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Summary

Of the three papers, [A,B,C], comprising this dissertation, the first is on the
connection of quasiconformal maps and the quasihyperbolic metric, while the re-
maining two concern notions of homotopy classes of Sobolev type maps between
metric spaces, comparison with the manifold case, and the existence of minimizers
of a p-energy in these homotopy classes.

The unifying theme of all three papers is analysis on metric spaces. That is, all
three papers deal with questions concerning maps between metric spaces. The par-
ticular type of metric spaces involved is generally referred to as PI-spaces. These
satisfy conditions allowing one to extend a large part of classical first order calcu-
lus, such as the theory of Sobolev maps [69], and á posteriori, differentiability of
Lipschitz functions [14].

In the first part of the introduction we give a very brief historical background
and summarise what have come to be the standard assumptions in analysis on
metric spaces – Poincaré inequalities and doubling measures – and discuss some
of their implications. The second part concerns quasiconformal maps. It explains
the setting and results of the first publication [A]. The last part is devoted to the
last two articles [B,C] and in it we discuss the background and describe the main
question of minimizing a p-energy functional in a homotopy class.
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1. Analysis on metric spaces

Finnish mathematics has a long tradition in geometric function theory, starting
from Lindelöf, Nevanlinna and continuing with Ahlfors. Geometric function theory
studies analytic, or more generally, meromorphic functions in the complex plane.
Subsequent generations have followed the natural path into quasiconformal and
quasiregular mappings, a generalization of conformal and analytic functions in the
complex plane, creating a rich tradition in the field what is now known as geometric
analysis.

Although originally defined by Grötzsch [31] and studied by Ahlfors, Lehto, Vir-
tanen, Lavrentiev and many others in the complex plane [55, 2, 56], quasiconformal
and quasiregular maps turned out to have a rich theory in domains of n-space. (See
for instance [70, 65].)

In higher dimensions the theory of quasiconformal maps was initiated by Väisälä
and Gehring, [26] and further developed by Väisälä, Rickman, Martio, Gehring
[58, 59, 60, 23, 24] to mention only a few. See also [64] for a treatment of both
quasiconformal and quasiregular maps. In [25] Gehring and Osgood discovered that
there is a connection between quasiconformal maps and distortion of the quasihy-
perbolic metric. This connection is the subject of [A] and will be discussed in more
detail in section 2.

Subsequently quasiconformal maps have taken life between manifolds and, coming
to the turn of the millenium, in more general metric spaces. While the analytic defi-
nition of quasiconformality readily generalizes to manifolds the metric case requires
new techniques to make sense of the concepts needed in the definition.

Two notable pioneers in this respect were Heinonen and Koskela who generalized
the notion of (the norm of) the gradient [43] and gave rise to the definition of the
Newtonian spaces [69] over a metric measure space – function spaces of Sobolev-
type functions.

Given an almost everywhere real valued function u : X → R from a metric measure
space (X, d, µ), a nonnegative Borel function ρ : X → [0,∞] is an upper gradient
of u if for any rectifiable curve γ : [a, b]→ X the inequality

|u(γ(b))− u(γ(a))| ≤
∫
γ

ρ(UG)

is valid. If either of the numbers u(γ(b)), u(γ(a)) is +∞ or −∞ then the lefthand
side of (UG) is interpreted to be infinity.

Besides the theory of quasiconformal and quasiregular maps there were other factors
motivating the study of Sobolev type function spaces on nonriemannian spaces.
Slightly earlier Semmes [68] studied how Poincaré inequalities and existence of
“thick” families of curves connecting any two points are related. His ideas shed
light on the geometry of such spaces.

Among other motivators were subriemannian geometry, analysis on fractals,
Sobolev spaces for Hörmander vector fields, Muckenhoupt weights and variational
problems with respect to different underlying measures [53, 62, 57, 29, 39, 76, 40,
6, 46]. The latter subject particularly is connected to p-harmonic functions. Yet
another strong influence is the connection between analysis on metric spaces and
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geometric group theory, [11, 28, 27, 30, 52, 7]. This topic will be briefly revisited
in section 3.

From the beginning it was clear that Poincaré inequalities play an important role
in the theory of Sobolev spaces. For quasiconformal maps Heinonen and Koskela
required the spaces to have an Ahlfors Q-regular measure (Q > 1) while Hajłasz’s
embedding theorems [32] essentially rely on the doubling property of the measure.

Today Poincaré inequalities and doubling measures have become the standard
assumptions on analysis on metric spaces. Spaces satisfying these are very general,
encompassing the Euclidean as well as many Riemannian manifolds and subrieman-
nian spaces, yet a large part of first order calculus is available in them.

A Borel regular measure µ on a metric space X is said to be doubling if the measure
of any open ball is positive and finite and there is a constant C <∞ so that

µ(B(x, 2r)) ≤ Cµ(B(x, r))(D)

for every ball B(x, r) ⊂ X.

A metric measure space (X, d, µ) is said to support a weak (1, p)-Poincaré inequality,
1 ≤ p <∞ if there are constants C > 0 and λ ≥ 1 so that

−
∫
B(x,r)

|u− uB(x,r)|dµ ≤ Cr

(
−
∫
B(x,λr)

gpdµ

)1/p

(p-PI)

for every ball B(x, r), every locally integrable function u and any upper gradient g
of u.

1.1. The Poincaré inequality and short paths. Nowadays an extensive litera-
ture exists exploring the connections of Poincaré inequalities to modulus estimates
of path families [45, 38, 68, 51]. The p-modulus of a path family is a potential
theoretic concept, introduced originally by Beurling and Ahlfors [1] for p = 2 in
their study of conformal maps.

Given a family of (locally) rectifiable paths Γ in a metric measure space (X, d, ν),
and a number p ≥ 1, the p-modulus of Γ is defined to be the quantity

Modp(Γ; ν) = inf

{∫
Y

ρpdν : ρ nonnegative Borel,
∫
γ

ρ ≥ 1 ∀ γ ∈ Γ

}
.(M)

If there is no ambiguity on the underlying measure ν it is customary to drop it
from the notation and denote by Modp(Γ) the modulus Modp(Γ; ν) of Γ. Modulus
estimates provide a tool for establishing the existence of curves in a metric space
since Modp(Γ) > 0 implies, in particular, that Γ must be a nonempty collection.

More quantitatively, modulus estimates can be used to express the fact that a
space admits a Poincaré inequality. The following characterization of the (1, p)-
Poincaré inequality, due to Keith, quantifies the idea of Semmes on the existence
of “thick” curve families in the metric setting.

Theorem. ([51, Theorem 2]) Let (X, d) be a complete metric space with a doubling
measure µ. Then (X, d, µ) admits a weak (1, p)-Poincaré inequality, 1 ≤ p <∞, if
and only if there is a constant C so that for all x, y ∈ X the modulus estimate

d(x, y)1−p ≤ C Modp(Γxy;µCxy)(S)
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holds.

Here Γxy is the family of rectifiable paths joining x and y in X, and µCxy is the
measure given by∫

X

fdµCxy =

∫
BC

xy

f(z)

[
d(x, z)

µ(B(x, d(x, z)))
+

d(y, z)

µ(B(y, d(y, z)))

]
dµ(z), where

BCxy = B(x,Cd(x, y)) ∪B(y, Cd(x, y)).

To illustrate how one can obtain short paths from such modulus estimates we
sketch the proof of the following statement. The statement represents a typical
phenomenon in PI-spaces and was known and proved by many people in the case
E = ∅; it demonstrates the philosophy of Semmes – that PI-spaces enjoy good
connectivity properties, quantitatively.

Theorem. Let (X, d, µ) be a complete metric space with a doubling measure sup-
porting a weak (1, p)-Poincaré inequality, and suppose E ⊂ X is a set with Capp(E) =
0. Then X \ E is quasiconvex, with quasiconvexity constant depending only on the
data of X, and in particular not on E.

Recall that the p-capacity of a set A ⊂ X is given by

Capp(A) = inf

{∫
X

(|u|p + gp)dµ : χA ≤ u, g an upper gradient of u
}
.

Key to the proof is the maximal function estimate∫
X

ρpdµCxy ≤ Cd(x, y)[Mρp(x) +Mρp(y)],(E)

whereMf is the maximal function of f ∈ L1
loc. This can be proven using standard

methods (see for instance [38, pp.70-72]).

Proof of Theorem. Let E ⊂ X be a zero p-capacity set, and fix x, y ∈ X \E. Recall
that the path family

Γ0 = {γ : γ−1(E) 6= ∅}
of nonconstant curves which meet E has zero p-modulus, [5, Proposition 1.48].
Thus there is a p-integrable nonnegative Borel function ρ such that

∫
γ
ρ = ∞ for

all γ ∈ Γ0.

Step 1. We show first that, for all z, w /∈ {Mρp = ∞} =: N , there is a curve
γ ∈ Γxy \ Γ0 with

`(γ) ≤ Ad(z, w),

where A depends only on the data;
Indeed, using estimate (E) we see that Modp(Γxy ∩ Γ0;µCxy) = 0. Now if

`(γ) > Ad(x, y) for all γ ∈ Γxy \ Γ0 then the constant function g = 1/(Ad(x, y)) is
admissible for Γxy \ Γ0. Using (S) and estimate (E) we obtain the estimate

d(x, y)1−p/C ≤ Modp(Γxy;µCxy) = Modp(Γxy \ Γ0;µCxy) ≤ Cd(x, y)

Apd(x, y)p
.
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Step 2. Applying Step 1 we find points x1 ∈ B(x, d(x, y))\N , y1 ∈ B(y, d(x, y))\N
and a curve γ1 ∈ Γx1y1 \ ΓE of length

`(γ1) ≤ Ad(x1, y1) ≤ 3Ad(x, y).

Next we concentrate on joining x1 to x. Proceeding by induction we may, for each
k ≥ 2, find a point xk ∈ B(x, 2−1d(x, y)) \ N and a curve γk ∈ Γxk−1xx \ ΓE of
length

`(γk) ≤ Ad(xk−1, xk) < 2−k+2Ad(x, y).

Step 3. A standard concatenation argument yields a curve α joining x1 and x now
of length

`(α) ≤
∑
k≥2

`(γk) ≤ 4Ad(x, y)

and, analogously, a curve β joining y1 and y with

`(β) ≤ 4Ad(x, y).

Thus
γ := α−1γ1β

is a curve joining x and y of length

`(γ) ≤ 11Ad(x, y).

Since all of the curves avoid E it follows that γ avoids E. We have constructed a
curve γ joining x and y in X \ E of length comparable to d(x, y), and this finishes
the proof. �

1.2. Newtonian spaces. Poincaré inequalities, and especially nonsmooth analy-
sis, gave rise to a theory of Sobolev-type function spaces on metric spaces – in
fact many. The first definition of Sobolev space defined for metric measure spaces,
nowadays called Hajłasz space, was given by Hajłasz [32]. In addition to this there
were spaces defined by Cheeger, [14], and Shanmugalingam, [69]. The survey pa-
per [33] gives an extensive review of some of the many existing notions of Sobolev
spaces and their relations.

Among these the Newtonian space N1,p(X) defined by Shanmugalingam [69]
through upper gradients came to be the background for all the papers in this thesis.

Given a metric measure space (X, d, µ) a measurable function u : X → R is called a
Newtonian function if it is p-integrable and possesses a p-integrable upper gradient
g. A seminorm on the class Ñ1,p(X) of Newtonian maps is given by

‖u‖1,p = (‖u‖pp + inf ‖g‖pp)1/p,

where the infimum is taken over all upper gradients of u. The Newtonian space
N1,p(X) is defined to be the quotient

N1,p(X) = Ñ1,p(X)/ ∼,

where the equivalence relation is given by u ∼ v iff ‖u − v‖1,p = 0. Note that
this equivalence relation is stricter than the Lp-equivalence, i.e. agreeing almost
everywhere. In fact it turns out that u ∼ v if and only if

µ({u 6= v}) = Capp({u 6= v}) = 0.
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A Newtonian function u ∈ N1,p(X) also possesses a minimal p-weak upper gradient
gu ∈ Lp(X), i.e. a nonnegative p-integrable function gu such that

(1) (UG) is satisfied for all curves except for a family Γ0 of zero p-modulus,
and

(2) gu ≤ g almost everywhere for any locally integrable upper gradient g of u.
From the point of view of this thesis it is important to consider Newtonian

spaces with values in a Banach space, since this provides the standard way to
define Newtonian maps with values in a metric spaces. Another approach was
taken by Ohta [61] who defined Sobolev maps into metric spaces directly, without
embeddings into a Banach space. See [44, Proposition 7.1.38] for more details on
the relation between the two approaches. Their definition is similar, one simply
replaces R by a given Banach space V . For Poincaré spaces the (Banach valued)
Newtonian space has basically all of the nice properties the classical Sobolev space
has. They are reflexive when 1 < p < ∞ [14], the local Sobolev, Nirenberg and
Morrey embeddings hold [33, 5, 44] and, importantly, Newtonian maps (on locally
complete Poincaré spaces) are p-quasicontinuous. That is, for every ε > 0 there
is an open set E ⊂ X with! Capp(E) < ε such that the restriction u|X\E is
continuous.

This latter fact forms the basis of the notion of p-quasihomotopy and thus of the
articles [B,C]. Some excellent textbooks on the subject include [44, 5, 38] as well as
the survey paper [33].

2. Quasiconformal maps

A homeomorphic map f : X → Y between metric spaces X and Y is called H-
quasiconformal if

Hf (x) = lim sup
r→0

L(x, r)

l(x, r)
≤ H for all x ∈ X,(QC)

where

L(x, r) = max{d(f(x), f(y)) : d(x, y) ≤ r},
l(x, r) = min{d(f(x), f(y)) : d(x, y) ≥ r}.

Classically, a homeomorphism f ∈W 1,n
loc (Ω,Ω′) between Euclidean domains Ω,Ω′ ⊂

Rn is said to be K-quasiconformal if the distortion inequality

‖Df‖n ≤ KJf(QCn)

is satisfied almost everywhere in Ω. The equivalence of these definitions for Eu-
clidean domains was proven by Gehring [23] in two dimensions and by Gehring and
Väisälä [26] for n ≥ 2. Condition (QC) is often referred to as the metric definition
while (QCn) is known as the analytic definition for quasiconformality. See [70] for
a detailed discussion.

Quasiconformal maps between domains in Rn enjoy some “local-to-global” proper-
ties. For example they are locally quasisymmetric, [71]. This means, intuitively,
that the infinitesimal information given by (QC) extends to quantitative control
on the way the map distorts a neighbourhood of each point. This point is im-
portant as we shall see: a quantitative version of this fact, known as the egg yolk
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principle can be used to study the distortion of the quasihyperbolic metric under
a quasiconformal map.

A map f : X → Y between metric spaces is said to be η-quasisymmetric, for an
increasing function η : [0,∞) → [0,∞) with η(0) = 0, if for any triple of points
x, a, b ∈ X the estimate

d(f(x), f(a))

d(f(x), f(b))
≤ η

(
d(x, a)

d(x, b)

)
(QS)

is valid (assuming x 6= b). A map f : X → Y is quasisymmetric if it is η-
quasisymmetric for some η.

The pioneering work of Heinonen and Koskela [38], see also [41, 42, 43], gives an
extension of this local-to-global principle into the setting of metric spaces. For
this purpose a class of nonsmooth spaces was introduced in [43] that would allow
a quasiconformal theory. This class now goes by the name of spaces of locally
Q-bounded geometry.

2.1. Spaces of Q-bounded geometry. A locally compact metric measure space
(X, d, µ) has Q-bounded geometry, Q > 1 if
(AR) The measure is Ahlfors Q-regular, i.e. there is a number 0 < C < ∞ so

that

rQ/C ≤ µ(B(x, r)) ≤ CrQ, 0 ≤ r < diamX, x ∈ X

and
Q-PI it satisfies the weak (1, Q)-Poincaré inequality, i.e. the condition (p-PI)

with p = Q.

Spaces of Q-bounded geometry already encompass a large subclass of Riemannian
manifolds. The localization of this notion, spaces of locally Q-bounded geometry,
covers all Riemannian manifolds as well as many nonriemannian examples of inter-
est, such as Carnot groups. Heinonen, Koskela, Shanmugalingam and Tyson proved
the equivalence of the different characterizations of quasiconformal maps. In this
context they proved the following theorem.

Theorem. ([45, Theorem 9.8]) Let (X,µ) and (Y, ν) be spaces of locally Q-bounded
geometry and f : X → Y a homeomorphism. Then the following conditions are
equivalent.

(1) f is H-quasiconformal;
(2) f is locally η-quasisymmetric;
(3) f ∈ N1,Q

loc (X;Y ) and Lip f(x)Q ≤ CJf (x) holds for almost every x ∈ X;
(4) The relation

(2.1)
1

K
ModQ Γ ≤ ModQ fΓ ≤ K ModQ Γ

holds for each family Γ of curves in X.
The theorem is quantitative in that H, K, C, and η depend only on each other, and
the data of X and Y .
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This can be seen as a geometric application of the Poincaré inequality. In fact
the Q-Ahlfors regularity of the measure and a (1, Q)-Poincaré inequality imply the
Loewner condition which is a quantitative estimate of the modulus of path families
connecting two given compact continua in terms of the distance and diameter of
said continua. The paper of Heinonen and Koskela [43] originally discusses the
theory of quasiconformal maps on metric spaces in terms of the Loewner condition.

2.2. Distortion estimates for the quasihyperbolic metric. After extending
the basic theory of quasiconformal maps to metric spaces it is natural to ask which
of the Euclidean (or Riemannian) results transfer to metric spaces. The first pub-
lication [A] of the thesis deals with this question in case of the following distortion
estimate for the quasihyperbolic distance, due to Gehring and Osgood [25]. Recall
that the quasihyperbolic distance in a rectifiably connected proper domain Ω of a
metric space X is given by

kΩ(x, y) = inf
γ

∫
γ

ds

dist(z,X \ Ω)
for x, y ∈ Ω,

where the infimum is taken over all rectifiable curves joining x and y in Ω.

Let Ω,Ω′ ⊂ Rn be proper domains and f : Ω→ Ω′ a K-quasiconformal homeomor-
phism. Denote by kΩ and kΩ′ the quasihyperbolic metric of Ω and Ω′, respectively.
The theorem of Gehring and Osgood states that there exists a constant C < ∞
depending only on n and K so that

kΩ′(f(x), f(y)) ≤ C max{kΩ(x, y), kΩ(x, y)α} for x, y ∈ Ω(QH)

where α = K1/(1−n). Anderson, Vamanamurthy and Vuorinen proved in [4] that
the dependence of the constant C on n can be removed.

The fact that Rn is an unbounded space of n-bounded geometry plays a crucial role
in the validity of the result. Even for proper domains between manifolds the result
need not be true; this is easily seen by taking Ω = Ω′ = S2 \ {e3}, where e1, e2, e3

are the standard orthogonal unit vectors spanning R3. If x ∈ S2 \ {e3} is a point
then there is a conformal map f = fx : S2 \ {e3} → S2 \ {e3} fixing e1 and sending
−e1 to x. However the lefthand side of (QH),

kΩ′(f(e1), f(−e1)) = kS2\{e3}(e1, x),

increases without bound as x is moved closer to e3 while the quasihyperbolic dis-
tance,

kΩ(e1,−e1),

remains constant.

The proof of the theorem of Gehring and Osgood result is based on two ingredients:
the so called egg yolk principle and Schwartz’s lemma for quasiconformal maps (see
[38, 4]). In the case of metric spaces of Q-bounded geometry we do not, in general,
have an egg yolk principle. To obtain one, one needs to make an extra assumption
on the proper domain on the target side preventing situations like the example
above. The additional assumption turns out to be precisely that ∂Ω′ contains at
least two points, if Y is bounded. The key lemma in [A] is the following.
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Lemma. ([A, Lemma 5.2]) Suppose f : Ω → Ω′ is K-qc. Then for each x ∈ Ω
the map f restricted to B(x,dist(x,X \ Ω))/(4λ + 1)), where λ is as in (1, Q),
is quasisymmetric. The quasisymmetry data depends only on K,Q, and the data
associated with X and Y and, if Y is bounded, the value of diam(Ω′)/diam(∂Ω′).

With the egg yolk principle at hand Schwartz’s lemma is easy to replace with stan-
dard estimates for quasisymmetric maps. Doing this, however, sacrifices the sharp-
ness of the exponent α in the claim. Thus the result obtained in [A] is quantitative
in the data but not sharp.

Theorem 1. ([A, Theorem 1.1]) Let f : Ω → Ω′ be a K-quasiconformal homeo-
morphism between two proper domains Ω ⊂ X and Ω′ ⊂ Y of spaces X and Y of
globally Q-bounded geometry (Q > 1) and suppose that either Y is unbounded, or
∂Ω′ contains at least two points. Then there are constants c > 0 and 0 < α < 1,
depending only on K, the data of the spaces X and Y and in case Y is bounded,
the quantity

diam(Ω′)

diam(∂Ω′)
,

such that

kΩ′(f(x), f(y)) ≤ cmax{kΩ(x, y)α, kΩ(x, y)}

for any x, y ∈ Ω. Here kΩ denotes the quasihyperbolic metric of Ω.

A notable feature of Theorem 1 is the asymmetry of the condition; there is no a
priori requirement on Ω. In fact the condition that ∂Ω′ contains at least two points
is a quasiconformal invariant, but not quantitatively so. That is to say, the quantity

diam(Ω)

diam(∂Ω)

does not depend on
diam(Ω′)

diam(∂Ω′)
.

3. p-energy minimizing maps

One might say that p-energy minimizing maps, in contrast to quasiconformal
maps, are not topological in nature. That is to say, locally energy minimizing maps
need not preserve any topological properties, let alone be homeomorphisms. Yet
questions on the topology of manifolds have been central in the development of the
theory of p-energy minimizing maps. The homotopy groups of manifolds, informa-
tion of groups acting on them by isometries, as well as Liouville type theorems have
all motivated research on harmonic and p-energy minimizers between manifolds.

Given a class of maps C ⊂ N1,p(X;Y ) and an energy functional Ep : N1,p(X;Y )→
R satisfying

(1) Ep(u) ≤ C‖gu‖pp, and
(2) Ep is sequentially lower semicontinuous with respect to Lp-convergence,
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we say that a map u ∈ C is a p-energy minimizer in the class C if

Ep(u) = inf{Ep(v) : v ∈ C}.

Going back 50 years, the seminal paper of Eells and Sampson [20] addressed the
question of existence of harmonic maps between Riemannian manifolds, the tar-
get having nonpositive curvature. Starting with a C1-map f0 between compact
manifolds M and N , Eells and Sampson used the heat flow method to establish a
flow of maps ft : M → N , starting at f0 and converging to a C1 harmonic map
f∞ : M → N . Incidentally, nonpositive curvature in the target was needed in order
to employ the heat flow method and so was an essential assumption in obtaining
the existence of a smooth harmonic map.

This means that, given a C1-map, they demonstrated the existence and regular-
ity of a harmonic map in the same homotopy class as the original map. Taking the
variational point of view they proved the existence of a minimizer of a given energy
functional, in this case the Dirichlet integral

E(f) =
1

2

∫
M

|df |2dx(E)

in a given homotopy class of maps.
Consider, for example, a map f0 from the circle to a given manifold N of nonpos-

itive curvature. Minimizers of the Dirichlet integral in the same homotopy class are
closed geodesic loops homotopic to f0. Thus they provide nice representatives of
the free conjugacy class of an element in the fundamental group. In higher dimen-
sions harmonic maps can represent (among other things) submanifolds of minimal
volume. See the survey articles [18, 16, 19].

After Eells and Sampson, many researchers have studied harmonic maps between
manifolds and utilized them to study the topology of manifolds, their geometry,
group actions, higher homotopy groups and so on, see for instance [18, 75, 66, 67,
12, 72].

After defining harmonic maps to be continuous minimizers of the Dirichlet inte-
gral (E) it is natural to consider other energies. A straightforward generalization
is to allow for exponents p ∈ (1,∞). A p-harmonic map M → N is a continuous
minimizer of the Dirichlet p-energy

Ep(f) =
1

p

∫
M

|df |pdx(Ep)

in the homotopy class of a given continuous map in W 1,p(M ;N). They have been
studied in connection with higher homotopy groups [73], but are also natural objects
to study in themselves when moving from the Sobolev space W 1,2 to W 1,p, p ∈
(1,∞). See [74, 12, 72, 73, 36, 37] for more on p-harmonic maps between manifolds.

Harmonic and p-harmonic maps can also be studied between more general spaces;
in [54] Schoen and Korevaar defined the notion of a Sobolev type space of maps
between a manifold M and a general metric space Y , using a new notion of energy
– the so called Korevaar-Schoen p-energy given by

E2(f) = lim sup
ε→0

sup
ϕ∈C0(Ω:[0,1])

∫
M

ϕeε(f)dx,
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where

eε(f)(p) =−
∫
B(p,ε)

d2
Y (f(q), f(p))

ε2
dq,

and went on to study existence and regularity of harmonic mapsM → Y under the
assumption that Y is nonpositively curved in the sense of Alexandrov (see [11]).
They extended the result of Eells and Sampson to this new setting.

Theorem. ([54, Theorem 2.7.1]) Let M be a compact Riemannian manifold and
Y a compact metric space of nonpositive curvature. Given a continuous map f0 ∈
C(M ;Y ) there is a Lipschitz-regular minimizer of the Korevaar-Schoen energy E2

homotopic to f0.

Thereafter, Fuglede and Eells [17, 21, 22] proved an analogous result for maps
between Riemannian polyhedra and nonpositively curved spaces, and Jost [47, 48,
49, 50] considered maps between a compact 2-Poincaré space with doubling measure
arising as a quotient of a group action and a nonpositively curved space.

The last two papers [B,C] comprising this thesis study the questions of homotopy
and existence of p-energy minimizers in homotopy classes in the setting of maps
between a compact p-Poincaré space with doubling measure, and a compact non-
positively curved metric space.

3.1. Homotopy classes of Sobolev type maps. The notion of classical homo-
topy between (continuous) maps is not natural in the Sobolev setting, since in
general Sobolev maps need not be continuous. This was well known and alter-
nate notions of homotopy date back at least to [12]. In 1985 White introduced
k-homotopy types of Sobolev maps between Riemannian manifolds as classes of
maps for which the restrictions to a generic k-dimensional skeleton are homotopic,
and proved that Sobolev maps have a well-defined [p−1]-homotopy type, where [a]
denotes the largest integer ≤ a.

General metric spaces, even ones supporting a p-Poincaré inequality, do not pos-
sess triangulations and so this definition does not readily extend to a metric setting.
However the [p− 1]-homotopy types have a connection with connected components
of W 1,p(M ;N). Brezis and Li [10] defined two maps f0, f1 ∈ W 1,p(M ;N) to be
homotopic if there is a continuous path in C([0, 1];W 1,p(M ;N)) connecting f0 to
f1. This notion, termed path-homotopy generalizes to Newtonian spaces as soon as
we have given them a topology.

It was shown by Hang and Lin [35] that two maps

f0, f1 ∈W 1,p(M ;N)

have the same [p − 1]-homotopy class if and only if they are path-homotopic. In
the context of metric spaces, even path-homotopy is rather difficult to work with.
Thus in [B] we introduced another definition of homotopy, relying on the fact that
Newtonian maps are p-quasicontinuous.

Definition. Two maps u, v ∈ N1,p(X;Y ) are said to be p-quasihomotopic if there
is a map

H : X × [0, 1]→ Y

(called a p-quasihomotopy) with the following property:
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For every ε > 0 there is an open set E ⊂ X with Capp(E) < ε such that

H|X\E×[0,1] : X \ E × [0, 1]→ Y

is a (continuous) homotopy between u|X\E and v|X\E.

The second article of the thesis [B] explores the relationship of path-homotopy and
p-quasihomotopy, and establishes some basic properties of the latter. The notion
of p-quasihomotopy turns out to be stricter than path-homotopy. This can be seen
with a simple example, where M = B2 is the unit disc and N = S1 is the unit
circle.

The map
u : z 7→ z

|z|
belongs to the Sobolev space W 1,p(B2;S1) for every 1 < p < 2. By [9, Theorem
0.2] the space W 1,p(B2;S1) is path connected for these values of p, therefore u is
path-homotopic to a constant map. On the other hand one can show that a map
w ∈W 1,p(B2;S1) is p-quasihomotopic to a constant map if and only if it admits a
lift h ∈ W 1,p(B2;R), see [B]. It is known that u does not admit a Sobolev lift [8],
thus it is not p-quasihomotopic to a constant map.

The argument above establishes that path-homotopic maps need not be p-quasi-
homotopic. For manifolds the converse implication however always holds. In [B]
we show that a p-quasihomotopy between two Sobolev maps defines a continuous
homotopy when restricted to a generic skeleton of dimension < p. In particular it
follows, using the theorem of Hang and Lin [35, Theorem 5.1] that

Theorem 2. ([B, Theorem 5.6]) Two p-quasihomotopic maps u, v ∈ W 1,p(M ;N)
between compact Riemannian manifolds are always path-homotopic.

For Newtonian spaces the relationship is not as clear in part because, as demon-
strated by Hajłasz [34], the topology of N1,p(X;Y ) depends on the isometric em-
bedding Y ↪→ V used to define the Newtonian class N1,p(X;Y ). For general target
spaces Y one can prove the following.

Theorem 3. ([B, Theorem 2.11]) Let (X, d, µ) be a compact p-Poincaré space with
doubling measure and Y a separable metric space. Suppose u, v ∈ N1,p(X;Y ) can
be connected by a path h : [0, 1]→ N1,p(X;Y ) such that

‖gd(ht,hs)‖Lp ≤ C|t− s|, s, t ∈ [0, 1].

Then u and v are p-quasihomotopic.

Note that the embedding Y ↪→ V does not play any role in the statement.
The condition is basically a rectifiability requirement on the path h, and we may
conclude that, for maps between manifolds

p-quasihomotopy lies in between path-homotopy and rectifiable path-homotopy, where
the path used to connect given maps is rectifiable in W 1,p(M ;N).

Currently the precise relationship is not clear and it is possible (but not known) that
two maps are p-quasihomotopic if and only if they are rectifiably path-connected.
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3.2. Nonpositively curved targets. Another focus in [B] is p-energy minimizing
maps into nonpositively curved targets. While the term nonpositively curved metric
space nowadays more commonly refers to the notion defined by Alexandrov [3] there
is in fact a more general concept, originated by Busemann [13], which proves a
suitable framework for the questions studied in [B] and [C]. The former notion is
also often referred to as (local) CAT(0)-space, and we shall adopt this terminology.
A central theme in both definitions is convexity; good accounts on nonpositive
curvature in metric spaces can be found in [63, 11].

We call a (path connected) metric space (Y, d) locally complete and geodesic if each
point has a closed neighbourhood that is a complete geodesic space.

Definition (Locally Busemann convex spaces). (a) A metric space Y is called
a Busemann convex space if it is locally complete and geodesic, and for
every pair of affinely reparametrized geodesics γ, σ : [0, 1]→ Y the distance
map

t 7→ d(γ(t), σ(t)) : [0, 1]→ R
is convex.

(b) A metric space Y is locally convex if each point has a neighbourhood that is
a Busemann space with the induced metric. Such neighbourhoods are called
Busemann convex neighbourhoods.

Definition (Locally CAT(0)-spaces). (a) A locally complete and geodesic space
Y is said to be of global nonpositive curvature if, for all geodesic triangles
∆ with comparison triangle ∆ and any two points a, b ∈ ∆, the comparison
points a, b ∈ ∆ satisfy

d(a, b) ≤ |a− b|.
(b) A locally complete and geodesic space is said to be of nonpositive curvature

(an NPC space for short) if each point has a neighbourhood that is a space
of global nonpositive curvature when equipped with the inherited metric.

A comparison triangle ∆ of a geodesic triangle ∆ is a triangle in R2 with the
same sidelengths as ∆, and a comparison point p of p ∈ ∆ is the point on the
corresponding side of ∆ that is an equal distance away from the vertices that side
joins.

Nonpositively curved Riemannian manifolds are known to be K(π, 1) spaces, i.e.
they admit a contractible universal cover – this is essentially the Cartan-Hadamard
theorem [15]. A consequence of this fact is that two continuous maps M → N from
a manifold M to a nonpositively curved manifold N are homotopic if and only the
induced homomorphisms

π(M)→ π(N)

are conjugate. This connection between homotopy and induced homomorphisms is
used by virtually all existence results of harmonic or p-harmonic maps. There also
exists a metric version of the Cartan-Hadamard theorem (see [11]).

However in the generality considered in [B,C] the connection between homotopy
and induced homomorphisms fails since Newtonian maps are not known to in-
duce homomorphisms between the fundamental groups (even in the manifolds case
Sobolev maps only induce such a homomorphism if p ≥ 2). Instead the following
characterization of homotopy turns out to be useful.
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Proposition. ([C,Proposition 3.2]) Let Y be a nonpositively curved metric space,
and X a topological space. Two continuous maps f, g : X → Y are homotopic if
and only if the product map

(f, g) : X → Y × Y

has a continuous lift
h : X → Ŷdiag,

where
Ŷdiag = (Ỹ × Ỹ )/diag π(Y )

is the quotient of the universal cover of Y ×Y by the subgroup diag π(Y ) ≤ π(Y ×Y ).

This is a well known fact, and might seem like a cumbersome way of express-
ing homotopy. However it has the advantage of admitting a generalization to the
Sobolev – and even the Newtonian – realm. In fact, for Newtonian maps it charac-
terizes exactly p-quasihomotopy.

Theorem 4. ([C, Theorem 1.2]) Suppose X is a compact p-Poincaré space with
doubling measure, and let Y be a separable nonpositively curved metric space. Maps
u, v ∈ N1,p(X;Y ) are p-quasihomotopic if and only if the product map

(u, v) ∈ N1,p(X;Y × Y )

admits a lift
h ∈ N1,p(X; Ŷdiag).

3.3. Existence of energy minimizers. Theorem 4 reduces the question of p-
quasihomotopy to existence of lifts. The third article [C] in this thesis focuses
on existence of p-energy minimizers in p-quasihomotopy classes and attacks the
problem from this point of view.

Traditionally the aforementioned connection between homotopy and induced ho-
momorphisms has been used to study the existence of energy-minimizers. This was
also done by Jost in [49], where he in fact studies local minimizers of a 2-energy in
a given equivariance class. In general the two approaches lead to different notions
of “homotopy.”

Theorem 5. ([C, Theorem 1.1]) Let p ∈ (1,∞), (X, d, µ) be a compact p-Poincaré
space with doubling measure and let Y be a compact nonpositively curved met-
ric space with Noetherian or hyperbolic fundamental group. Given a map v ∈
N1,p(X;Y ) there exists a map u ∈ N1,p(X;Y ), p-quasihomotopic to v, with min-
imimal p-energy

ep(f) =

∫
X

gpfdµ

among all maps p-quasihomotopic to v.

Theorem 5 is purely an existence result; unlike the theorem of Korevaar and Schoen
it does not quarantee any more regularity than what the setting already gives.
Another notable feature is the presence of an extra assumption on the fundamental
group of the target. A reason for both of these is the very general context – the
domain space (X, d, µ) is not assumed to have any topological properties. Thus it
can be fractal like, for instance.
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The proof of Theorem 5 starts with the development of an analogue for the classical
characterization of continuous maps ϕ : X → Y admitting a lift ϕ̃ : X → Ỹ to a
covering space. Let p : Ỹ → Y be a covering map. The characterization can be
given elegantly in terms of the image of the fundamental group under the induced
homomorphism; given x0 ∈ X and y0 ∈ p−1(ϕ(x0)) the map ϕ admits a lift ϕ̃ with
value ϕ̃(x0) = y0 if and only if

ϕ]π(X,x0) ≤ p]π(Ỹ , y0).(L)

To avoid a number of technical difficulties with proving an analogue of (L) for
Newtonian maps ϕ ∈ N1,p(X;Y ) the structure of path-families as well as the
analytic information of the domain space, given by the Poincaré inequality, is used.
Note that the characterization does not require an induced homomorphism to exists,
only an analogue of the object ϕ]π(X,x0), see [C, Theorem 1.3].

The crucial second step, one where the additional assumption of the subconjugacy
condition emerges, is proving a “stability result” for the property of Newtonian
maps admitting lifts. The subconjugacy condition for a subgroup H of a group G
is the requirement, introduced in [C], that for any sequence (gj) ⊂ G there exists
some g ∈ G for which

lim inf
j→∞

Hgj =
⋃
n≥1

⋂
j 6=n

Hgj ≤ Hg.(SC)

Heuristically this simply means that any sequence of conjugates of H has a limit
which is a subgroup of some conjugate of H.

Theorem 6. ([C, Theorem 1.4]) Let p ∈ (1,∞), (X, d, µ) be a compact p-Poincaré
space with doubling measure and Y a complete length space with a locally isometric
covering φ : Ỹ → Y such that φ]π(Ỹ ) satisfies the subconjugacy condition. Suppose
(uj) is a sequence in N1,p(X;Y ) such that

sup
j

∫
X

gpuj
dµ ≤ C <∞

and for each j there exists a lift hj ∈ N1,p(X; Ỹ ). If (uj) converges in Lp to a map
u ∈ N1,p(X;Y ) then u admits a lift h ∈ N1,p(X; Ỹ ).

As a direct corollary we obtain the following result.

Corollary. Let p ∈ (1,∞), (X, d, µ) be a compact p-Poincaré space with doubling
measure and Y a complete length space admitting a universal cover. Suppose (uj) is
a bounded sequence in N1,p(X;Y ) with Lp-limit u ∈ N1,p(X;Y ). If each uj admits
a lift hj ∈ N1,p(X; Ỹ ) to the universal cover then u admits a lift h ∈ N1,p(X; Ỹ )
to the universal cover.

At the onset this does not seem connected to hyperbolic or Noetherian groups. The
link is given by the following observation.

Lemma. ([C, Lemma 5.2 and Lemma 5.3]) Suppose G is a Noetherian or a torsion
free hyperbolic group. Then diagG ≤ G×G has the subconjugacy property.
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For Noetherian groups the statement is immediate while the hyperbolic case requires
an argument. For CAT(0)-groups (which include fundamental groups of compact
nonpositively curved spaces) this argument does not work and it is not known
whether the claim holds for them. The validity of the claim for CAT(0)-groups
would allow one to remove the extra hypothesis on the fundamental group of the
target in Theorem 5.

The proof of the stability result above uses the analogue of the characterization (L)
for Newtonian maps. After this Theorem 5 follows by piecing together Theorems 4
and 6.

For nonpositively curved manifolds the hyperbolicity of the fundamental group
is implied by having strictly negative sectional curvature. In general, for a compact
nonpositively curved metric space X, the fundamental group π(X) is hyperbolic if
and only if the universal cover X̃ does not contain an isometric copy of a plane [11,
Chapter III.Γ, Theorem 3.1]. Thus the class of nonpositively curved spaces with
hyperbolic fundamental group contains many interesting spaces.

The Noetherian property, on the other hand, combines rather poorly with non-
positively curved spaces. A large subclass of Noetherian groups are the virtually
nilpotent groups. The fundamental group of a nonpositively curved space is virtu-
ally nilpotent if and only if it is finite or virtually Z. Nevertheless geometric group
theory proves a powerful tool in the study of existence of energy minimizing maps.
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