Inheritance of the narrow-crowned Scots pine
E 1101, “Kanerva pine”

Tapani Pöykkö & Pirko Velling

TIIVISTELMÄ: "KANERVAN MÄNNYN", E 1101:n, KAPELATVAISUuden Periyttymen


There is some evidence to support the hypothesis that crown form in Scots pine can be inherited either mono- or polygenically. In Finland, special attention has been given to a genotype called E 1101, “Kanerva pine”. A narrow, horizontal whorl-layer structure is extremely striking in about one half of the offspring of E 1101. The offspring are characterized by a narrow crown, short and thin branches at an angle about 90° to the stem, minimal tapering and by numerous long, lateral shoots, long needles and the common occurrence of three-needled fascicles among the dwarf shoots. These features are connected to a high growth rate, a high harvest index and unfortunately to a tortuosity of the stem. It is suggested that this complex of characters (termed as kanerva) is determined by a single dominant gene.

In this study, several offspring of the narrow-crowned special tree E 1101, were classified into three tree form types in seven sets of progeny test data. The data included progenies of various ages having E 1101 as either maternal or paternal parent as well as open-pollinated progenies of E 1101 second generation offspring. A segregation close to 1:1, suggested in earlier reports, was found both in the first and in the second generation progenies when wilds and intermediates were combined and compared with kanervas. The result indicates that the tree type kanerva can be due to a single dominant allele (K). Kanervas are heterozygous (Kk) for the allele and wilds are recessive homozygotes (kk) resulting 1:1 segregation in their progenies. However, there were also remarkable deviations from the expected distribution. The differences as well as the inheritance pattern are discussed.


1 Introduction

Variations in branching habit are well known among coniferous and deciduous tree species throughout the world. Pendulous, fastigate and columnar tree forms have long been used in horticulture. Inheritance of a particular, very narrow-crowned tree form can sometimes be attributable to a single, dominant gene. This has been demonstrated for a few pendulous forms of Norwegian spruce (Lepiöstö 1984). Mendelian segregation of crown forms within offspring of those trees has indicated a monogenic inheritance.

There is some evidence supporting the hypothesis that crown form in Scots pine can be inherited either mono- or polygenically. In Finland, special attention has been given to a genotype called E 1101, “Kanerva pine”. This special tree is growing in Punkaharju, southeastern Finland (lat. 61°43' N, long. 28°25' E, alt. 85 m). In 1955 it was registered by district forest officer Yrjö Kanerva because of its conspicuous, narrow-crowned form. Later on, it has been much used for progeny testing. In the studies concerning the offspring of E 1101 a bimodal segregation of trees has been reported concerning certain crown characters (Kärki and Tigerstedt 1985, Mikola 1985a, Kuuluvainen et al. 1988, Velling 1988).

The results imply that deviation from the mean pattern of shoot distribution in young Scots pine occurs either towards a layered or a non-layered structure (Kuuluvainen et al. 1988). In a layered structure, the shoots form narrow horizontal whorls while a non-layered or "bushlike" structure is characterized by a rather even vertical shoot distribution (Kärki 1983, Kuuluvainen et al. 1988, Pulkkinen et al. 1989). The pure tree form patterns of these two shoot patterns are also attributed, correspondingly, to ideotypic trees and wild type trees (Kärki 1983).

Both crown structure patterns are evident in the progenies of E 1101. A narrow horizontal whorl-layered structure is extremely striking and it can be demonstrated both phenotypically (Kärki 1983, Mikola 1985a, Velling 1988) and by statistical methods (Kuuluvainen et al. 1988). Because of its good match with the phenotype of E 1101, “Kanerva pine”, the type is referred to as kanerva type (Velling 1988) or as kanerva.

The bimodal distribution is so drastic that Kärki and Tigerstedt (1985) suggested that the narrow-crowned habit of E 1101 is determined by a single, dominant gene. The single-gene effect probably regulates the apical dominance of tree growth and has pleiotropic effects on the crown characters (diameter, angle and number of branches) and stem tortuosity of offspring of E 1101. A segregation approaching 1:1 among open-pollinated offspring has been reported. Mikola (1985a) and Rusanen and Velling (1988) estimated that about a half of offspring of E 1101 display an extremely narrow crown, short and thin branches at an angle of nearly 90° to the stem and minimal tapering. They are typically characterized by numerous long, lateral shoots, long needles and the common occurrence of three-needled fascicles among the dwarf shoots (Mikola 1985a). These features are connected to a high growth rate of the stem (Mikola 1985a, Velling 1988) and a high harvest index (Kärki 1984, Kuuluvainen et al 1988). Harvest Index (HI), introduced by Don-ald (1962), is considered to be a complex marker trait for ideotypes (ideal tree forms for cultivation). In the case of forest trees, HI is defined as the ratio of harvested dry matter to the total dry matter computed on the basis of individual tree (Tigerstedt and Velling 1986).

The aim of this study was to analyse crown and tree type distribution in the first and the second generation offspring of E 1101 growing in seven progeny tests. The primary objective was to provide information about the assumption of bimodal distribution indicating a dominant single-gene effect among offspring of E 1101. The genetic model tested is following: the kanerva type trees (kanervas, Fig. 1) are a result of a dominant allele (K). Kanervas are heterozygous (Kk) for the allele, while wild type trees (wils, Fig. 1) are recessive homozygotes (kk).

Thus the crossing between kanerva and wild results 1:1 segregation (kanerva:wild) among their progenies.

2 Material and method

The results presented in this report are based on classifications made in the course of six field tests and in one test orchard (see Mikola 1985b) of Scots pine. Four field tests (160/1, 396/1, 396/2, 427/1) and the test orchard (565/2) were classified by the Finnish Forest Research Institute (FFRI). In two field tests (998/1 and 998/2) the classification work was carried out by the Foundation for Forest Tree Breeding (FFTB) (Table 1). The tests differed in age. The tests measured by FFRI were older than those measured by FFTB.

The tests included progenies having E 1101 as either the maternal or paternal parent. The tests 998/1 and 998/2 included open-pollinated progenies of second generation offspring of E 1101, too. All the offspring from controlled crossings classified by FFRI had E 1101 as paternal parent. The field tests classified by FFTB (998/1 and 998/2) were more heterogeneous. Two controlled crosses had E 1101 as the paternal and five as the maternal parent. Among the entries there were 26 different open-pollinated progenies of E 1101 second generation offspring. In addition tests 160/1, 427/1, 998/1 and 998/2 each had one open-pollinated progeny of E 1101 while test 565/2 had two open-pollinated progenies.

In tests 396/1, 396/2, 427/1 and 565/2, all the trees were classified visually into one of the following groups: Kanerva type tree (kanerva), wild type tree (wild) or intermediate type tree (intermediate). The kanervas and wilds were first described by Kärki (1983). Kanervas have narrow horizontal whorl-layer structure with thin and short branches at an angle of about 90° to the stem (Fig. 1). Wilds have non-layered, “bushlike”, structure with thick and long branches at small angle to the stem (Fig. 1). The class of intermediate was for trees having characteristics from both of the two ultimate classes. In tests 160/1, 998/1 and 998/2, only the kanervas were recorded, wilds and intermediates were pooled into the same group.

Fig. 1. Tree types. On the left: kanerva, on the right: wild.
Table 1. Study material. FFRI = Finnish Forest Research Institute, FFTP = Foundation for Forest Tree Breeding. For forest site types see Cajander (1909).

<table>
<thead>
<tr>
<th>Test no</th>
<th>Planned by</th>
<th>Established</th>
<th>Forest site type</th>
<th>Number of classified families</th>
<th>Number of trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>160/1</td>
<td>FFRI</td>
<td>1960</td>
<td>VT</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>396/1</td>
<td>FFRI</td>
<td>1972</td>
<td>MT</td>
<td>18</td>
<td>1553</td>
</tr>
<tr>
<td>396/2</td>
<td>FFRI</td>
<td>1972</td>
<td>VT</td>
<td>8</td>
<td>902</td>
</tr>
<tr>
<td>427/1</td>
<td>FFRI</td>
<td>1974</td>
<td>VT</td>
<td>1</td>
<td>99</td>
</tr>
<tr>
<td>565/2</td>
<td>FFRI</td>
<td>1978</td>
<td>CT</td>
<td>9</td>
<td>551</td>
</tr>
<tr>
<td>998/1</td>
<td>FFTP</td>
<td>1983</td>
<td>Field</td>
<td>34</td>
<td>1817</td>
</tr>
<tr>
<td>998/2</td>
<td>FFTP</td>
<td>1984</td>
<td>CT</td>
<td>27</td>
<td>1304</td>
</tr>
</tbody>
</table>

3 Results

In the field test data, the mean percentage of kanervers in progenies having E 1101 as the maternal parent ranged from 18 to 44 and the mean percentage of the wilds from 55 to 70 (Fig. 2). In tests 427/1 and 565/2 (test orchard) the mean percentage of intermediates ranged from 10 to 20. In test 160/1 and tests classified by FFTP (998/1 and 998/2) the wild type trees and intermediate trees were classified into the same group.

The paternal offspring of E 1101 (Fig. 3) followed the pattern of maternal offspring of E 1101. The mean percentage of kanavers in the progenies having E 1101 as their paternal parent ranged from 31 to 48 in the different field test data (Fig. 3). The classification carried out by FFTP (tests 998/1 and 998/2) showed a lower percentage for kanavers than that carried out by FFRI. The percentage of wilds ranged from 17 to 69. In tests in which data of intermediates were available their percentage varied between 18 and 35.

The mean percentage of kanavers was at its highest, 46, in the field test material classified by FFRI, while in the field tests assessed by FFTP it was 33. The mean percentage of wilds and intermediates in field test data classified by FFRI were 29 and 25, respectively. The pooled mean value of wilds and intermediates in field test data classified by FFRI was 67. In FFRI’s test orchard the corresponding percentages of Kanervers, wilds and intermediates were 23, 59 and 18.

The percentage of kanavers in progenies having E 1101 as the paternal parent varied between 30 and 70 in the field test material classified by FFRI. Eight progenies reached the level of 50 percent (Fig. 4). Nine of the 18 studied progenies complied with the segregation ratio of 1:1 (p > 0.05, ns in Fig. 4) while four failed to do so.

Fig. 2. Mean percentages of tree types in maternal progenies of E 1101 in five progeny tests.

Fig. 3. Mean percentages of tree types in paternal progenies of E 1101 in six progeny tests.

Fig. 4. Overall percentages of tree types in paternal progenies of E 1101. ns (non-significant) indicates that 1:1 segregation is accepted (p > 0.05), three plus signs (+++) that 1:1 segregation is rejected (p < 0.001).

Fig. 5. Overall percentages of tree types in maternal progenies of the offspring of E 1101 (second generation). Families common in tests 998/1 and 998/2 are included (for explanations see Fig. 4).
The discrimination of intermediate and wild type trees was done in the following way. The proportion of intermediate trees was lower in test 396/1 than in test 396/2.

4 Discussion

The visual identification by FFTB and FFRI of kanervas in the progenies of E 1101 seems to be in agreement. The proportion of kanervas in the different progenies was quite obscure in older tests. If intermediates and wilds are combined, the segregation of tree type groups within the progenies of E 1101 seems to comply with the segregation ratio of 1:1 in most of the studied progenies. However, in some tests (as well as in progenies within tests) the proportions of kanervas were lower or higher than 50 percent.

The main reason for the above variation in proportions was apparently in the small sample size. The number of classified trees in the progenies varied between 43 and 144 in the tests assessed by FFRI and between 16 and 64 in the tests assessed by FFTB. Although no clear connection could be asserted to exist between sample size and the frequencies of kanervas, the effect of classification errors can be significant, because a single tree in small groups can represent several percent.

The effect of the sampling can also be promoted by other causes. The low proportion of kanervas found in some cases may be due to the fact that the tree types are manifested gradually as trees age. The tree types could not be seen fully in the youngest part of the study material because of the small size of the trees. To take an example: the field tests classified by FFTB were 8 years old and showed remarkably smaller proportions of kanervas than the older tests classified by FFRI. Similarly, poor growing conditions together with close spacing can affect penetration by tree types. This can be the cause for the low number of kanervas in test 365/2 (test orchard with close spacing) growing on very poor sandy soil. Young age and poor soil probably interact to reduce penetration by tree types. The experience has been that trees under 1.5 m height are very difficult to classify as to their crown form. It can be done only in extreme cases.

Pollination contamination during the artificial crossing may have reduced the number of kanervas in the offspring: e.g. according to documents on tests 998/1 and 998/2, the time between isolation and pollination had been quite short (only 2–3 days), thus allowing contamination by open pollination. This, together with young age, can explain the low number of kanervas in some openpollinated families of second generation offspring of E 1101 in these two tests (Fig. 2).

However, in several studied progenies the segregation approaching 1:1 was found in progenies of second generation offspring of E 1101 as well. This and results of earlier studies (Velling 1988) indicate that the inheritance of tree form types may be due to the monogenic effect suggested by Kjellberg and Tigertstedt (1985). The segregations found among the second generation offspring indicate that the allele involved is dominant (K) and maybe lethal or closely linked to a lethal allele when a homozygote (KK genotype). In heterozygote state with normal allele it causes the tree form typical of ‘Kanerva pine’ (kanerva, KK genotype). The wild type trees are recessive homozygotes (kk genotype). If kanervas were homozygous (KK), crossings between kanerva and wild should result offspring all kanerva type, which was not supported by results. Crossings between two kanervas (KK genotypes) are needed to facilitate further analysis. If the hypothesis of lethal homozygote is correct, then segregation ratio of kanerva: wild should be found in the progenies, otherwise the segregation ratio 3:1 (see Yázdani and Lebreton 1991).

There was no evidence of maternal (cytoplasmic) effects. The proportions of kanervas were not essentially different whether E 1101 was a maternal or a paternal parent. However, the conclusions concerning the maternal effect must be rather prudent, because the number of maternal progenies studied was limited or consisted mainly of open-pollinated progenies.

The two other groups, wild and intermediate, were quite heterogeneous. The results of classification in these groups possibly were influenced by subjective scoring on the part of the classifiers. The proportions of intermediates varied from 10 to 35 percents in different data sets analysed. It seemed that the variation in the proportion of intermediates affected on the proportion of wilds rather than that of kanervas indicating that the discrimination of intermediates is made on the expense of wilds. However, on combining the intermediates of test 565/2 (test orchard) with the kanervas, the distribution confirmed well with those obtained in tests 998/1 and 998/2, it is possible that the intermediates of test 565/2 were a weak manifestation of kanervas. In tests 998/1 and 998/2 those trees were classified as kanervas. The results indicate that the intermediates are a buffer group, which, at young ages, consists of weak kanervas and later, when kanervas features are fully manifested, of wilds having common features with kanervas. However, for supporting this hypothesis, the tests should be re-measured using a common scoring system and its analysis is needed.

It may be worth to make efforts to search for the existence of the kanerva gene by using DNA techniques. The genetic background of intermediates needs close study, because, if it is different from wilds or kanervas, it can introduce more complex modes of inheritance and several alternative gene models. There is evidence in human and animal genetics that many genetic traits do not exhibit fully penetrant, Mendelian mode of inheritance. These include Mendelian traits with incomplete or age-dependent penetrance (Cepeda et al. 1988) and complex traits determined by one or more genetic loci in combination with environmental effect (Ploughman and Boenke 1989). Thus a further analysis of genotypes involved to the kanerva-trait is needed. A suitable method applied can be a linkage map construction with molecular markers and estimation of phenotypes based on field performance testing. According to Bradshaw and Foster (1992) genetic maps with a high density of markers have been used to locate discrete Mendelian components of quantitatively inherited traits in few crop plants. A similar approach can be used in trees to map economically important quantitative trait loci, such as kanerva trait (Tigertstedt and Velling 1986).

Acknowledgements: We thank Prof. Peter Tigertstedt, Mr. Joumi Mikola and Mr. Martti Lepistö for reading the manuscript and Mr. Erikk Pekkimen for English revision. We also thank Dr. Claire G. Williams and Dr. Tore Skroppa for their reviews and suggestions for improvement.
References


Kärki, L. 1983. Forest tree breeding combines highest timber quality and highest stem wood production per hectare. The Foundation For Forest Tree Breeding in Finland. Information 1. 16 p.


Total of 17 references

Review – Katsaus

Forest dynamics: the simulation of production and decline in Austrian forests

Walter Sekot


The paper deals with the application of forest dynamics. Reference is made to two studies, which have been carried out at a national level. The simulations of forest decline as well as the production of exceedingly thick timber of spruce and fir provide various examples of the major problems of forest simulation and of some possible solutions. It is pointed out that the statistical analysis of empirical data is most important for modelling and it might bring about even more valuable results than the ultimate simulation itself.

Keywords: operations research, forestry, simulation, forests, decline, risk, FDC 61

Authors address: Institute for Forest Economy and Forest Policy, University for Agriculture, Gregor Mendel Strasse 33, A-1180 Vienna, Austria.

Accepted November 10, 1993

Introduction

Mathematical programming and simulation are the most frequently applied techniques of Operations Research (OR) in forestry. The different kinds of programming aim at maximizing an objective function taking into account a given set of restrictions. Anyhow, in many cases there does exist a lack of information as to the structure and the dynamics of the system in question. Therefore, the optimal result of the model will not always prove to be optimal in reality, too. Whenever there is a deficiency of information, the simulation approach might offer a valuable help. In the way of simulation the response of the system to various assumptions is investigated. In fact, establishing a valid simulation model may be regarded as a first step towards mathematical programming. As to the forest system, we have got still to enhance our knowledge and understanding of its dynamics. Therefore, simulation is a most important tool of forest management and scientific research.

An important field of application of forest simulation are investigations at a national level. In the following, the special problems of such a national approach are being discussed, referring to two Austrian studies which have been carried out recently (Sekot 1989, Sekot and Flach 1992).

The first study dealt with possible effects of forest decline as regards stocking volume, current increment and potential felling. The other project investigated stock management, production and yield of exceedingly thick timber. The studies concentrated on spruce, and spruce and fir, respectively. These tree species represent about two thirds of Austria’s forests and are of even greater importance in economic terms. Therefore it was justified to restrict the investigation about forest decline to spruce. The discussion about growing stock, production, marketing and use of exceedingly thick timber concerns spruce and fir only (Senitza 1990). According to the national level of investigation, those studies address mainly the bigger forest estates, the wood processing industry and forest politicians as well.