of the manuscript. Michael Starr also kindly revised our English.

2. Study area

The study was carried out at Evo in the Lammi commune (61°12’S, 25°07’E, 140–180 m a.s.l.). The area is mostly covered by coniferous forests (Pinus sylvestris and Picea abies) representing forest types from Vaccinium site type (VT) to Oxalis – Myrtillus site type (OMT) (Cajander 1949) of different ages. The soils in the area are developed partly on till rich in boulders and partly on esker gravel deposits.

The Evo area lies in the southern boreal coniferous forest zone (Ahti et al. 1968). The climate is, in general, moderately continental (Tuhkanen 1980), but slightly hygric due to the relative altitude of the area. The yearly precipitation is 611 mm of which 313 mm falls during May–September (mean for 1931–1960, Helimitsäki 1967). The effective temperature sum (over +5°C) is 1150 d.d. °C (mean for 1931–1960, Kolkki 1966).

The Evo area was chosen because of its long tradition with prescribed burning. It was also possible to restrict the study sites to a small area in which the macroclimate does not vary much and the soil is rather homogenous among the sites.

3. Material

Sixteen Myrtillus site type (MT, see Cajander 1909, 1949) sites on well textured soil were chosen (Fig. 1, Table 1). According to forest management maps, MT site type cover approximately a quarter of the total forest area in the Evo area. The age of the stands ranged from less than 1 year to 27 years, with one site being 120 years-old. Prescribed burning is usually conducted one year after clear felling. For the burnings older than eight years there was no data available about the time lag. At the Iso Keltajärvi site (IK0) the time lag was two years.

After burning artificial regeneration (planting or sowing) with Scots pine was carried out at all but one site, Iso Keltajärvi B, where Norway spruce (Picea abies) was planted instead. The development of vegetation after burning was not disturbed. The growth of seedlings was in most cases facilitated by mechanical and/or chemical control of grass and bush swarms. Later the seedling stands had usually been cleaned and thinned (Table 1).

The vegetation of one mature spruce stand burned over 100 years ago on a mesic site representing typical MT vegetation near Lake Nimetön (61°13’N 25°11’E, 145 m a.s.l.) is described in Table 2.

![Location of Study Areas](image)

Figure 1. The location of the study areas. Forest vegetation zones: a) hemiboreal, b) southern boreal, c) middle boreal (Ahti et al. 1968).

Kuva 1. Tutkimusalueiden sijainnit. Metsäökosäännösmuutoksset: a) hemiborealinen, b) eteläborealinen, c) keskiborealinen (Ahti et al. 1968).

<table>
<thead>
<tr>
<th>Silva Fennica 21</th>
<th>261</th>
</tr>
</thead>
</table>

Tapio Lindholm & Harri Vasaander
4. Methods

41. Sample plots

A 25 × 25 m temporary sample plot was established at each site in the middle of the site on a representative area avoiding moist paludified depressions, dry hillock tops and boulder-fields. The following measurements and observations were carried out on these plots.

42. Site factors

Soil stoniness was estimated using the probe method described by Viro (1952) from 64 systematic points in each plot. The bouldery indices were calculated and the plots were classified accordingly. Two of the plots represented bouldery index 2, where the stoniness is 30.1–60 %. In the other 14 plots the stoniness was 60.1–100 % (bouldery index 3).

Particle size analysis of mineral soil was made in nine of the plots. The soil represented gravel till to gravely fine-sand till (SrMr – srHMr, Virkkala 1969).

The intensity of burning could be estimated only on those sites where prescribed burning had been carried out within the last few years. It was estimated visually by a) the percentage of slash burned, b) the proportion of needles and humus burned, and c) the proportion of perennial vegetation burned. In cases where the amount of slash burned was

![Table 2. The cover of plant species in a mesic spruce stand at Eso. Mean of 30 one square meter relevés.](image)
under 50% the intensity of the burn was considered low (less than 300 kW/m). In cases where the amount of slash burned was approximately 70% the intensity of the burn was considered high (more than 1000 kW/m) (Vasander & Lindholm 1985: tables 1, 3).

The herbicides used on the sites were glufosinate (trade-mark Round-up) and terbutylazine (trade-mark Cardoprim). Cardoprim is used against grasses and herbs and Round-up also against bushes e.g. on areas with abundant poplar (Populus tremula) saplings.

43. Tree stands and seedlings

The tree stands on those sites where the prescribed burning was carried out more than ten years ago were described. Crown cover on a scale: 0, 10, 20, . . ., 90, 100 where 0 is open and 100 fully stocked was estimated. Breast height diameter (DBH) was measured with calipers from all trees at least 2 m high. Stem frequency distribution series were drawn, and based on them three average trees were chosen for further measurements. The total volume of the tree stand was estimated according to the volume of the average trees (Iiviesalo 1947).

The mean height of the stands was based on the average trees. As the development of stands is often expressed by dominant height (Vuokila & Väila 1980), also the relationship between mean height and dominant height was estimated by Kallio’s (1969: table 2) data. The form of the relationship was for trees shorter than five metres:

\[y = 1.16 + 0.90x, \quad r = 0.998, \quad P \leq 0.001, \quad n = 3 \] \hspace{1cm} (1)

and for trees longer than five metres:

\[y = 2.03 + 1.00x, \quad r = 0.989, \quad P \leq 0.001, \quad n = 73 \] \hspace{1cm} (2)

where \(y \) is dominant height and \(x \) mean height.

The development of naturally regenerated bushes and tree seedlings or saplings was analyzed on sub-sample plots (10x10 m) inside the tree stand sample plot. The cover of bush and tree species 0.3–2 m high was estimated. Lower seedlings and sprouts were analyzed as part of the field layer. Measuring of the tree stands and seedlings was made in July 1982.

44. Vegetation

The percentage cover of species in ten 2x2 m relevés was estimated randomizing by dividing the circle centred on the middle of the plot into 50 sectors. Ten sectors were chosen randomly and the relevé was placed at the distance of ten meters from the centre of the circle. If trees covered more than 50% of the area of the relevé then it was moved two meters further along the same sector. The following percentages were used: + (present), 1, 2, 3, 5, 10, 15, 20, . . ., 80, 85, 90, 95, 97, 98, 99 and 100. The data from the relevés on each plot were combined for further analyses. Vegetation analyses were made in July 1982 and repeated for the youngest plots (0, 1 and 2 years from burning) in July 1983.

Detrended correspondence analysis (DCA) was used to ordinate the vegetation data (Hill 1979a, Hill & Gauch 1980, Gauch 1982). Species occurring three times or less were omitted. TWINSPLAN (Hill 1979b) was used to classify the plant species and relevés. Species occurring only once were omitted. The percentage cover values were transformed to 9 pseudospecies in logarithmic scale with the following cut levels: 0, 0.41, 0.83, 1.56, 3.13, 6.25, 12.6, 26, and 31.

The diversity of species composition was calculated by the Shannon-Wiener formula (Shannon & Weaver 1949):

\[H' = \sum p \ln p \] \hspace{1cm} (3)

where \(H' \) is the diversity index, \(S \) the number of species and \(p_i \) the proportional cover of each species.

The nomenclature follows Hämet-Ahti et al. (1984) for vascular plants, Koponen et al. (1977) for mosses and Ahti (1979) for lichens.

5. Results

51. Tree stand

The height of trees increased evenly. In the age of 14 years the height was 3.5–4 m, in 19 years 6.5–7 m and in 27 years 9–11 m (Fig. 2). Thus the mean annual height increment had been approximately 40 cm to the age of 27 years. After ten first years the mean annual height increment had been approximately 50 cm.

In the age of 14 years the stand volume was 10–17 m³/ha, five years later 48–60 m³/ha and again eight years later 118–121 m³/ha (Fig. 2). The mean annual increase in stem volume had thus been approximately 4.5 m³/ha calculated from the oldest stands studied.

Figure 2. Mean height, volume, stem number, and crown coverage of the tree stands at the studied areas.

Kuva 2. Puusten keskipituus, runkotilavuus, runkolukumäärä ja latuospinta prosenttivärsut tutkimilla aloilla.

Silva Fennica 21 (3)

Tapio Lindholm & Harri Vasander
In Kuulakivi plot (KK14) there was 1 m²/ha and in Iso Keltjärvi plot (IK27) 16.5 m²/ha birch (mainly Betula pendula) among pine. This represented, however, rather small amount of the total volume (10 and 14 % respectively).

After 14 years from planting the canopy density was still low (Fig. 2). It increased during the succession but due to thinnings lowered again at the age of 27 years (Fig. 2). The amount of stems decreased also from approximately 2500/ha on 14-year-old plots to 2000/ha on 27-year-old plots (Fig. 2).

53. Vegetation and flora

Ordination of species and sites

Axis 1 of the DCA species ordination (Table 3) is interpreted as a succession age gradient and axis 2 as a moisture (mesophile-xerophile) gradient. *Marchantia polymorpha*, *Epilobium collinum*, *Viola rupestris*, *Rubus idaeus* and *Ceratodon purpureus* were in the higher end of the first axis while *Hylocomium splendens*, *Pyrola spp.*, *Goodyera repens*, and *Platanthera bifolia* were in the lower end. *Rhodobryum roseum*, *Marchantia polymorpha*, *Fragaria vesca* and *Goodyera repens* were in the lower end of axis 2 while such species as *Pinus sylvestris*, *Lycopodium annotinum*, *Pieridium aquilinum*, and *Cladonia coniocraea* were in the higher end.

Age elapsed since burning was the main factor in separating sites in the site DCA ordination (Fig. 4). TWINSpan analysis divided the sites into four groups: young (0–3 years from burning), older still open (5–8 years from burning), young forested (14–27 years from burning) and mature (120 years from burning) sites (Figs. 4, 5). In the first group, typical species were those in the higher end of the first DCA-axis. The second TWINSpan group was characterized by xerophilic vegetation. Characteristic species were *Calluna vulgaris*, *Vaccinium vitis-idaea* and *Cladonia spp*. In the vegetation of the third TWINSpan class the proportion of grasses and herbs again increased and also some plants of mature forest thrive, for example, *Vaccinium myrtillus*, *Dianthus polystegium* and *Platanthera bifolia*. The fourth TWINSpan class was characterized by typical species of mature mesic forests.

Effect of fire intensity on vegetation

The Perikulma site (PK0) burned with low fire intensity. Thus many of the forest species were left immediately after burning. It received a relatively high score value along the first DCA axis compared to the other young
sites (Fig. 4). The Iso Keltäjärvi A site (IK0) burned with high fire intensity and thus the amount of forest species is low (Fig. 4).

The fire intensity at the Iso Keltäjärvi B site (KJ1) was high. Two years after prescribed burning the site was dominated by *Epilobium angustifolium* and *Rubus idaeus*, and other species typical for young succession phases were also present (Fig. 4). However, later in the succession differences caused by fire intensity diminish due to different silvicultural treatments (Table 1) and tree stand development.

Effect of herbicides on the vegetation pattern

On recently treated sites the vegetation had a xerophytic pattern. The five-year-old sites (HJ5, VK5) and the eight-year-old site (YR8) were thus located at the higher (drier) end of DCA axis 2 (Fig. 4). The vegetation cover was also more open as the abundance of grasses and herbs had decreased (Figs. 6, 7). Herbicide treatment did not affect the cover of dwarf shrubs (Fig. 8). The cover of small akrocarpous mosses (*Ceratodon purpureus*, *Polytrichum strictum*) increased after prescribed burning and was highest in recently treated sites. However, the variation between the sites was great (Fig. 9).

Changes in diversity

Total number of plant species in all sites was 85; 59 vascular plants and 26 bryophytes and lichens. The number of species was lowest (10−15) just after prescribed burning (Fig. 10). The number of species increased

Figure 4. A DCA ordination of the study material (two first axes of the ordination) based on the abundance of field and ground layer plant species. Also the classes created by TWINSPLAN (I−IV) are marked. Areas representing the same number of years from burning are separated inside lines. Areas analyzed during preceding years are marked by arrows. A dashed line with arrows unites the areas in increasing age from the prescribed burning.

Figure 5. Typical examples of areas representing the three first TWINSPLAN groups: IK0, YR8 and HJ27. Photos: Markku Nironen, July 1982.

Tapio Lindholm & Harri Vasander

Silva Fennica 21 (3)
Figure 6. The summed coverage of herbs on the studied areas. Line uniting the areas has been fitted by eye. The plot with a dense cover of Rubus idaeus (R) has not been included in this fitting.

Figure 7. The summed coverage of grasses on the studied areas. Line uniting the areas has been fitted by eye.

Figure 8. The summed coverage of dwarf shrubs on the studied areas. Line uniting the areas has been fitted by eye.

Figure 9. The summed coverage of mosses on the studied areas. Line uniting the areas has been fitted by eye.

with the number of years since prescribed burning and was highest (40–50) on 15-year-old sites; afterwards the number of species started gradually to decline (Fig. 10).

The diversity (H') index was 1.5–2.0 immediately after prescribed burning and increased during the first ten years after burning (Fig. 11). Variation between plots was, however, great. The change in H' was greatest during the first years and later no major changes occurred (Fig. 11).

6. Discussion

61. Development of the tree stand

Although the number of studied stands was small, it can be noticed that the early height development had been fast. Evo area is stony and relatively humid. The site index (H_{100}) of the stands studied was between H_{100}=27 m and H_{100}=30 m which are usually considered to be index values for Myrtillus (MT) and Oxalis – Myrtillus (OMT) site types (Vuokila & Väliaho 1980). The early height development was comparable to that measured for pine stands on burnt-over land in Vesijako near Evo already by Vuori (1913) as also to more thorough analyses of young Scots pine stands conducted in southern and eastern Finland (Fig. 12). The other inventories presented in figure 12 were conducted on MT except Varmola’s (1982) study which concerned Vaccinium site type (VT). However, half of his pine stands were established on burnt-over land. He concluded that prescribed burning, which has been found to improve the properties of the soil (e.g. Viro 1969), may be the reason for the fast early development of the seedlings. In that study...
the VT sites (HSP=24 m, Vuokila & Väliäho 1980) obtained site indices HSP=27 m and even HSP=30 m (Fig. 12).

Huss and Sinko (1969) noted that the benefits of prescribed burning on height development diminish when the time lag between burning and stand establishment increases. On the sites they studied the benefits of prescribed burning on early height growth were observed even though seeding had been conducted five years after burning. On dry and poor sites the effect of burning has always been negative on account of burning the thin humus layer (Ugglä 1967).

The burnt-over areas at Evo had many of naturally regenerated seedlings. Burnt-over areas are known to be good regeneration sites for seeds (Narväs 1937, 1950, Lehto 1956, Yli-Vakkuri 1961). However, as the effective distance of tree seed dispersal is only some times the height of the trees (Kotiaarvi 1982, Lindholm & Tiainen 1982), wide prescribed burning areas may not satisfactorily naturally regenerate without seeding or planting. At Evo, however, the size of the clear-cut areas was not too great to prevent natural seeding. Thus natural seeding with Betula pendula and Picea abies gives an option in silviculture for mixed forests, partly of natural and partly of cultivated origin.

62. Development of vegetation

Prescribed burning results in a great change in the ecological conditions of a site. Many vascular plants seem to be well-adapted to this abrupt change. Many perennial forest plants have deep roots and rhizomes (Kivenheimo 1947) being outside of the thermal effect of fire and enabling them to regenerate easily after burning. However, the intensity of fire regulates greatly the survival of plants (Kujala 1926, Smith & Jones 1972, Shafi & Yarranton 1973). The Pertkulma site (PK) was an example of low fire intensity in our data. The proportion of mature forest species was thus high after burning and in the ordination this site received "old" loading. Within a site there is also variation in fire intensity causing also variation in the vegetation (Vasander & Lindholm 1985; Table 1). The other component of vegetation on burned sites are invading species (e.g. Epilobium collinum, E. angustifolium, Viola canina ssp. montana and V. rupestris). Some of these species may also arise from the germination of old subsoil seeds (e.g. Hämäläinen 1978, Oden 1978). Examples of these at Evo were Rubus idaeus, Rumex acetosella and Luzula pilosa (Kujala 1926, Graber & Thompson 1978, Granström 1982). Calluna vulgaris seedlings were numerous one and two years after prescribed burning. These probably arose also from viable seeds lingering in the surface humus layer. In mature mesic forests in the Evo area Calluna seldom thrives but the viability of its seeds is promoted by heating (Whittaker & Gimingham 1962).

Herbicides killed certain species giving the impression of a xerophilic environment. It has been noted that herbicides have no or a very small effect on bryophytes and lichens (Moilainen 1976, Raatikainen & Mustonen 1977, Steppi 1986). Moilainen (1976) even found that the growth of lichens increased after herbicide treatment when field layer species decreased in abundance. Some dwarf shrubs (e.g. Vaccinium vitis-idaea, Raatikainen 1978) may also benefit when the amount of light reaching the ground increases after a decrease in herbs and grasses. The general xerophilic vegetation character of burned areas (e.g. Lehto 1969, Kujala 1979) was thus accelerated by grass and herb control.

Changes in diversity measured either as changes in species number or Shannon's H' were small. The small peak in species number encountered on the areas of 14–19 years after prescribed burning is due to the occurrence of both pioneer species colonizing after burning and climax species occurring on the site. Shading by developing pine stands suppresses the dominants in floor vegetation and the heterogenic light environment makes it possible for both pioneer and climax species to establish themselves (Linkola 1916, Cajander 1925, Keltikangas 1959, Whittaker 1972, Bazzaz 1975).

Due to the lower seedlings density, planted pine stand canopies close-up some 13 years later than naturally seeded ones (Hari et al. 1982). Thus light conditions enable some heliophilous plant species to survive much longer than in natural pine stands and spruce forests where their amount is drastically decreased after 20 years from clear felling (Kellomäki et al. 1977). The ground vegetation in later phases of the succession is also heavily dependent on the dominant tree species (pine — spruce) on sites representing the same site type (Kuusipalo 1985). So a forest plant community reaches its maximum diversity in the early forest stage when both shade-tolerant and light-demanding species and many kinds of physiological groups are present in the same plant community (Margalef 1969, Jukola-Sulonen 1983).

63. Succession and forest site type theory

The succession of vegetation on mesic sites after prescribed burning studied is relevant to the Finnish forest site type theory because the Finnish concept Myrtilius site type was developed according to the vegetation in these same forests at Evo some 80 years ago (Cajander 1909: 103–105) but also because of the need for information concerning forest plant associations in young silviculturally treated forests representing different forest site types (Cajander 1925, Keltikangas 1959).

Our long-term data of vegetation and stand development indicate a clear vegetation pattern in each phase of the succession and that age classes can be identified based on that pattern. In the beginning of the succession the vegetation may resemble a better site type with the abundance of grasses and herbs (Cajander 1925: 71–78). After herbicide treatments the vegetation may resemble that of poorer site types. The primary site factors remain unaltered and areas can be identified as original site type according to the vegetation. Exceptions to this may be e.g. heavy burns on xeric coniferous forests (Cajander 1969: 174).

The distinction between the concepts of forest site type and forest plant association types must also be kept in mind. The same stand in different stages of growth e.g. sapling, thicket and saw timber stage represents different plant association types (Cajander 1949). Different plant association types should also be separated in stands of different tree species and in stands with different silvicultural history (Cajander 1949) as, for example, prescribed burning, herbicide treatment and change of cultivated tree species. The differences in primary site factors due to the differences in soil characters and climatic conditions may lead to differences in succession pattern (Keltikangas 1959). Thus differences in succession between different stands described as Myrtilius site type may occur (e.g. Siren 1955, Keltikangas 1959). At Evo the relative elevation may be a local ecological character that is often forgotten in Finnish site type research (Keltikangas 1959).

The growth of trees is also characteristic to the site as measured, for example, by height classes. Tree stand development is heavily dependent on the site type but it does not determine the site type. The optimal way in forest site type determination is to use vegetation and tree stand together (Keltikangas 1959, Kuusipalo 1985).

References

Effects of temperature on dormancy release in woody plants: implications of prevailing models

Heikki Hänninen

THIISTELMA: LÄMPÖTILAIN VAikutus PUiden DORMANNIN PURKAUTUMISEEN. MALLEISTA JODHETTUA ENNUSTEITA

Logical structure of three simulation models and one conceptual model concerning effects of temperature on dormancy release in woody plants was examined. The three basic types of simulation models differed in their underlying assumptions. Contrasting implications of the models were inferred by deduction. With the aid of these implications, the model types can be tested using experiments with continuous and interrupted chilling. Similarly, implications of the conceptual model of dorm phases were inferred, by which the model can be tested using experiments with continuous chilling and forcing in multiple temperatures. The possibilities to synthesize the conceptual model with any of the three simulation model types, as well as the biological interpretation of the model variables, were discussed.

Keywords: annual cycle of development, bud burst, chilling requirement, rate of development, rest period, simulation models, stage of development

ODC 161.41+181.22

Author's address: University of Joensuu, Faculty of Forestry, P.O. Box 111, SF-80101 Joensuu, Finland.

Approved on 9. 10. 1987