Association study of MMP8 gene in osteoarthritis

Nakki, Annu

2016-01-02

http://hdl.handle.net/10138/161019
https://doi.org/10.3109/03008207.2015.1099636

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.
Association study of MMP8 gene in osteoarthritis

To link to this article: http://dx.doi.org/10.3109/03008207.2015.1099636

Accepted author version posted online: 17 Nov 2015.
Published online: 17 Nov 2015.

Submit your article to this journal

Article views: 104

View related articles

View Crossmark data
Association study of MMP8 gene in osteoarthritis

Annu Näkki a,b,c,d, Cristina Rodriguez-Fontenla e, Antonio Gonzalez e, Arsi Harilainen f, Päivi Leino-Arjas g, Markku Heliovaara h, Johan G. Eriksson h, Johan G. Eriksson i, Kaj Tallroth i, Tapio Videman j, Jaakko Kaprio a,b,o, Janna Saarela a and Urho M. Kujala a

aInstitute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland; bDepartment of Medical Genetics, University of Helsinki, Helsinki, Finland; cDepartment of Public Health, University of Helsinki, Helsinki, Finland; dPublic Health Genomics Unit, National Institute for Health and Welfare, Helsinki, Finland; eLaboratorio Investigacion 10, Instituto de Investigacion Sanitaria-Hospital Clinico Universitario de Santiago, Santiago de Compostela, Spain; fORTON Orthopedic Hospital, Invalid Foundation, Helsinki, Finland; gDepartment of Epidemiology and Biostatistics, Finnish Institute of Occupational Health, Helsinki, Finland; hNational Institute for Health and Welfare, Helsinki, Finland; iDepartment of Chronic Disease Prevention, The National Institute for Health and Welfare, Helsinki, Finland; jDepartment of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland; kUnit of General Practice, Helsinki University Central Hospital, Helsinki, Finland; lFaculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada; mDepartment of Mental Health, National Institute for Health and Welfare, Helsinki, Finland; nDepartment of Health Sciences, University of Jyväskylä, Jyväskylä, Finland

ABSTRACT

Objectives: Osteoarthritis (OA) is a joint disease common in the elderly. There is a prior functional evidence for different matrix metalloproteinases (MMPs), such as MMP8 and MMP9, having a role in the breakdown of cartilage extracellular matrix in OA. Thus, we analyzed whether the common genetic variants of MMP8 and MMP9 contribute to the risk of OA. Materials and methods: In total, 13 common tagging single-nucleotide polymorphisms (SNPs) were studied in a discovery knee OA cohort of 185 cases and 895 controls. For validation, two knee OA replication cohorts and two hand OA replication cohorts were studied (altogether 1369 OA cases, 4445 controls in the five cohorts). The χ² test for individual study cohorts and Cochran–Mantel–Haenszel test for combined meta-analysis were calculated using Plink. Results: The rs1940475 SNP in MMP8 showed suggestive association in the discovery cohort (OR = 0.721, 95% CI 0.575–0.906; p = 0.005). Other knee and hand OA replication study cohorts showed similar trend for the predisposing allele without reaching statistical significance in independent replication cohorts nor in their meta-analysis (p > 0.05). Meta-analysis of all five hand and knee OA study cohorts yielded a p-value of 0.027 (OR = 0.904, 95% CI 0.826–0.989). Conclusions: Initial analysis of the MMP8 gene showed suggestive association between rs1940475 and knee OA, but the finding did not replicate in other study cohorts, even though the trend for predisposing allele was similar in all five cohorts. MMP8 is a good biological candidate for OA, but our study did not find common variants with significant association in the gene.

Introduction

The osteoarthritis (OA)-predisposing genes identified so far have been able to explain only little of the 39–65% heritability of this joint-destructing disease (1,2). The disease affects the bone, cartilage, and synovium, inflammatory factors playing a role in the process. One characteristic feature of the cartilage degeneration in OA is the breakdown of extracellular matrix by different matrix metalloproteinases (MMPs). Many studies have shown the role of MMPs in OA, MMP-1 and MMP-13 being some of the most relevant in OA (4,5). Tetlow et al. (6) showed that the expression of different cartilage-breaking MMPs of chondrocytes was greater in the superficial zone of cartilage where degenerative changes were more common compared to the deeper zones.

The type I, II, and III collagen-breaking MMP-8 seems to play some role in OA, even though it cannot be considered as the main factor in OA. The level of MMP-8 in the cartilage has shown to be higher in OA patients than in controls (p = 0.0135) (7) and the expression of MMP-8 is significantly increased in the joints of mice that have collagen-induced arthritis compared to healthy mice (8). Besides type II collagen, another component of the cartilage is the type IX collagen stabilizing the collagen network. MMP-9 can break down this collagen and other components in the cartilage and has been shown to be differentially
expressed in OA compared to healthy cartilage. For example, MMP-9 was upregulated in human OA cartilage and synovium compared to controls (7). Similarly, Flannelly et al. (9) found the levels of MMP-9 to be higher in the tibial articular chondrocytes of STR/orf mice that spontaneously generate OA than the control CBA mice, and MMP-9 was immunolocalized in growth cartilage. Also, Freemont et al. (10) have shown that the MMP9 gene is upregulated in deep cartilage layers of human knee OA samples in early disease stages.

Our aim was to investigate if there were common allelic variants in MMP8 and MMP9 genes that associate with knee OA. We hypothesized that the studied variants, or variants in high correlation with them, might have an impact on the structure or activity of the enzymes and thus affect their function by protecting or predisposing the carriers to OA.

Study subjects

The study was approved by the ethics committee of the Helsinki metropolitan hospital region in Finland (11,12) and Ethical Committee for Clinical Research of Galicia in Spain. All individuals gave their written informed consent. We analyzed three knee OA study cohorts and two hand OA cohorts (Table 1).

Finnish knee OA discovery cohort

Our knee OA discovery cohort was composed of 185 knee OA cases of Finnish origin. Of these, 110 were radiologically verified severe (at least grade 3/4 in Kellgren and Lawrance classification), bilateral knee OA cases. Their symptoms were severe enough to fulfill the criteria for knee arthroplasty having pain and walking disability. The symptoms began at a mean age of 52 years (SD 12 years), and the mean age at first arthroplasty was 67 years (SD 8). Study subjects that suffered from RA or had previous severe knee trauma were excluded. Altogether, 28 of the knee OA patients also had physician-diagnosed hand OA. For details, see (11). The other half of the discovery cohort was selected from the population-based Finnish Health 2000 study (n = 8028). Genome-wide SNP array data were available for 2118 cohort members, who had been ascertained for a nested matched case–control study of metabolic syndrome (the Genmets study) (13). Seventy-five (75) of the 2118 individuals were over the age of 50 years and had a clinician-diagnosed probable or definite knee OA and were included in the discovery knee OA case group. In total, 895 Genmets study individuals were over 50 years of age and did not have clinician-diagnosed probable or definite knee or hip OA and were used as controls. Individuals suffering from RA or having an unknown RA status were excluded from the case and control groups (n = 28).

Knee OA replication cohorts

For validation of the initial association, we analyzed one SNP in two independent knee OA replication cohorts. The first replication cohort consisted of 302 clinician-diagnosed knee OA cases and 1700 controls from the Health 2000 study that were not genotyped with the genome-wide SNP array. The cases were selected using the same clinician-diagnosed criteria as in the Finnish knee OA discovery cohort.

The second knee OA replication cohort consisted of 254 knee OA cases and 449 controls of Spanish ancestry. Cases were undergoing knee joint replacement and were included if a rheumatologist considered them to suffer from severe primary OA. Exclusion criteria were inflammatory, infectious, traumatic or congenital joint pathology, and lesions due to crystal deposition or osteonecrosis. Controls were recruited among subjects older than 55 years of age undergoing preoperative work-up for elective surgeries other than joint surgery and who did not show clinical manifestations of OA.

Hand OA replication cohorts

For verification of the finding in another OA type, we used two Finnish hand OA study groups. The first hand
OA replication cohort consisted of 132 Finnish radiologically verified severe (at least grade 3/4 in Kellgren and Lawrance classification), bilateral familial hand OA patients and 21 unaffected family members. Eighty-four (84) of the cases were unrelated. Subjects with rheumatoid arthritis (RA) were excluded (11,14). Of these, 28 individuals were also included in the Finnish knee OA discovery cohort. (The 28 study subjects were included in knee OA study group and excluded from hand OA study group in the combined hand and knee OA meta-analysis utilizing all five study cohorts. Also, the 28 study subjects were excluded from the independent replication meta-analysis with four replication cohorts.) The controls (n = 435) were selected from the Finnish twin cohort (males aged 35–70). One twin from a twin pair not having a clinician-diagnosed OA was included in the control group (11).

The second hand OA replication cohort was part of Finnish Helsinki Birth Cohort Study (15). All study subjects were over 56 years of age. Hand joints of the study subjects were visually evaluated and individuals with Heberden’s nodes in at least one DIP joint were graded as affected (n = 524). Individuals graded as healthy (n = 970) had visually healthy and symptomless finger joints.

Methods
Genotyping
Genotyping of the finnish knee OA discovery study cohort
MMP8 and MMP9 genes were selected to a tag SNP association study based on their suggestive functional significance in OA and an initial candidate gene analysis of 25 genes (99 SNPs) (12) in a subset of the discovery knee OA study set (data not shown). Tag SNPs of the MMP8 and MMP9 genes also present in the genome-wide Illumina HumanHap 610 chip were selected (Illumina, Inc., San Diego, CA).

In total, 13 SNPs in MMP8 and MMP9 were genotyped in the entire Finnish knee OA discovery cohort using two methods. The Sequenom iPLEX Gold assay on the MassARRAY® Platform (Sequenom Inc., San Diego, CA) was used according to the manufacturer’s instructions for genotyping of 110 cases. SNP assays were designed using the MassARRAY™ Assay Design program (Sequenom Inc.) that designed PCR and extension primers and arranged the SNPs in two multiplexes. Each SNP multiplex was validated by genotyping 93 trio samples (i.e., 31 families with two parents and a child). The genotyping was done in 384-well plates with 35 duplicate samples and 8 non-template wells. The genotype data were assessed using the Sequenom Typer Analyzer program with quality control criteria of at least half of the assays in a sample well performing successfully, visually clear genotype clustering, at least 90% success rate for an assay, and 90% success rate for a sample. If the genotype calling, Mendelian inheritance test using the Pedcheck 1.1 program (16), duplicate samples, or non-template wells revealed unreliable SNP assay, the SNP was excluded from the study.

We also had data available for the selected SNPs from the Illumina HumanHap 610 whole-genome SNP chip (Illumina, Inc.) for 75 cases and 895 controls of the Genmets study (13) that were part of the Finnish knee OA discovery cohort. Markers with genotyping success rate of less than 95%, minor allele frequency less than 1%, and Hardy–Weinberg equilibrium less than 1×10^{-6} were excluded. Of the 2440 individuals with the genome-wide data, we excluded those with genotyping success rate less than 95%, high genomic heterozygosity indicating putative sample contamination, gender discrepancies, or close relatedness with another individual ($\pi^2 > 0.1$) (n = 322). Altogether, 2118 individuals and 555,388 markers passed the quality control.

Genotyping of the knee OA replication cohorts
One SNP was genotyped in replication cohorts. The Finnish knee OA replication study cohort was genotyped using the Sequenom system (Sequenom Inc.) as described above.

Spanish knee OA replication study cohort was genotyped using single-base extension reactions with the SNaPshot Multiplex Kit (Applied Biosystems, Foster City, CA, USA). Genotypes were obtained in the Abi-Prism 3130xl Genetic Analyzer (Applied Biosystems) with a 98.4% call rate.

Genotyping of the hand OA replication cohorts
Finnish hand OA replication cohort 1 was genotyped using homogeneous MassEXTEND™ (hME) technology by the Sequenom MassARRAY® platform (Sequenom Inc.) as recommended by the manufacturer with additional quality control. Genotyping assays were designed using the SpectroDESIGNER 1.3 program (Sequenom Inc.) that designed PCR and extension primers and arranged the SNPs in to multiplexes of one to five SNPs. Each SNP multiplex was validated by genotyping 81 trio samples (i.e., 27 families with two parents and a child) to control for Mendelian incompatibilities using Pedcheck 1.1 program (16). The genotyping was done in 384-well plates with eight duplicate samples and
eight non-template wells. If either automated or manual genotype calling using the Sequenom Typer Analyzer program (Sequenom Inc.), Mendelian inheritance test, duplicate samples, or non-template wells revealed unreliable SNP assay, the SNP was excluded from the study. Further, only SNPs with call rate of over 90% were included.

Finnish hand OA replication cohort 2 was genotyped using the Illumina HumanHap 610 chip (Illumina, Inc.) as described above.

Data analyses

First, the Haploview program (17) was used to measure the linkage disequilibrium (LD) structure of the studied genes in the discovery set controls as \(r^2 \) measure. Hardy–Weinberg equilibrium for each SNP was assessed using Haploview (17). The SNPSpD method was used to assess the \(p \)-value threshold for 5% significance, considering the LD structure of the studied SNPs. This method utilizes the LD structure of the studied region, and markers in strong LD are considered as one test (http://gump.qimr.edu.au/general/daleN/SNPSpD/) (18,19).

For unrelated individuals, the \(\chi^2 \) association analysis, meta-analysis (Cochran–Mantel–Haenszel), and heterogeneity between study cohorts in the meta-analysis (\(I^2 \) heterogeneity index, Cochran Q) were calculated using the Plink program v1.07 (20) (http://pngu.mgh.harvard.edu/purcell/plink/). For the combined family and case–control setting of hand OA association analysis (Finnish hand OA replication cohort 1), the Pseudomarker program was used. The Pseudomarker program utilizes combined data of families and singletons and calculates the association with the presence of linkage (21,22).

Results

Altogether, 13 SNPs were studied in the Finnish knee OA discovery study cohort. The SNPs covered 62% of the common variation in the MMP8 gene (±5 kb) and 67% in the MMP9 gene (±5 kb) according to the Tagger program (http://www.broadinstitute.org/mpg/tagger/) (23). Maximum \(r^2 \) correlation of 80% between the markers and allele frequency threshold of 10% was used. Reference population was HapMap CEU: Utah residents with ancestry from northern and western Europe; phased HapMap Release 21 (24). The LD structures of the studied genes in discovery cohort controls are shown in Figure 1. Based on the SNPSpD method (18,19) the level of 5% significance was reached with a \(p \)-value of 0.0057 corresponding to the effective number of nine SNPs. The most significant association was further analyzed in independent replication cohorts of knee OA and hand OA.

Two SNPs, rs1940475 and rs3765620, showed an association with knee OA in the Finnish knee OA discovery cohort (\(p = 0.005 \) and \(p = 0.004 \), respectively) (Table 2). The two SNPs were in LD with each other (\(r^2 82\% \)). Due to the high correlation between the SNPs, only the rs1940475 marker was further analyzed in two independent knee OA and in two independent hand OA replication cohorts. In all four study cohorts, the allele frequency difference between cases and controls was in the same direction as observed in the initial discovery study set of 185 cases and 895 controls. However, the initial finding did not replicate statistically significantly in any of the four independent replication study sets of knee and hand OA (\(p > 0.05 \)) nor in a meta-analysis combing the four replication study sets (\(p = 0.236 \)). When including the discovery study set in the meta-analysis,
The results of association analysis in the Finnish knee OA discovery cohort.

<table>
<thead>
<tr>
<th>Chr</th>
<th>Gene</th>
<th>SNP</th>
<th>Location</th>
<th>Al.</th>
<th>Freq ctrls</th>
<th>Freq cases</th>
<th>χ^2</th>
<th>p-value</th>
<th>OR</th>
<th>L95</th>
<th>U95</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>MMP9</td>
<td>rs3933239</td>
<td>44062075</td>
<td>A</td>
<td>0.465</td>
<td>0.473</td>
<td>0.803</td>
<td>1.029</td>
<td>0.821</td>
<td>1.290</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>MMP9</td>
<td>rs4810482</td>
<td>44067957</td>
<td>C</td>
<td>0.396</td>
<td>0.398</td>
<td>0.936</td>
<td>1.009</td>
<td>0.802</td>
<td>1.271</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>MMP9</td>
<td>rs3918278</td>
<td>44069061</td>
<td>A</td>
<td>0.050</td>
<td>0.038</td>
<td>0.328</td>
<td>0.751</td>
<td>0.423</td>
<td>1.335</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>MMP9</td>
<td>rs17576</td>
<td>44073632</td>
<td>G</td>
<td>0.390</td>
<td>0.392</td>
<td>0.945</td>
<td>1.008</td>
<td>0.799</td>
<td>1.272</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>MMP9</td>
<td>rs3918261</td>
<td>44076999</td>
<td>G</td>
<td>0.169</td>
<td>0.175</td>
<td>0.792</td>
<td>1.041</td>
<td>0.772</td>
<td>1.403</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>MMP8</td>
<td>rs12274992</td>
<td>102084124</td>
<td>T</td>
<td>0.051</td>
<td>0.074</td>
<td>0.088</td>
<td>1.470</td>
<td>0.942</td>
<td>2.293</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>MMP8</td>
<td>rs3740938</td>
<td>102092227</td>
<td>A</td>
<td>0.074</td>
<td>0.068</td>
<td>0.688</td>
<td>0.913</td>
<td>0.587</td>
<td>1.422</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>MMP8</td>
<td>rs2012390</td>
<td>102095987</td>
<td>C</td>
<td>0.205</td>
<td>0.186</td>
<td>0.417</td>
<td>0.888</td>
<td>0.666</td>
<td>1.183</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>MMP8</td>
<td>rs1940475</td>
<td>10208458</td>
<td>T</td>
<td>0.493</td>
<td>0.413</td>
<td>0.005</td>
<td>0.721</td>
<td>0.575</td>
<td>0.906</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>MMP8</td>
<td>rs7123662</td>
<td>102092327</td>
<td>C</td>
<td>0.129</td>
<td>0.159</td>
<td>0.132</td>
<td>1.271</td>
<td>0.930</td>
<td>1.738</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>MMP8</td>
<td>rs3765620</td>
<td>102100702</td>
<td>G</td>
<td>0.446</td>
<td>0.363</td>
<td>0.004</td>
<td>0.710</td>
<td>0.562</td>
<td>0.895</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>MMP8</td>
<td>rs7943404</td>
<td>102103785</td>
<td>A</td>
<td>0.378</td>
<td>0.431</td>
<td>0.060</td>
<td>1.245</td>
<td>0.990</td>
<td>1.565</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>MMP8</td>
<td>rs10895354</td>
<td>102104264</td>
<td>C</td>
<td>0.129</td>
<td>0.159</td>
<td>0.125</td>
<td>1.277</td>
<td>0.934</td>
<td>1.746</td>
<td></td>
</tr>
</tbody>
</table>

Chr = chromosome; Location = genomic location in base pairs; Al. = minor allele for which the ORs are given; Freq ctrls = allele frequency in controls; Freq cases = allele frequency in cases; OR = odds ratio; L95 and U95 = 95% confidence interval; *Genotyped also in other study cohorts (Table 3); p-value in the Finnish hand OA replication cohort $2 = 0.741$ based on the GWAS data; OR $= 0.975$, 95% CI 0.837–1.135.

Discussion

Altogether, 13 SNPs in the MMP8 and MMP9 genes were studied in knee OA, and a statistically significant association with two SNPs (rs1940475 and rs3765620) in high LD with each other in MMP8 was observed ($p < 0.0057$). One of the SNPs rs1940475 was further analyzed in four independent replication cohorts, but the finding did not replicate in any of the knee and hand OA cohorts independently nor in a combined meta-analysis of the independent cohorts, although the trend for the C-allele being more common in OA cases was similar in all five study cohorts.

The power to detect the level of association seen for rs1940475 was 50% in the Finnish knee OA discovery cohort. Roughly 500 cases would have been needed for 80% power of detecting the association with 5% confidence level corresponding 95% CI. When assuming similar allele frequencies for the follow-up cohorts as in the discovery cohort, the power to detect association in the individual follow-up cohorts varied between 30 and 80%. The power was 99.9% in the meta-analysis of the four independent replication cohorts. However, the effect size in the Finnish knee OA discovery cohort has probably been overestimated (25). This is in accordance with previous publications showing that...
effect sizes typically seen in complex disease mapping
require thousands of study samples for detection of
association or for excluding the role of a single variant
in a disease (26).

Both originally associated SNPs are non-synonymous.
The rs1940475 changes the positively charged lysine to
negatively charged glutamic acid (Lys87 to Glu) and
the rs3765620 changes the polar threonine to nonpolar
isoleucine (Thr32 to Ile). Both amino acid changes
were predicted to be tolerated according to the SIFT
program (27,28).

We did not observe significant evidence of association
to the studied common variants in the
MMP8 gene. There is some functional evidence for
the role of MMP-8 in OA, making it an interesting
study target, even though it is not the main MMP
released in OA. MMP-8 can cleave the major collagen
of the cartilage, collagen type II, and also collagens
type I, III, other ECM compounds, and non-structural
molecules as well and affect neutrophil migration (29).
MMP-8 is expressed by neutrophils (30), chondrocytes
(31–33) especially mature chondrocytes (34),
and chondrocytes following a proinflammatory stimulus
(35). Billinghurst et al. (3) showed that the increased
expression of MMP-8 is associated with increased
 cleavage of type II collagen in human osteoarthritic
cartilage. The MMP-8 mRNA has been shown to be
absent from normal cartilage but present in naturally
occurring (7,36,37) and in IL-1β-induced OA cartilage
similarly to the MMP-8 protein (6,7). MMP-8 mRNA
levels were higher in chondrocytes obtained from the
surrounding areas of OA lesion when compared with
those seen in chondrocytes from other areas of the
cartilage (38). Also the MMP-8 protein levels were
higher in the superificial zone of OA cartilage and
they were especially associated with areas suffering
from matrix depletion, fibrillations, chondrocyte
clusters, and loss of metachromasia. Protein levels
were lower or absent from the deep zone and showed
normal hyaline cartilage and chondrocyte morphology
(6). Moreover, MMP-8 inhibition has shown promising
results. Tetracycline (39), doxycycline (38), and Ro
32-3555 (an orally active collagenase selective inhibitor,
Trocade®) (40) seem to inhibit neutrophil MMP-8
activity in vitro. Doxycycline has been tested success-
fully in reactive arthritis patients (41) and also Ro
32-3555 leads to significant protection of cartilage,
inhibition of osteophyte formation, and reduction in
joint space narrowing in the STR/Ort mouse model of
OA (42).

Previous genome-wide association studies (GWASs)
have revealed genome-wide significant ($p < 5 \times 10^{-8}$)
findings in OA. Many of the findings are performed in
large study samples, but as is typical in complex diseases,
the effect sizes have been small and fine-mapping
is required to identify the causal variants. The
previous GWAS findings in OA include extracellular
signaling molecule GDF5 (growth differentiation fac-
tor 5) (43,44), DVWA (von Willebrand factor) (45),
7q22 region with GPR22 (G-protein coupled receptor
22) (46,47), a skeletal and pain-related gene MCF2L
(MCF.2 cell line derived transforming sequence-like,
encoding the rho-specific guanine nucleotide exchange
factor) (48), the FTO gene (fat mass and obesity asso-
ciated) (48), membrane protein ASTN2 (astrotactin 2)
(49), a wnt signaling gene DOT1L (DOT1-like, histone
H3 methyltransferase) (50), nuclear receptor activator
gene NCOA3 (nuclear receptor coactivator 3) (51), and
HLA class II/III region (52).

The arcOGEN Consortium (49) published the details
of their top 129 SNP findings ($p < 10^{-5}$) in OA with
7410 OA cases and 11009 controls, but the MMP8 and
MMP9 genes were not among the published regions
nor in the genome-wide significant regions of other
GWASs mentioned above. However, the MMP9 gene
is located in the chromosome 20q13.12 locus together
with the NCOA3 gene associating with hip OA in the
previous GWAS ($p = 7.9 \times 10^{-9}$, OR = 1.28, 95% CI
1.18–1.39, 11,277 hip OA cases, 78,000 participants)
(51), but the two genes are more than 1 Mb apart,
thus the negative finding of the current study is likely
an independent signal from the association finding of
the hip OA GWAS study in another study population.

Conclusions
A suggestive association in a discovery knee OA study
cohort was observed with two common SNPs,
rs1940475 and rs3765620, in the MMP8 gene, which
has previously been shown to have a functional role
in OA. However, the finding was not replicated with
statistical significance in follow-up analyses of hand
and knee OA.

Acknowledgments
We would like to warmly thank the study subjects for their
participation in the present study. Minna Suvela is thanked
for her technical expertise in the genotyping process. Michele
C. Battié, Heidi Lönnberg, and Aki Salo are thanked for their
contribution.

Funding
The financial supporters of the study are thanked for making
the present study possible to conduct: TBDP National
Doctoral Programme of Musculoskeletal Disorders and
Biomaterials (formerly known as TBGS National Graduate School of Musculoskeletal Disorders and Biomaterials, and TULES Graduate School), Finnish Cultural Foundation, University of Helsinki foundation, Biomedicum Helsinki foundation, Otto A. Malm foundation, Emil Aaltonen Foundation. The Spanish study was supported by the Xunta de Galicia and by the Fondo de Investigacion Sanitaria of the Instituto de Salud Carlos III (Spain) grant 09/01431, which was partially funded by the European Union Fondo Europeo de Desarrollo Regional Program. The Finnish Twin Cohort has been supported by the Academy of Finland Centre of Excellence in Complex Disease Genetics (grants 213506 and 129680).

Declaration of interest
The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the article.

ORCID
Annu Näkki http://orcid.org/0000-0002-6436-0756

References
20. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PL, Daly MJ, Sham PC. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007;81:559–75.

