Breeding of *Picea mariana* (Mill.) B.S.P.: seed orchard and clonal approaches

E. K. Morgenstern & Y. S. Park

Introduction

Black spruce, *Picea mariana* (Mill.) B.S.P., is one of the most widely distributed species of North American cool-temperate and boreal forests, ranging from the Atlantic Coast to the Pacific Coast in Alaska (Heinselman 1957). It is relatively resistant to insects and diseases, possesses great reproductive capacity by seed and layering, regenerates well after fire, and is adapted to various soils and local climates. It grows in association with many other species, and pure stands are often found on shallow, poorly drained and cold soils where competitors are lacking. As a result of its favourable wood density and fiber characteristics and the availability of large volumes, it is an important species for the pulp and paper industry.

Increased utilization of forest resources in Canada has led to the development of large reforestation programs. Black spruce is the species most frequently planted in Canada east of Manitoba (Smyth and Brownright 1984). Significant silvicultural programs for this species also exist in the Lake States of the U.S.A. Along with these programs, selection and breeding were begun in some provinces and states as early as about 1960, first on a small scale, and since about 1975 on a large scale in all areas where the species is important. The purposes of this paper are to review progress in research and breeding during the last 20 years and to propose alternative breeding strategies for advanced generations.

Characteristics influencing selection and breeding

Range-wide variation and population structure

The distribution and population size of black spruce across its range are important factors in the development of genetic variation. Large populations exist throughout much of the Boeréal and Acadian Forest Regions of Canada (Rowe 1972) and in the cool-temperate regions of the Lake States (Heinselman 1957). In these regions, it is found on both moist lowland and dry upland sites. Natural selection by day length and temperature is seen as the dominant genetic process that created a clinal variation pattern. There is also strong gene flow by pollen and seed, particularly after fire. There is no evidence of soil ecotypes (Dietrichson 1969, Morgenstern 1969, 1978; Fowler and Morgenstern 1977, Khalil 1986, O'Reilly et al. 1985, Park and Fowler 1988, Morgenstern and Mullin 1990). The mating system in these large populations as inferred from allogamy data is marked by high outcrossing rates and the population structure shows a large within-population component of variation and within any region relatively little variation among populations (Boyle and Morgenstern 1986, 1987).

Smaller populations near the edge of the range have a different mating system and population structure. Where the species is restricted to bogs or swamps, as in southern Ontario, the New England states, and the Cape Breton Highlands of Nova Scotia, there is some evidence of inbreeding. As shown by controlled crosses, this reduces seed set and vigor (Park and Fowler 1984). Values of the inbreeding coefficient, F, found in experiments in Alberta, Ontario and Nova Scotia have ranged from 0.08 to 0.23 (Morgenstern 1972, Sproule 1988, McCurdy 1990). The poor performance of native Cape Breton Island provenances when grown in Cape Breton is an illustration of the silvicultural effect of inbreeding (Park and Fowler 1988).

- From Pennsylvania north to New England, the Maritime Provinces, and southeastern Ontario and Quebec, black spruce is sympatric with red spruce (*Picea rubens* Sarg.) and introgress-
years after grafting (McPherson et al. 1982).

The second option is the seedling seed orchard. These can be established quickly on ordinary cut-over areas without special measures, except control of competitors and provision for fire protection. After roguing, the number of producing trees is similar to that in clonal orchards, and seed production is probably comparable.

Advanced-generation breeding

Several provincial breeding programs have now reached the end of the first generation, and plans for the next generations of recurrent selection have been made. One of the most comprehensive breeding plans is that prepared for New Brunswick (Fowler 1986). A total of 1,200 plus trees was initially selected, and these have given rise to the same number of open-pollinated families in tests, from which the best 400 will be identified. Second-generation breeding will use polycrossing and pair-mating to develop 20 20-tree-subsamples for the third generation breeding population. At that stage, polycrossing will be used for progeny testing, while a partial-diallel mating system will be used for next-generation breeding. In each generation, a new clonal orchard is established which is subsequently removed on the basis of the test results. The use of sublines minimizes inbreeding. In this way successively better seeds are produced.

Alternative breeding strategies for clonal forestry

As an alternative to conventional seed orchard procedures, tree improvement strategies using "breeding-cloning" procedures to produce improved planting stock, i.e., clonal forestry, have been explored for advanced generation. There are many advantages of clonal forestry (Libby and Rauter 1984, Libby 1990), including the opportunity to capture both additive and non-additive genetic variances. Thus, genetic gains from breeding-cloning strategies are expected to be larger than those from conventional programs.

Although it has advantages, clonal forestry to date is limited by several factors. Perhaps the most important one is our ability to propagate true-to-type individuals at a reasonable production rate. This results from the maturation state of donor plants. Currently, in black spruce, true-to-type propagation via rooted cuttings is possible only with young seedlings, and, thus, an operational clonal program requires several cycles of propagation to meet stock requirements. Since 1985, rapid progress has been made in the development of somatic embryogenesis using seed embryos for several northern conifers including black spruce. Although this technology is still labor intensive, it is expected to replace conventional micropropagation techniques based on rooting adventitious or auxillary shoots (Park and Bongia 1990). Research on refinement of somatic embryogenesis techniques in black spruce is being carried out in the Maritimes Region of Canada to bring this technology to an operational level.

In advanced generation breeding, we propose alternative breeding-cloning strategies in conjunction with breeding hall technology (Greenwood et al. 1991), in lieu of managing conventional seed orchards. While the production of clonal populations expedites the deployment of improved material and permits additional genetic gain (Burdon 1982), the management of the breeding population, such as using breeding groups or sublines (van Buijtenen and Lowe 1979), continues to be the main source of progress.

The implementation of an effective clonal strategy requires accurate genetic information at different levels, i.e., the population, family, and individual tree. Also, this information is necessary to obtain estimates of both additive and non-additive genetic variances, including dominance and epistatic variances. It is necessary to predict genetic gains. To provide a means of obtaining such genetic information, the conventional genetic testing procedure should be modified by the use of clonal replicates (Shaw and Hood 1985, Park and Fowler 1987, Mullin and Park 1991).

We consider three possible options incorporating vegetative multiplication for advanced generation breeding, namely, "backward general combining ability (GCA) selection and polycrossing", "backward specific combining ability (SCA) selection and repeat crossing", and "forward clonal selection" (Mullin and Park 1991). A simplified illustration of "backward selection" is presented in Fig. 1. The second generation breeding-cloning strategy can begin by selecting the best individuals of the best families in the first generation family test. The selected trees may be sublimed, e.g., 20 20-tree-

**Sublines, and will be control-pollinated to produce material for progeny testing. At the same time, the selections will be grafted in clone banks or breeding halls. Depending on the breeding-cloning strategy adopted, different mating designs may be used. For "backward GCA selection and polycrossing", for example, a simple polycross can be used; however, to utilize non-additive variance as in "backward SCA selection and repeat crossing", it is necessary to use a full-sib mating design. Furthermore, using clonal replicates in the test with any mating design is likely to increase the efficiency of estimating genetic parameters and selection (Shaw and Hood 1985).

Backward GCA selection and polycrossing

The best GCA parents identified by the progeny test may be crossed in the breeding halls or clone banks with a polymix of other best GCA parents of different sublines. Limited quantities of seeds from the crosses could be vegetatively multiplied using serially rooted cuttings of juvenile seedlings, and stockering stock is deployed to plantations (Mullin and Park 1991). The theoretical genetic gain in this scheme is the same as in a rogued seed orchard; however, some important assumptions apply to this gain estimate. Mating in the orchard is assumed to be random, without inbreeding or pollen contamination. In practice, these assumptions are violated to some degree by most, if not all, seed orchards. These assumptions are likely to be met if the seeds are produced by controlled pollination in breeding halls or clone banks.

Backward SCA selection and repeat crossing

The best full-sib families or crosses identified by the progeny test may be obtained by repeated controlled crossing in the breeding hall or clone banks. This scheme can utilize the SCA of pairs of parents in addition to their individual GCA (Mullin and Park 1991). Thus, expected additional gain is dependent on the magnitude of SCA variance. Similar to the previous scheme, small quantities of seeds may be vegetatively
multplied using serially rooted cuttings. Both "backward GCA" and "backward SCA" selections can be practiced using serially rooted cuttings from juvenile seedlings, albeit at a higher production cost. However, it is likely that the efficiencies gained by using small breeding halls instead of large conventional seed orchards, the elimination of seed extraction plants, as well as the additional genetic gain and flexibility, will offset the higher cost of production. Obviously, when somatic embryogenesis techniques become operational, the efficiency of vegetative multiplication will be increased.

Forward clonal selection

In this scheme, the best tested clones are vegetatively multiplied and deployed in the production plantations. As in "backward selection" schemes, the selection, breeding and testing follow the same procedure (Mullin and Park 1991). However, after 5 or more years of genetic testing, vegetative propagation of superior clones in true-to-type fashion may not be possible. Thus, the main obstacle in this scheme is the maintenance of juvenility during the test period. As illustrated in Fig. 2, this scheme relies on the cryopreservation of embryogenic cultures in liquid nitrogen during the test period and subsequent regeneration of proven clones using somatic embryogenesis.

Conclusion

During the past 30 years, genetics research has accumulated much information on black spruce. The adoption of less intensive and faster plus-tree selection, establishment of seedling seed orchards and family selection significantly increased the rate of progress in improvement of the species. In New Brunswick this approach made it possible to obtain substantial quantities of seeds 10 years after the initiation of the program, and now all the seeds used in reforestation are derived from seed orchards.

Fourteen years after beginning the black spruce breeding program, second generation breeding is underway. The possibility of implementing alternative breeding strategies using "breeding cloning" procedures are explored for the advanced generations. Until somatic embryogenesis techniques become fully operational, "backward selection" schemes and crossing in breeding halls followed by vegetative multiplication using serial rooted cuttings can be adopted. Larger genetic gains than those from conventional breeding are expected not only from the utilization of both additive and non-additive variances, but also from the elimination of inefficiencies of large conventional seed orchards.

References

Libby, W.J. 1990. Advantages of clonal forestry re-
Review of manuscripts in 1991
Käsikirjoitusten tarkastus vuonna 1991

The editorial board of the Society of Forestry in Finland has received invaluable assistance from a large number of experts who have kindly provided assessments of the scientific level of the manuscripts submitted for Acta Forestalia Fennica and Silva Fennica. For review of manuscripts in 1991, the Board would like to express its sincere thanks to the following experts.

Erkki Annila
Sara von Arnold
Paul Van Deursen
Gösta Eriksson
Ari Ferm
Edwin J. Green
Urban Gullberg
Risto Hagqvist
Pertti Hari
Veikko Hintikka
Satu Huttunen
Jyrki Hytönen
Juhani Häägman
Heikki Hänninen
Pekka Kauppi
Seppo Kellomäki
Matti Keltikangas
Aune Koponen
Antti Korpihame
Eeva Korpihame
Veikko Koski
Mikko Kukkola
Juha Lappi
Dag Lindgren
Erkki Liski
Lars Lundin
Kenneth Lundkvist
Ilpo Mannerkoski
Eero Mattila
Guillermo A. Mendoza
Kari Melikäinen

Jouni Mikola
Annikki Mäkelä
Pekka Niemelä
Eero Nikinmaa
Markku Nygren
Nils Nykvist
Kristina Palmgren
Veli Pokkonen
Simo Poso
Pertti Pulkkinen
Pasi Putkonen
Juhani Päivänen
Bo Ranneby
Jorma Rautapää
Marsi Rusanen
Maaja Salonen
Ouli Savolainen
Klaus Silfverberg
Tore Skréppa
Aino Smolander
Heikki Smolander
Erik G. Stål
Ulf Söderberg
Peter Tigerstedt
Eлина Vapaavuori
Harri Vasander
Pirkko Velling
Kim von Weissenberg
C.J. Westman
Göran Ägren
Instructions to authors - Ohjeita kirjoittajille

Manuscripts are to be sent to the editors as three full, completely finished copies, including copies of all figures and tables. Original material should not be sent at this stage.

Research articles and notes

The editor-in-chief will select two or more referees to examine the manuscript. The author must take into account any revision proposed by the referees. If the author informs the editor-in-chief of a differing opinion the board will, if necessary, consider the matter. Decision whether to publish the manuscript will be made by the editorial board within three months after the editors have received the revised manuscript.

Following final acceptance, no essential changes may be made to the manuscript without the permission of the editor-in-chief. Major changes presuppose a new application for acceptance.

The author is responsible for the scientific content and linguistic standard of the manuscript. The author may not have the manuscript published elsewhere without the permission of the editors of Silva Fennica. Silva Fennica accepts only manuscripts that have not earlier been published.

The author is to forward the final manuscript and original pictures to the editors within two months after acceptance. The text is best submitted on a floppy disk, together with a printout. The letter accompanying the manuscript must clearly state that the manuscript in question is the final version, ready to be printed.

Other contributions

Scientific correspondence, comments, reviews, travel reports, and announcements are accepted by the editorial board.

Form and style

Closer instructions on the form of the manuscript are given in the first number issued each year. Reprints of the instructions are available from the editors.

Käsikirjoituksesta lähetetään toimitukselle kolme täydellistä, viimeistelytä kopiota, joihin sisältyy myös kopiot kaikista kuvista ja taulukoista. Originalaaliaineistoa ei tässä vaiheessa lähetetä.

Tutkimusraportit ja -tiedonannot

Vastaava toimittaja lähetttää käsikirjoitukseen valitsemilleen ennakkotarkastajille. Tekijän on otettava huomioon ennakkotarkastajien korjausiytkset tai ilmoitettava eräävän mielipiteensä vastaavalle toimittajalle tai toimituskunnalle, joka tarvittaessa käsittää asian. Kirjoituksen julkaismisesta päätetään toimituksen kolmen kuukauden kuluessa siitä, kun korjattu käsikirjoitus on tullut toimitukselle.

Hyväksymisen jälkeen käsikirjoitukseen ei saa tehdä olennaisia muutoksia ilman vastaavan toimittajan lupaa. Suuret muutokset edellyttävät uutta hyväksymistä.

Tekijän tulee lähetettä lopullinen käsikirjoitus ja kuvaoingaaliot toimitukselle kahden kuukauden kuluessa hyväksymispäätöksestä. Teksti otetaan mieluiten vastaan mikrotietokoneen levykkelleä, jonka lisäksi tarvitaan paperitulostuksia. Käsikirjoituksen saatteesta tulee selvä ilmetä, että kyseessä on lopullinen, kirjapainoon tarkoitettu kappale.

Muut kirjoitukset

Keskustelumake- ja kommenttipuheenvuorojen, kirja-arvostelujen, ilmoituksesten ja matkakertomuksen julkaismisesta päätetään toimituksen huippuvuonilla.

Kirjoitusten ulkoasu

Tarkan määrän ohjeet käsikirjoitusten ulkoasusta julkaistaan kuninkin vuoden ensimmäisessä numerossa. Ohjeita on saatavissa toimituksessa.

Contents – Sisälyys

Koski, V. Foreword. 198

Roulund, H. & Skreppa, T. Summary of main topics and conclusions from the meeting. 199–200

Burczyk, J., Kosinski, G. & Lewandowski, A. Mating pattern and empty seed formation in relation to crown level of Larix decidua (Mill.) clones. Tiivistelmä: Pölytyssuhteet ja tyhjien siementen osuus eurooppa-lehtikuusen vartteiden ylä- ja alaosassa. 201–205

Pulkkinen, P. Crown form and harvest increment in pendulous Norway spruce. Tiivistelmä: Riippakuusten latvusmuoto ja maanpäällisen kasvun jakaantuminen runkoon. 207–214

Schmidtling, R.C. Effect of rootstock and scion on flowering, growth and foliar nutrients of loblolly pine (Pinus taeda) grafts. Tiivistelmä: Piensärimuukon ja varttimisoskan vaikutus Pinus taedan vartteiden kukintaan, kasvun ja neulasten ravinnepitoisuuteen. 215–227

Wei, R.-P. & Lindgren, D. Selection effects on diversity and genetic gain. Tiivistelmä: Valinnan vaikutukset monimuotoisuuteen ja jalostushyöhyyn. 229–234

Reviews – Katsauksia

Chalupka, W. Usefulness of hormonal stimulation in the production of genetically improved seeds. 235–240

Danell, Œ. Survey of past, current and future Swedish forest tree breeding. 241–247

Dickmann, D.I. Role of physiology in forest tree improvement. 248–256

Eriksson, G. Challenges for forest geneticists. 257–269

Häggman, H. Application of biotechnology to forest tree breeding. 270–279

ISSN 0037-5330