Metsän uudistuminen Kivalon vanhoilla kaistalehakkualoiilla

Eljas Pohtila

SUMMARY: FOREST REGENERATION OF OLD STRIP CUTTING AREAS IN KIVALO, NORTHERN FINLAND

The results of regenerating 54 and 36-38-year-old strip cuttings were surveyed in the Kivalo Research Forest (N 66° 20', E 26° 46'). 15 measurement plots were placed on each strip. The most common forest site type was *H. mirtillus* type. Regeneration of the strips proved to be slow. Most of the spruces growing on the strips probably originated from the time before cutting. The average number of stems was 1155 per hectare, of which one third consisted of broad leaf trees. The average volume increment of stem wood after cutting had been about 1 m³ per hectare per year, but it was increasing at the time of the inventory. Both the reforestation of the strips and the development of the emergent stands were dependent on elevation and site fertility. Site fertility was indicated by the abundance of *V. myrtillus*.

Keywords: strip cutting, regeneration, spruce stands, *Picea abies*. ODC 221.22+232

Accepted November 30, 1989

1. Johdanto

Kaistalehakkualoi on Suomessa käytetty kokeiluluonteisesti 1800-luvulta lähtien (Leikola 1986). Pohjois-Saksassa se tunnettiin met-sähköihin menetelmanä jo 1700-luvulla. Sen alkuperäinen idea oli uudistaa metsä luontaisesti reunametsän siemenyksestä. Aloittaen metsä linnoitettavan, suurhallille hakuu metsän reunasta ja sijoittamalla uusi kaistale ainetta tai seinää uudelleen vie-
2. Aineisto ja tutkimusmenetelmät

21. Tutkimusalueen kuvaus

Taulukko 1. Yleistieto kaistaleihin mitattuista mettikkökoelajoista.

Table 1. General information concerning the plots.

<table>
<thead>
<tr>
<th>Hakkuusarja</th>
<th>Koe-</th>
<th>Korko-</th>
<th>Kalven-</th>
<th>Metsä-</th>
<th>Keittiö-</th>
<th>Pohja-</th>
<th>Humin-</th>
<th>A-hor-</th>
<th>Kivisyy-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>alan</td>
<td>luomo, m</td>
<td>viiva, cm</td>
<td>vihreä, %</td>
<td>akas, cm</td>
<td>korko, cm</td>
<td>korko, cm</td>
<td>sottom, cm</td>
<td>sottom, cm</td>
</tr>
<tr>
<td>1925</td>
<td>4</td>
<td>195</td>
<td>W</td>
<td>10</td>
<td>p-MT</td>
<td>58.5</td>
<td>58.8</td>
<td>6.3</td>
<td>17.8</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>230</td>
<td>W</td>
<td>4</td>
<td>p-MT</td>
<td>79.5</td>
<td>20.5</td>
<td>5.8</td>
<td>12.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>262</td>
<td>NW</td>
<td>5</td>
<td>HMT</td>
<td>48.5</td>
<td>66.8</td>
<td>7.3</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>274</td>
<td>W</td>
<td>7</td>
<td>HMT</td>
<td>52.4</td>
<td>52.0</td>
<td>4.5</td>
<td>12.3</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>292</td>
<td>W</td>
<td>10</td>
<td>HMT</td>
<td>57.0</td>
<td>68.0</td>
<td>5.3</td>
<td>9.8</td>
</tr>
<tr>
<td>1943</td>
<td>6</td>
<td>218</td>
<td>NW</td>
<td>10</td>
<td>HMT</td>
<td>41.0</td>
<td>72.7</td>
<td>4.5</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>235</td>
<td>NW</td>
<td>2</td>
<td>HMT</td>
<td>54.0</td>
<td>87.0</td>
<td>3.3</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>240</td>
<td>N</td>
<td>16</td>
<td>HMT</td>
<td>52.4</td>
<td>71.7</td>
<td>4.0</td>
<td>13.5</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>240</td>
<td>W</td>
<td>10</td>
<td>HMT</td>
<td>45.3</td>
<td>65.4</td>
<td>6.3</td>
<td>12.3</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>240</td>
<td>SW</td>
<td>12</td>
<td>HMT</td>
<td>47.5</td>
<td>62.5</td>
<td>6.3</td>
<td>14.8</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>260</td>
<td>SW</td>
<td>5</td>
<td>EMT</td>
<td>59.8</td>
<td>76.8</td>
<td>4.0</td>
<td>10.5</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>262</td>
<td>S</td>
<td>23</td>
<td>HMT (EMT)</td>
<td>56.0</td>
<td>61.7</td>
<td>2.5</td>
<td>12.0</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>270</td>
<td>NW</td>
<td>7</td>
<td>HMT</td>
<td>60.5</td>
<td>66.3</td>
<td>5.0</td>
<td>10.8</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>272</td>
<td>W</td>
<td>3</td>
<td>HMT</td>
<td>38.9</td>
<td>59.0</td>
<td>5.8</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>278</td>
<td>W</td>
<td>4</td>
<td>HMT</td>
<td>41.2</td>
<td>86.6</td>
<td>5.8</td>
<td>8.5</td>
</tr>
</tbody>
</table>

Metsätyyppi:
- p-MT = pohjoisinen mustikkatyyppi
- HMT = Hylocomium-myrtillus-tyyppi
- EMH = Empetrum-myrtillus-tyyppi

Kivissyyssukat: I = vähäkivinen
II = kevyt
III = entistäkin kivinen

22. Metsikkökoelojen mittaus

Metsikkökoelat sijoitettiin subjektiivisesti pyrkien saamaan edustava näyte Kivalon tutkimusalueen vanhimmasta kaistalehukkualoista. Silmillä pidettiin ennen kaikkea maaston korkeutta ja ekosopitoa. Koaalle pyrittyin saamaan vähintään 200 puuta, mikä johti verrattain suurien (0,12–0,25 ha) koea- loihin. Ne rajattiin nelion tai suorakiteen muotoisiksi prasman ja mittaanavulla. Metsikkökoelaloita luettiin kaikki puut, kannot ja osa taimista ja selvitettiin lisäksi niiden keskinäisistä sijaintia. Luetuista puista mitattiin rinnankorkeuslämpimitä ja luetaista

posittiot sitä lisäävän.
Maanäystästä, jotka otettiin elokuun puolivalissiä, tehdään ravinneanalyysit osoittavat kokonaisyön määrän verrattuna moninkertaiseksi. Metsätyyppistä tai korkeussäätöä pitkinsäjä, joka vauhdia vastaavasti, on havaittu ennemmän tyyppeennä raiju muussa koivun ravinnonhuoneissa. Kokonaisyön määrä korkeaa positiivisesti maan vesinsä ja huomattavasti suurimman määrän (r=0,24**).

23. Metsikkökoelojen mittaus

Metsikkökoelat sijoitettiin subjektiivisesti pyrkien saamaan edustava näyte Kivalon tutkimusalueen vanhimmasta kaistalehukkualoista. Silmillä pidettiin ennen kaikkea maaston korkeutta ja ekosopitoa. Koaalle pyrittyin saamaan vähintään 200 puuta, mikä johti verrattain suurien (0,12–0,25 ha) koea- loihin. Ne rajattiin nelion tai suorakiteen muotoisiksi prasman ja mittaanavulla. Metsikkökoelaloita luettiin kaikki puut, kannot ja osa taimista ja selvitettiin lisäksi niiden keskinäisistä sijaintia. Luetuista puista mitattiin rinnankorkeuslämpimitä ja luetaista

käänosta kantolämpimittaa 1 cm:n tasavaraa

luokituksa käytäntä. Künkin puolalain kustauksesta lähittely on tapahtunut joko piiputtaakseen, jota mitattiin lisäksi kantolämpimittaa ja ylälämpimittaa joko 6 mm tai 3,5 mm korkeudella sekä pituus metrin tasaavallici luokituksella. Koepuita kättävät ikä ja samalla sädekasvu rinnankorkeudella. Pienemmät puutteilla se tehtiin kuitenkin juurenniskas-ka. Kairanlastututkitaan metsästökontrolloilla

Männyn, kuusen ja koivun taimet (alle 1,3 metriset puut) luettiin viiden metrin kaistolta käytän 20 cm:n pituusluokka. Taimen ikä

arvioitiin oksakiekohuroiden perusteella.

Metsikkökoelaloita mitattiin myös aiem- min (luku 2) selostetut kasvupaikkakunnukset.
3.12. Puiden taimien synttäjänkohda

Korrelaatioanalyysin tulosten mukaan, mitä enemmän massaa oli hienoja (<2 mm) laitteita, sitä nuorempia olivat kuuset (r=−0,70***). Samansuunnainen oli kuusien iän ja pohjaisen ekspositioun suhde (r=−0,68***). Ika ja maaston kaltevuus taas korreloivat poistittavasti (r=−0,60***). Riippuvuusiksi on tuskin aitaan syy- ja seurauksuudetta.

Puoiden todellisuudessa ikäkaumien pyrittii liitämään rinnankorkeusennä 30 vuotta. Ikäkauman huippu osui silloin vanhimmalla kaistalleella 61–70 vuoden luokkaan ja nuoremmillä 41–50 vuoden luokkaan (kuva 2).

Kuva 4. Koelalan vähennet tanssittaidagrammat puille ja taimille. p0=ollanollan-prosentti, m=rank, gossa r=etäisyys tanssainen vaikutus pisteeseen lähipiään puuysikoist piinaha alakiskoke. Ryhmämmässä: k: puile = 4 950 x 0,423 x 0,907 = 1.896, l: taimile = 4.250 x 0,463 x 0,907 = 1.785. 4. Decreasing zero-plot diagrams for the trees and seedlings of plot number 1. p0=ollanollan percentage, m=r, gossa r=distance from points chosen systematically at even intervals to the nearest tree individual, and l=the number of tree individuals per unit area. Cluster indices: k: for the trees = 4 950 x 0.423 x 0.907 = 1.896, l: for the seedlings = 4.250 x 0.463 x 0.907 = 1.785.

3.13. Puiden ja taimien ryhmittäisyys

Syntynneille metsäkoihelle luonteenomaista ryhmittävän tilajärjestys. Coxin (1971) indeksi (kuva 4), jota käytettiin ryhmittäisyyden mittaan, viitatti satunnaiskajauma (Poisson) homogeneisempana tilajärjes-
tykeen vain parissa tapauksessa (taulukko 3). Kun ko. indeksi satunnaiskajaumassa saa
32. Syntyneiden metsiköiden taksatorinen kehitys

32.1. Pituus

Puiden pituuskasvu oli vuonna 1925 haktulilla kaistaleella keskimäärin nopeampaa kuin vuosina 1941–1943 haktulilla kaistaleilla, joilla koopuiden ikävyöhykel oli saariempi (kuva 5). Asiaan ilmeisesti vaikuttivat erot kasvupaikan viljavuudesta. Puiden pituutta kuvaavat tunnusluvut korreloivat positiivisesti mnr. mukaan peittävyyden (r=0,80-0,83***) ja A-horizonin paksuuden (r=0,58*) kanssa. Männin ja koivun pituuskasvu oli ollut selvästi nopeampaa kuin kuusen. Vanhimmalla kaistaleella puiden pohjapinta-alalla painotettujen keskipituuksien keskiarvo oli vuonna 1979 10,3 m ja nuoremmillan kaistaleilla 7,5 m (taulukko 4). Valtapituuksien vastaavat keskiarvot olivat 12,2 m ja 8,9 m. Kuusille oli ominaista suuri pystykorraus, mikä ilmeni puiden jakaumuksena moneen eri pituusluokkaan (kuva 6).

Kaikista inventoiduista taimista noin puolet oli alle 0,5 metrin mittaisia.

32.2. Rinnankorkeuslämpimö

Puiden läpmittäminen kehityksessä havaittiin sanmansuuntaisina, ilmeisesti kasvupaikan viljavesiriihö perustuvia eroja kuin puitudenkin kehityksessä (kuva 7). Kaikkien puiden pohjapinta-alalla painotettu keskimääräinen rinnankorkeuslämpimö oli vuonna 1979 vanhimmalla kaistaleella 18,3 cm ja nuoremmillan kaistaleilla 15,1 cm (taulukko 5). Suurin osa kuusen rungoista kului 15 cm:n pienempiä lämpimittaluokkiin (kuva 8).

Taulukko 4. Puiden pohjapinta-alalla painotetut keskipituudet ja valtapiuudet.

Table 4. Mean heights weighted by basal area, and dominant heights of the trees.

<table>
<thead>
<tr>
<th>Koealan numero</th>
<th>Koivun lajit</th>
<th>Kuisu</th>
<th>Mänty</th>
<th>Kolven lajit</th>
<th>Kuisu</th>
<th>Mänty</th>
<th>Kolven lajit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plussin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>number</td>
<td>tree species</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Keskipituus, m</th>
<th>Valtapituus, m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean height, m</td>
<td>Dominant height, m</td>
</tr>
<tr>
<td>1</td>
<td>12.3</td>
</tr>
<tr>
<td>2</td>
<td>12.6</td>
</tr>
<tr>
<td>3</td>
<td>8.4</td>
</tr>
<tr>
<td>4</td>
<td>9.2</td>
</tr>
<tr>
<td>5</td>
<td>8.9</td>
</tr>
<tr>
<td>6</td>
<td>8.8</td>
</tr>
<tr>
<td>7</td>
<td>7.3</td>
</tr>
<tr>
<td>8</td>
<td>7.1</td>
</tr>
<tr>
<td>9</td>
<td>7.8</td>
</tr>
<tr>
<td>10</td>
<td>8.0</td>
</tr>
<tr>
<td>11</td>
<td>7.4</td>
</tr>
<tr>
<td>12</td>
<td>6.5</td>
</tr>
<tr>
<td>13</td>
<td>7.5</td>
</tr>
<tr>
<td>14</td>
<td>7.2</td>
</tr>
<tr>
<td>15</td>
<td>7.5</td>
</tr>
</tbody>
</table>

Kuvan 5. Kuusen pituuskehityksen riippuvuus rinnankorkeudesta.

Figure 5. Dependence of the height development of spruce on breast height age.
323. Pohjapinta-ala

Piiden keskimääräinen pohjapinta oli vuonna 1925 hakatulla kaistaleella 12,6 m² ja vuosina 1941–1943 hakatuilla kaistaleilla 8,1 m² (taulukko 6). Pohjapinta-ala oli sitä suurempi, mitä suurempi oli mustikan peittävyys ($r=-0,72^{**}$) ja mitä pienempi samalten ja yleensä pohjakerroksen peittävyys ($r=-0,70^{**}$).

324. Tilavaus ja -kasvu

Runkopuun keskimääräinen kuutiosisältö oli vanhimmalla kaistaleella 58 m³/ha ja nuoremilla kaistaleilla 32 m³/ha (taulukko 7). Kuusen osuus sitä olisi keskimäärin noin 70% ja köynnön ja koivun kummankin noin 15%. Tukkipuusosuus kokonaistilavuudesta vaihteli metisikkökoealoittain 5:sta 38%:iin ja oli keskimäärin 17%. Tulvavauskasvu oli ollut alhainen, keskimäärin vain noin 1 m³/ha/v, mutta oli mittauksien aikana selvästi kohomassa. Juokseva vuotuinen tilavuuskasvu vaihteli koealoitttain 1,4:stä 4,2 m³:in hehtaarilla. Kun puustoppaama oli pieni, muodostuivat tilavuuskasuprosentit suhteellisen korkeiksi vaihdellen koealoitttain 4,6:sta 8,6%:iin. Runkopuun tilavuuseroihin todennäköisiä vaikutteita niin maaston korkeuserot kuin maapohjan viljavuuseroetkin (kuva 9 ja 10). Alhaisimmat runkopuun tilavuudet mi.

![Diagram](image)

Figure 6. Height class distributions of spruce.

![Diagram](image)

Figure 7. Dependence of the breast height diameter development of spruce on breast height age.

![Diagram](image)

Figure 8. Breast height diameter distributions of spruce.

![Diagram](image)

Figure 9. Dependence of the stem wood volume on elevation.

![Diagram](image)

Figure 10. Dependence of the stem wood volume on Vaccinium myrtillus coverage.

<table>
<thead>
<tr>
<th>Koealan numero</th>
<th>Plottunumero</th>
<th>Kaikki puulajit</th>
<th>Kuusi</th>
<th>Siipu</th>
<th>Myrty</th>
<th>Koivu</th>
<th>Birch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pituus</td>
<td>Kuntosuuruus</td>
<td>cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>19.9</td>
<td>21.3</td>
<td>14.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>19.0</td>
<td>19.7</td>
<td>16.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>15.4</td>
<td>15.9</td>
<td>12.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>19.9</td>
<td>21.9</td>
<td>18.8</td>
<td>11.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>17.3</td>
<td>18.4</td>
<td>14.6</td>
<td>16.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>17.3</td>
<td>18.4</td>
<td>11.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>12.7</td>
<td>12.4</td>
<td>7.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>13.9</td>
<td>13.8</td>
<td>15.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>13.6</td>
<td>14.4</td>
<td>7.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>15.8</td>
<td>16.5</td>
<td>14.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>14.8</td>
<td>14.4</td>
<td>16.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>14.4</td>
<td>13.5</td>
<td>13.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>17.4</td>
<td>17.3</td>
<td>16.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>15.3</td>
<td>15.1</td>
<td>16.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>15.6</td>
<td>15.3</td>
<td>16.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Diagram](image)

Taulukko 5. Puiden pohjapinta-alla painotetut keskimääräiset rinnankorkeusläpimittit.
Table 5. Mean breast height diameters weighted by basal area.

<table>
<thead>
<tr>
<th>Koealan numero</th>
<th>Plottunumero</th>
<th>Kaikki puulajit</th>
<th>Kuusi</th>
<th>Siipu</th>
<th>Myrty</th>
<th>Koivu</th>
<th>Birch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m³/ha</td>
<td>Volume, m³/hectare</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>14.4</td>
<td>10.4</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>16.3</td>
<td>8.2</td>
<td>4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>11.3</td>
<td>9.1</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>11.4</td>
<td>5.9</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>9.9</td>
<td>7.0</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6.3</td>
<td>4.8</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>10.5</td>
<td>9.2</td>
<td>6.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>6.0</td>
<td>5.4</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>8.9</td>
<td>6.2</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>13.6</td>
<td>8.3</td>
<td>4.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>5.3</td>
<td>3.7</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>9.4</td>
<td>6.1</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>7.2</td>
<td>6.6</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>8.1</td>
<td>6.4</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>5.6</td>
<td>4.9</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Diagram](image)

Taulukko 6. Puiston pohjapinta-ala.
Table 6. Basal areas of the growing stock.
Laulu 7. Runkopaun tilavuus ja juoksessa vuotuinen tilavuuskasvu.

Taulukko 7. Stemwood volume and current annual volume increment.

<table>
<thead>
<tr>
<th>Koealan numero</th>
<th>Kaikki puulajit</th>
<th>Kaikki puulajit</th>
<th>Kuvan puulajit</th>
<th>Kuvan puulajit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All live species</td>
<td>All live species</td>
<td>All live species</td>
<td>All live species</td>
</tr>
<tr>
<td></td>
<td>Volumen, m³/ha</td>
<td>Current annual volume increment, m³/ha</td>
<td>Volumen, m³/ha</td>
<td>Current annual volume increment, m³/ha</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>1</td>
<td>72.0</td>
<td>52.7</td>
<td>13.5</td>
<td>3.5</td>
</tr>
<tr>
<td>2</td>
<td>80.8</td>
<td>39.9</td>
<td>18.7</td>
<td>4.2</td>
</tr>
<tr>
<td>3</td>
<td>48.2</td>
<td>39.2</td>
<td>5.8</td>
<td>2.6</td>
</tr>
<tr>
<td>4</td>
<td>48.4</td>
<td>24.4</td>
<td>21.3</td>
<td>3.6</td>
</tr>
<tr>
<td>5</td>
<td>48.4</td>
<td>29.4</td>
<td>2.1</td>
<td>5.6</td>
</tr>
<tr>
<td>6</td>
<td>26.0</td>
<td>20.3</td>
<td>3.4</td>
<td>1.7</td>
</tr>
<tr>
<td>7</td>
<td>42.7</td>
<td>37.2</td>
<td>3.6</td>
<td>3.2</td>
</tr>
<tr>
<td>8</td>
<td>22.5</td>
<td>20.2</td>
<td>2.0</td>
<td>1.4</td>
</tr>
<tr>
<td>9</td>
<td>34.5</td>
<td>23.8</td>
<td>1.6</td>
<td>2.0</td>
</tr>
<tr>
<td>10</td>
<td>55.3</td>
<td>33.5</td>
<td>17.9</td>
<td>3.6</td>
</tr>
<tr>
<td>11</td>
<td>20.7</td>
<td>14.4</td>
<td>6.1</td>
<td>1.6</td>
</tr>
<tr>
<td>12</td>
<td>32.6</td>
<td>20.1</td>
<td>8.2</td>
<td>2.6</td>
</tr>
<tr>
<td>13</td>
<td>31.7</td>
<td>25.1</td>
<td>6.5</td>
<td>2.3</td>
</tr>
<tr>
<td>14</td>
<td>31.7</td>
<td>25.1</td>
<td>6.5</td>
<td>2.3</td>
</tr>
<tr>
<td>15</td>
<td>22.9</td>
<td>19.8</td>
<td>1.6</td>
<td>1.6</td>
</tr>
</tbody>
</table>

4. Tulosten tarkastelu

Arvostelun perusteena pitäisi käyttää kaikia mahdollisia yleisöä houkuttelevia asioita ja esineitä. Useimmat henkilöt ja yksityiskohdat ovat tärkeitä, mutta ne pitäisi olla liittävissä ja turvataan. Tämä arvostelun kohdalla pitäisi käyttää laajempaa suuntaa ja houkutella laaja yleisöä.

Kurjallisuus

1931. Metsien luotannen uudistaminen. 95. KMS Tapio, Helsinki.

1948b. Suomen uholien sopeutumisun elämäisuskuskunnalle. Silta Fenn. 52: 121-139, 292.

Pohjola, E. 1972. Tutokset Pärs-Pohjolan valtionmailla vuosina 1900-45 tehtyistä kuusivuotisilmiöistä. Summary: Results of space cultivation from 1900-45 on state-owned lands in Pärs-Pohjola. Folia For. 156. 12 s.

Total of 26 references
Summary

Forest regeneration of old strip cutting areas in Kivalo, Northern Finland

Strip felling is an old method for regenerating a forest. It has been periodically used in Finland since the 19th century. Its applicability has been demonstrated especially for the regeneration of spruce-dominated peat lands. On heaths, its usefulness has been uncertain because of the lack of investigations. Strip felling has been repeatedly employed when conventional regeneration methods have brought poor results.

The aim of this investigation was to examine the results of the oldest strip cutting experiments established by the Finnish Forest Research Institute in the Kivalo research forest (N 66°20', E 26°40'). Fifteen plots (0.12-0.25 hectares) were measured on four separate strips. The oldest strip was from the year 1925 and three others from the years 1941-1943 (Table 1). The width of the strips was about 100 m. The average cut, consisting mainly of Norway spruce, had been 52-87 m² per hectare. Seedlings and small trees had been saved. The inventory was made in the summer 1979. In addition to the inventory of trees and seedlings, some analysis had been made of the cover vegetation and soil nutrients (App. 1-2).

Regeneration of the strips proved to be slow. The average number of stems was 1155 per hectare, of which one third consisted of broad leaf trees (Table 2). The number of stems depended on elevation (Fig. 1). In addition to trees, there were seedlings (height < 1.3 m) on every plot. In particular, seedlings of subcrescent beech were prevalent, 868 stems per hectare on average. The corresponding number of silver birch seedlings was only 32 per hectare. The average number of spruce seedlings was 360 per hectare, while that of pine seedlings was 27 per hectare. Both the trees and the seedlings had a clearly clustered spacing (Fig. 4, Table 3).

There were great differences in the breast height ages of the trees. Most of the trees probably originated before the cutting of the strips (Fig. 2). There were also great differences in ages of the seedlings (Fig. 3).

The height increment of trees was faster on the oldest strip than on the younger ones. This was probably caused by differences in site fertility (Fig. 5, Table 4). Large height variation was evident, especially for spruce (Fig. 6). A corresponding variation was observed in the breast height diameter (Fig. 7-8, Table 5). Differences in basal areas were also large (Table 6).

The average volume of stem wood was 58 m³ per hectare on the oldest strip, and 32 m³ on the younger ones (Table 7). The average volume increment had been about 1 m³ per hectare per year, but it was clearly increasing at the time of the inventory. The volume and volume increment was dependent on elevation and site elevation and site elevation and site elevation and site elevation (Fig. 7-9). Site fertility was indicated by the coverage of Vaccinium myrtillus.

From the forestry point of view, the results of the strip cuttings were rather poor, but not necessarily poorer than the results of spruce plantations under the same conditions. Artificial regeneration with pine has had, under similar conditions, produced mixed results. The regeneration of old spruce stands on raw humus sites continues to be problematic.
Typpipitoisuuden vaikutus männyn neulasten fotosynteesiin ja verson itsevarjostukseen

Heikki Smolander, Pauline Oker-Blom & Seppo Kellomäki

ABSTRACT: THE EFFECT OF NITROGEN CONCENTRATION ON NEEDLE PHOTOSYNTHESIS AND WITHIN SHOOT SHADING IN SCOTS PINE

A close relationship between photosynthetic capacity and the nitrogen concentration of leaves is known to exist. In conifers, nitrogen also affects the pattern of mutual shading within a shoot, which is a basic unit used in studying photosynthesis of coniferous trees. These effects of needle nitrogen concentration on photosynthetic capacity and mutual shading of needles were analyzed for Scots pine (Pinus sylvestris L.) shoots taken from five young stands growing on sites of different fertility. The effect of nitrogen concentration on needle photosynthesis was studied based on measurements of the photosynthetic radiation response of shoots from which two thirds of the needles were removed in order to eliminate the effect of one percentage unit in nitrogen concentration of needles increased the photosynthetic capacity of needles by 25 mg CO₂ dm⁻² h⁻¹. The effect of nitrogen on within-shoot shading was quantified in terms of the silhouette area to total needle area ratio of a shoot (SRA), which determines the relative interception rate per unit of needle area on the shoot. Although nitrogen promoted needle growth, an increase in nitrogen concentration decreased the within-shoot shading. This effect resulted from a decrease in needle density on the shoot and an increased needle angle with increasing nitrogen content.

Keywords: Pinus sylvestris, site factors, fertility, shoot structure, light interception efficiency, shading.

OCD 174.7 + 161.3 + 181.32 + 181.21

Authors' addresses: Smolander: The Finnish Forest Research Institute, Suonenjoki Research Station, SF-77600 Suonenjoki, Finland. Oker-Blom: University of Helsinki, Department of Siliculture, Unioninkatu 40 B, SF-00170, Finland. Kellomäki: University of Joensuu, Department of Forestry, P.O. Box 111, SF-80101 Joensuu, Finland.

Accepted November 30, 1989