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ABSTRACT 

 

According to latest estimates, cancer is becoming an increasing health risk on a global 

scale. Consequently, novel cancer treatment modalities are urgently needed, especially 

for the treatment of metastatic solid tumors that are refractory to standard therapies. One 

promising approach in the treatment of such advanced cancers is immunotherapy which 

aims to elicit de novo immune responses and/or to boost pre-existing anti-tumor 

immunity. Different forms of cancer immunotherapy include oncolytic viruses, which 

selectively replicate in and destroy cancer cells, and adoptive T-cell therapy, in which 

the patient is given vastly amplified numbers of tumor-targeting T-cells. Both of these 

have shown capacity to elicit anti-tumor immunity but efficacy in clinical settings has 

been suboptimal due to different resistance mechanisms employed by solid tumors. 

 

Anti-viral resistance represents a major hurdle in oncolytic virotherapy, as repeated 

administration of the same virus can lead to induction anti-viral rather than anti-tumor 

immunity. Moreover, cancer cells in some tumors may intrinsically be resistant to virus 

infection. In study I, we examined whether this could be circumvented by heterologous 

prime-boost setting, i.e. by switching between oncolytic adenovirus (Ad) and vaccinia 

virus (VV) during therapy. The results showed that presence of one virus does not 

preclude the infection of another and treatment with heterologous Ad-VV therapy can 

delay the onset of anti-viral resistance. Moreover, we found that restricted replication of 

the priming (adeno)virus can affect the efficacy of heterologous virotherapy. In study 

IV, we studied the role of anti-viral signaling in adenovirus replication in cancer cells 

and whether this could be augmented with Janus Kinase 1/2 inhibitor Ruxolitinib. 

Interestingly, we found that although exposure to type I interferon does not inhibit 

progressive Ad replication in vitro, significant improvement in anti-tumor efficacy of 

the virus was observed in vivo when combined to concomitant Ruxolitinib treatment. 

These results underline the possible approaches that could be taken to reduce naturally 

acquired or therapy-induced resistance, which interferes with viral spread and may 

hinder the therapeutic efficacy. 
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Adoptive T-cell therapy (ACT) can be a potent form of immunotherapy. Despite the 

large number of anti-tumor T-cells infused during ACT, immunosuppression and 

immune evasion of advanced tumors can render tumor-infiltrating lymphocytes (TILs) 

inactive. In study II, we examined whether oncolytic adenovirus could increase anti-

tumor efficacy of adoptively transferred T-cell receptor (TCR) transgenic T-cells. Indeed, 

intratumoral injections of adenovirus were able to counteract immunosuppression by 

activating antigen-presenting cells (APCs) and anti-tumor T-cells. Moreover, an 

endogenous T-cell response against other, non-related tumor antigens was detected and 

this polyclonal response contributed to systemic anti-tumor immunity. In study III, we 

analyzed whether cellular composition of tumor microenvironment could be modified 

by local administration of immunostimulatory recombinant cytokines. When combined 

to adoptive T-cell transfer, intratumoral injections of interleukin 2 (IL-2), interferon �. 

(IFN-�.) and interferon �� (IFN-��) resulted in significant anti-tumor efficacy, increased 

tumor-levels of stimulatory immune cells and reduced exhaustion of CD8+ TILs. In 

contrast, administration of granulocyte-macrophage colony-stimulating factor (GM-CSF) 

enhanced tumor growth and recruited immunosuppressive cell types such as monocytic 

myeloid-derived suppressor cells (MDSCs) and M2 macrophages to the tumor bed. 

These results indicate that immunomodulation by carefully selected cytokines and/or 

oncolytic adenovirus can sensitize the tumor in favor of adoptively transferred anti-

tumor T-cells. 

 

In conclusion, different combinatorial approaches can be employed to overcome 

intrinsic, naturally acquired or therapy-induced resistance to anti-tumor T-cells or 

oncolytic adenovirus. These advances enable significant improvement in the treatment 

of solid cancers and can potentially lead to development of curative cancer 

immunotherapies. 
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PART B 
 

1 REVIEW OF THE LITERATURE 

 

1.1 Introduction 

 

Cancer is a common name for a wide range of malignant diseases that arise from a 

multistep process involving several genetic and epigenetic alterations, causing the 

transformed cells to grow uncontrollably. Hallmarks of cancer include self-sufficiency 

in growth signals, insensitivity to growth inhibitors, limitless proliferative potential, 

sustained angiogenesis, evasion of apoptosis, formation of tumor-promoting 

inflammation and the capability to invade tissues to form metastases (Hanahan and 

Weinberg 2000, Mantovani 2009). The combination of these properties coupled with the 

complex tumor microenvironment (TME) makes tumors relatively difficult to eliminate, 

especially in metastasized settings. 

 

According to the recently released Cancer Progress Report 2015 by the American 

Association for Cancer Research, development of cancer into metastatic disease is the 

cause of 90 % of cancer-related deaths (cancerprogressreport.org/2015/ on January 15, 

2016). Despite the tremendous improvements in cancer prevention, diagnostic 

techniques and screening procedures, cancer treatment modalities have stayed somewhat 

the same for decades. With a few exceptions, treatment options for established solid 

cancers include surgery, radiotherapy and chemotherapy, of which the latter two come 

at the cost of significant treatment-related side effects.  

 

As the world’s population is getting older and risk factors such as obesity, smoking and 

physical inactivity are getting increasingly common, cancer is becoming an even bigger 

global challenge. In 2035, an estimated 24 million new cases of cancer will be diagnosed 

globally, with 14.6 million people predicted to die from the disease 
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(cancerprogressreport.org/2015/ on January 15, 2016). Consequently, novel cancer 

therapies are urgently needed, especially for the treatment of metastatic and/or treatment-

refractory cancers which respond poorly to conventional treatments. 

 

1.2 Cancer Immunology and Immunotherapy 

 

Cancer immunology, also called onco-immunology, is a branch of immunology which 

focuses on the spatiotemporal interactions between the immune system and cancer cells. 

According to the original concept of cancer immunosurveillance introduced in 1957, the 

immune system has an important role in inhibiting carcinogenesis and maintaining 

cellular homeostasis (Burnet 1957). This original theory was later expanded into the 

concept of immunoediting, which also included the paradoxical tumor-sculpting actions 

of the immune system on developing tumors (Dunn et al. 2002).  

 

Immunoediting contains three distinct phases (elimination, equilibrium and escape), 

designated the “three E’s”. In the elimination phase, developing malignant cells are 

successfully eradicated by the immune system working in concert with intrinsic tumor 

suppressor mechanisms. The process of elimination includes both innate (such as natural 

killer (NK) cells and macrophages) and adaptive (T-cell) immune responses against 

transformed cells, leading to initial repression of nascent tumor. In the equilibrium phase, 

the host immune system and cancer cell variants surviving from the elimination process 

enter into a dynamic equilibrium, where anti-tumor T-cells restrain but can’t fully 

eradicate the developing tumor. The equilibrium phase can last several years, during 

which new immune-resistant tumor cell clones arise due to the strong selection pressure. 

Finally, in the escape phase, these surviving tumor variants begin to expand in an 

uncontrolled manner and form a clinically observable malignant tumor that can be fatal 

to the host if left untreated (Dunn et al. 2002, Kim et al. 2007). 

 

Simultaneously with the growing increase in understanding of tumor immunology, 

several approaches to harness the immune system to fight cancer have been developed. 
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The ultimate goal of these therapies, known as cancer immunotherapies, is to generate 

complete, long lasting remissions and cancer cures by inducing and enhancing patient’s 

own anti-tumor immune responses (Schuster et al. 2006). Moreover, providing that 

sufficient target specificity is achieved, significant reduction in treatment-related side 

effects could be envisioned compared to standard treatments. Cancer immunotherapies 

can roughly be divided into two categories: 1) active immunotherapy (such as oncolytic 

virotherapy), focuses on generating an immune stimulus within the host and overcoming 

the reluctance of the immune system to attack the tumor, and 2) passive immunotherapy 

(such as adoptive T-cell therapy) is based on infusion of tumor-specific antibodies or 

white blood cells produced and/or modified outside the body (Schuster et al. 2006). 

 

1.3 Oncolytic Viruses 

 

Two types of oncolytic viruses exist: either virus has a natural selectivity towards cancer 

cells (such as reovirus) or the virus has been genetically engineered to selectively 

replicate in cancer cells (such as adenovirus or vaccinia virus). In the latter case, 

modified oncolytic viruses can enter both tumor and normal cells but virus replication 

and subsequent lysis is restricted to malignant cells which (over)express factors 

essential for virus replication. Oncolytic viruses constitute a self-amplifying platform 

for prolonged, local expression of immunostimulatory molecules and sustained 

presence of virus-mediated danger signals in tumor that can lead to induction of both 

anti-viral and antitumor immune responses in immunocompetent hosts (Kaufman et al. 

2015). 

 

1.3.1 Adenovirus 

 

Adenoviruses (Ad) are one of the most commonly used and studied gene therapy vectors 

to date. The family of adenoviruses, Adenoviridae, can be divided in 5 genera and 7 

species (A-G) containing all together 59 identified serotypes (Liu et al. 2012). Out of 

these, serotype 5 adenovirus (Ad5) is classified to species C and serotype 3 (Ad3) to 
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species B based on their ability to agglutinate erythrocytes (Rosen 1960). Species C and 

B adenoviruses are optimal candidates for oncolytic immunotherapy vectors as they are 

capable of infecting both dividing and non-dividing cells, followed by efficient 

replication and lysis of the host cell. Both serotypes are also amenable for genetic 

engineering of adenoviral capsid and the genome, allowing enhanced infectivity and 

cell-specific transgene expression. Recombinant replication-competent adenoviruses 

can accommodate large inserts, for example several immunostimulatory cytokine genes 

in a single vector (Choi et al. 2012). 

 

1.3.1.1 Structure and Life Cycle 

 

Adenoviruses are non-enveloped, double-stranded DNA viruses covered by icosahedral 

protein capsid consisting of hexon and penton proteins, latter of which are central for 

virus internalization (Stewart et al. 1991). Interaction of Ad with target receptor is 

mediated by fiber protein containing a knob that extends from each vertex of the capsid. 

Inside the capsid is the linear double-stranded DNA genome and associated core 

proteins that provide structure and help packaging new virions (Reddy and Nemerow 

2014).  

 

The life cycle of adenovirus is divided in early and late phases, the first of which is 

induced once adenovirus enters the target cell by binding to a high-affinity cell surface 

receptor such as human coxsackie and adenovirus receptor (hCAR) (Bergelson et al. 

1997, Roelvink et al. 1998). Following binding to the primary receptor, interaction 

between Arg-Gly-Asp (RGD) motif of penton protein and �.�� integrins on target cell 

trigger endocytosis of the virus (Mathias et al. 1994, Roelvink et al. 1999). In the early 

phase, uncoated virions are transported into the nucleus and gene expression of early 

transcription cassettes E1A, E1B, E2, E3 and E4 is initiated. The rapid expression of 

viral E1A protein following virus entry modulates cellular metabolism in favor of virus 

replication and ensures that the host cell enters the S phase of the cell cycle by binding 

retinoblastoma protein (pRb) (Whyte et al. 1988a). In subsequent steps, E2 and E3 
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proteins are involved in viral DNA replication and inhibition of host anti-viral immune 

responses (Tollefson et al. 1996, Russell 2000), whereas alternatively spliced E4 

products promote expression of late viral genes and facilitate viral mRNA metabolism 

(Halbert et al. 1985, Weigel and Dobbelstein 2000). In the late phase, structural proteins 

are expressed from transcription cassettes L1-L5 and new virions are assembled. 

Finally, adenovirus life-cycle culminates in the lysis of host cell, releasing new 

infectious virions into the extracellular space. This entire cycle is usually completed 

within 36 hours (Russell 2000). 

 

1.3.1.2 Modifications 

 

Several approaches have been taken to increase the safety and efficacy of adenovirus in 

oncolytic settings, including both transcriptional and transductional targeting. One of 

the most important modifications of wild-type Ad has been the 24-base pair deletion 

(D24) in pRb binding site of the E1A region, which attenuates virus replication in 

normal cells with wild-type pRb (Fueyo et al. 2000) (Figure 1). The inability of D24-

modified E1A to bind pRb prevents the release of E2F from pre-existing cellular E2F-

pRb complexes and subsequently results in inhibition of E2F-mediated activation of 

genes associated with both adenoviral E2 promoter and cell cycle regulation in normal 

cells. In contrast, most cancers presumably have defective pRb/p16 pathway (Whyte et 

al. 1988b, Sherr 1996, Sherr and McCormick 2002) and the constantly available E2F 

renders E1A dispensable, thus enabling virus replication in malignant cells (Heise et al. 

2000). In addition to genetic deletions, several tumor-specific promoters (such as E2F, 

Cox-2, VEGF and hTERT) have been designed to exploit the ubiquitous expression of 

these factors in various cancer types and thus to improve the specificity of oncolytic 

adenoviruses (Ito et al. 2006, Kanerva et al. 2008, Rojas et al. 2009).  
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Figure 1. During the replication of wild type adenovirus, E1A binds Rb which is no 
longer able to repress transcription factor E2F (1). The release of E2F is required for 
activating genes that promote cell cycle and adenovirus replication. In contrast, 
adenovirus featuring a D24 deletion (Ad-D24) is unable to bind Rb, subsequently 
attenuating virus replication in normal cells (2). In cancer cells, D24 is complemented 
by inactivation of Rb by p16/Rb pathway defects, enabling virus replication and 
oncolysis (3). 

 

To enhance Ad targeting to cancer cells, adenovirus serotype 5 knob can be replaced 

with a serotype 3 knob (Krasnykh et al. 1996). These 5/3 chimeric adenoviruses have 

shown increased gene transfer efficacy in many tumor types (Kanerva et al. 2002, 

Kangasniemi et al. 2006a, Guse et al. 2007, Bramante et al. 2014), possibly due to high 

expression of Ad3 receptor desmoglein-2 (DSG-2) on tumor cells (Wang et al. 2011). 

By contrast, the Ad5 receptor hCAR has been reported to be downregulated in many 

types of cancer due to Raf-MAPK pathway activation (Anders et al. 2003), underlining 

the attractiveness of the 5/3 chimeric approach. Other modifications of adenovirus 
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capsid include incorporation of ligands and motifs (such as RGD and pk7) that bind 

adhesion molecules on cancer cell surface (Dmitriev et al. 1998, Wu et al. 2002, 

Kangasniemi et al. 2006b). 

 

1.3.1.3 Immune Responses 

1.3.1.3.1 Anti-Viral Responses 

 

Following adenovirus infection, the host immediately recognizes Ad as a “non-self” 

invading pathogen. This recognition is mediated by toll-like receptors (TLR) that detect 

pathogen-associated molecular patterns (PAMP), mainly in the form of unmethylated 

CpG dinucleotide sites in viral DNA (Hemmi et al. 2000). TLR2 and TLR9 activation 

leads to induction of innate immunity through increased production of cytokines and 

type I interferons (IFNs) (Kawai and Akira 2006, Zhu et al. 2007). IFN secretion shuts 

down cellular mechanisms of virus replication on auto- and paracrine level, whereas 

cytokines and chemokines trigger an inflammatory response that recruits innate immune 

cells to eliminate the virus (Thaci et al. 2011). Neutrophils, natural killer (NK) cells and 

macrophages help controlling the virus infection by eliminating the infected cells 

(Hendrickx et al. 2014). Dendritic cells (DCs) and macrophages can also internalize, 

process and cross-present cellular fragments and proteins in context of major 

histocompatibility complex (MHC) class I and II, thus acting as professional antigen 

presenting cells (APCs) (Nayak and Herzog 2010). PAMP-induced maturation of APCs 

leads to effective presentation of viral antigens to CD4+ helper and CD8+ cytotoxic T-

cells (Muruve 2004). While primed CD8+ T-cells can directly kill virus-infected cells, 

helper CD4+ T-cells provide activation signals for B-cells that produce antibodies 

against adenoviral proteins (Bradley et al. 2012).  

 

The systemic use of serotype 5 adenovirus is limited by high levels of pre-existing 

humoral immunity in the general population with up to 90 % seroprevalence in certain 

geographical locations (Abbink et al. 2007, Barouch et al. 2011). Neutralizing antibodies 

(NAbs) IgM, IgA, and IgG directed against hexon, penton and fiber proteins can rapidly 
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opsonize Ad vector upon secondary infection or vector re-administration. NAbs affect 

virus activity either by sterically limiting cellular association, or by preventing virus 

uncoating and nuclear entry of viral DNA (Gall et al. 1996, Varghese et al. 2004, Sumida 

et al. 2005). Fiber pseudotyping using chimeric Ad5/3 virus can partially protect the 

virus from pre-existing anti-Ad5 antibodies but anti-Ad5/3 NAbs develop after repeated 

administration of the vector (Sarkioja et al. 2008). However, the presence of NAbs does 

not seem to hinder the efficacy of virotherapy when Ad is administered intratumorally, 

at least according to some clinical reports (Tong et al. 2005, Koski et al. 2010). 

 

Wild-type adenovirus can typically cause mild flu, conjunctivitis and infantile 

gastroenteris due to preferential infection of epithelial cells in eyes and the respiratory 

and gastrointestinal track (Mautner et al. 1995, Kunz and Ottolini 2010). In contrast, 

patient data of modified oncolytic adenoviruses have reported grade 1-2 adverse 

reactions including fever, flu-like symptoms and hematological disturbances, but only 

few, more disease-related severe adverse events (SAE) such as gastrointestinal 

problems and thrombocytopenia (Liikanen et al. 2013, Bramante et al. 2014). In general, 

oncolytic adenoviruses have been considered well-tolerated and dose-limiting toxicities 

have not been detected (Toth and Wold 2010). However, the efficacy of oncolytic Ad 

as single-agent modality has left room for improvement, increasing the demand for 

combinatorial approaches. 

 

1.3.1.3.2 Anti-Tumor Responses 

 

In addition to inducing anti-viral immunity, oncolytic adenovirus can elicit a strong 

immune response against solid tumors. Active virus-mediated oncolysis leads to release 

of tumor-associated antigens (TAAs), which are phagocytosed and processed by APCs. 

These mature APCs, activated by viral danger signals such as PAMPs, effectively cross-

prime effector and memory CD8+ T-cells that migrate to the tumor and exert specific 

lytic activity towards cancer cells (Cerullo et al. 2012, Kaufman et al. 2015). While most 

approaches rely on inclusion of immunostimulatory transgenes into the viral genome, 
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also mere backbone Ad can induce anti-tumor immunity. Intratumoral injection of 

unarmed Ad has led to immunological responses and signs of efficacy both in preclinical 

(Ruzek et al. 2002, Edukulla et al. 2009, Tuve et al. 2009) and clinical reports (Nokisalmi 

et al. 2010, Pesonen et al. 2012a). Moreover, efficacy of replication-competent Ad5 in 

poorly permissive tumor models has been shown to be significantly greater in 

immunocompetent mice compared to their athymic counterparts (Hallden et al. 2003), 

highlighting the importance of adaptive anti-tumor immunity as a part of the overall 

mechanism.  

 

To further boost tumor-specific T-cell responses, oncolytic adenoviruses can be armed 

with different cytokines and growth factors. Some popular approaches over past years 

have been the use of immunostimulatory factors such as granulocyte macrophage 

colony-stimulating factor (GM-CSF) and CD40 ligand (CD40L), both of which aim to 

enhance the activity and function of APCs and thus indirectly affect priming and activity 

of anti-tumor T-cells (van Kooten and Banchereau 2000, Arellano and Lonial 2008). In 

addition, high local concentration of transgene product following Ad replication in tumor 

and subsequent low systemic exposure has made oncolytic Ad especially attractive in 

terms of immunotherapy (Bristol et al. 2003). Studies with GM-CSF expressing 

oncolytic adenovirus have revealed that systemic anti-tumor immunity and memory 

responses are induced, protecting animals from tumor re-challenge (Cerullo et al. 2010). 

IL-12 expressing oncolytic Ad was found effective in curing syngeneic pancreatic 

tumors and inducing anti-tumor immune response (Bortolanza et al. 2009). Finally, 

oncolytic Ad coding for tumor necrosis factor �. (TNF-�.) was reported to induce 

immunogenic cell death and increase local levels of tumor-specific T-cells, resulting in 

significantly improved efficacy over unarmed virus (Hirvinen et al. 2015). 

 

The immunological characterization of other armed oncolytic adenoviruses have been 

sparse, as the lack of optimal animal models permissive for adenoviral replication has 

prevented the complete analysis of mechanism-of-action, especially in terms of 

oncolysis. In contrast, several reports of non-replicating adenoviruses coding for 
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cytokines such as IL-12, IL-23, IFN-�., IL-2, TNF-�. and CD40L have shown improved 

treatment efficacy and increase in immune infiltrates compared to unarmed viruses 

(Addison et al. 1995, Wright et al. 1999, Santodonato et al. 2001, Peter et al. 2002, Raja 

Gabaglia et al. 2007, Reay et al. 2009, Diaconu et al. 2012), providing proof-of-concept 

data that could also be extended to replicating, oncolytic platforms. Further vector 

development and rational use of immunostimulatory transgenes necessitate preclinical 

evaluation, as many cytokines and growth factors can also induce immune cells 

associated with tumor immunosuppression and tolerance, possibly leading to less 

desirable effects (Bronte et al. 1999, Bayne et al. 2012, Boyman and Sprent 2012). 

 

Immune effects of oncolytic immunotherapy using GM-CSF armed, 5/3 chimeric 

adenovirus has been extensively studied in human patients. GM-CSF is a growth factor 

involved in stimulation of granulocytes and monocytes, and it can induce both 

immunosuppressive cell subsets, such as myeloid-derived suppressor cells (MDSC) and 

M2 macrophages, but also activate immunostimulatory subsets, such as DCs, M1 

macrophages and NK cells (Parmiani et al. 2007). In fact, preliminary human data 

suggests that GM-CSF coding Ad can lead to CD8+ anti-tumor immunity at least in 

periphery and reduce immunosuppression at tumor level, thus constituting a novel form 

of in situ tumor vaccine (Kanerva et al. 2013, Ranki et al. 2014, Hemminki et al. 2015, 

Vassilev et al. 2015). No induction or increase in MDSCs or M2 macrophages has been 

reported to date, indicating that Ad5/3-D25-hGMCSF can manipulate the TME in favor 

of immune responses rather than tolerance (Pesonen et al. 2015, Vassilev et al. 2015). 

Presumably the presence of adenovirus, production of GM-CSF and the subsequently 

secreted cytokines can constitute an optimal cocktail that can polarize the TME towards 

Th1 phenotype (Shi et al. 2006). However, disturbances in this delicate balance might 

explain why all patients have not benefited and raise the question whether specific 

biomarkers could reveal possible responders (Liikanen et al. 2015, Taipale et al. 2015). 

In addition, oncolytic adenovirus coding for CD40L has shown promising signs of 

immunological activity in patients (Pesonen et al. 2012b), indicating that transgenes 
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capable of stimulating adaptive immune responses via APC activation can be effective 

approach in terms of oncolytic immunotherapy. 

 

1.3.2 Vaccinia Virus 

 

Vaccinia virus (VV) is a prototype poxvirus that has historically been used in vaccination 

programs against smallpox, another member of the poxvirus family. The family of 

Poxviridae can be divided into 69 species and 28 genera, of which VV is classified into 

orthopoxvirus genus. The Western Reserve (WR) strain of VV is a laboratory strain 

derived from the Wyeth strain through several decades of cultivation and in vivo passage 

in research laboratories (Guse et al. 2011). The WR strain has natural tropism for cancer 

cells, probably due to a leaky vasculature (McFadden 2005). In addition, VV is highly 

lytic, capable of spreading through the blood stream and has a large genome which 

enables insertion of immunostimulatory transgenes, making it an ideal vector for 

oncolytic immunovirotherapy (McCart et al. 2001, Guo et al. 2005, Kim et al. 2009). 

 

1.3.2.1 Structure and Life Cycle 

 

Infectious vaccinia virus is a double-stranded DNA virus covered by a lipoprotein 

envelope that structurally resembles the host cell membrane (Upton et al. 2003). The 

linear genome of VV encodes all the enzymes and proteins necessary for viral 

replication, as the entire replication cycle takes place in the host cell cytoplasm, outside 

the nucleus. Some of the viral products have immune evading properties, enabling VV 

to establish infection in target tissues (Moss 1990, Smith 1993).  

 

Life cycle of vaccinia virus can be divided in early and late phases, first of which starts 

when VV enters the target cell via membrane fusion, mediated by entry-fusion complex 

(Carter et al. 2005, Senkevich et al. 2005). Both cellular receptors and the viral 

determinants essential for VV binding and infection are still unknown, although several 

attempts to characterize any widely expressed receptors have been made (Eppstein et al. 
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1985, Lalani et al. 1999, Chahroudi et al. 2005; 2005). After entering the cytoplasm, 

early stage of transcription is initiated which leads to uncoating of viral particles, 

modulation of cellular metabolism and replication of viral DNA. This is followed by 

transcription of intermediate and late genes, which are involved in the production of 

membrane proteins and structural proteins for new virions (Moss 2012). Most of the 

intracellular mature viruses (IMV), that serve an important role in inter-host 

transmission, are released during cell lysis and lack the outer membrane (Sodeik et al. 

1993). Alternatively, some IMVs are enwrapped with an additional membrane in Golgi 

apparatus, actively transported to cell surface and released via direct budding as 

extracellular enveloped viruses (EEV) (Schmelz et al. 1994). In contrast to IMV 

particles, EEVs can evade the immune recognition due to a host-derived envelope, 

facilitating cell-to-cell infection and subsequently leading to systemic VV spread into 

distant sites (Payne 1980, Smith et al. 2002). The entire life cycle of VV is fast and 

usually completed within 24 hours from infection (Salzman 1960).  

 

1.3.2.2 Modifications 

 

Vaccinia viruses have a natural tissue tropism for cancer cells, which produce high 

concentrations of nucleotides needed in viral replication. In addition, leaky blood vessels 

might facilitate the entry of VV to the tumor site (Thorne et al. 2005). To further enhance 

safety and tumor-selectivity, VV genome can be genetically engineered. Viral thymidine 

kinase (TK) is a necessary part of VV replication in normal cells, as low levels of 

nucleotides are present in non-dividing cells (Buller et al. 1985). In contrast, proliferating 

cancer cells express high levels of TK and subsequently produce sufficient amounts of 

deoxyribonucleotides (McKenna et al. 1988). Deletion of TK from the viral genome 

restricts VV replication to cancer cells overexpressing transcription factor E2F, which 

upregulates expression of cellular TK (Buller et al. 1985, Shen and Nemunaitis 2005). 

Similarly, vaccinia growth factor (VGF) genes can be deleted from the viral DNA to 

reduce replication in normal cells. The secretion of VGF from wild type VV infected 

cells leads to proliferation of nearby cells by binding to EGFR, which in turn increases 
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the cellular levels of nucleotides and creates favorable conditions for further VV spread. 

The deletion of VGF ensures that VV replication only takes place in cancer cells with 

activated EGFR-Ras pathway (Kirn and Thorne 2009). Finally, double-deleted vaccinia 

virus (VVdd) featuring both deletions has been developed with reduced pathogenicity 

and enhanced selectivity (McCart et al. 2001, Haddad et al. 2012), demonstrating potent 

oncolytic activity and possible utility in cancer immunotherapy (Parviainen et al. 2015). 

 

1.3.2.3 Immune Responses 

 

Although VV has been considered to be an immunogenic virus due to its successful use 

as a small pox vaccine, it harbors several immunosuppressive features. Following viral 

entry, type I and II interferons and other inflammatory cytokines are rapidly secreted 

from host cells, leading to the induction of an anti-viral state (Samuel 1991, Perdiguero 

and Esteban 2009). As a countermeasure, VV encodes viral proteins such as B18R and 

B8R, which can bind these cytokines with high affinity and thus neutralize their activity 

(Smith et al. 2000). Activation of complement can lead to direct lysis of infected cells or 

to phagocytosis of viral particles by macrophages and neutrophils via opsonization. To 

counteract this, VV expresses and secretes virus complement proteins (VCPs) which 

bind complement components, thus preventing activation of complement cascade 

(Kotwal and Moss 1988). Also antigen cross-presentation may be compromised, as VV 

has been reported to attenuate APC function despite inducing their maturation (Deng et 

al. 2006, Yao et al. 2007). Moreover, VV expresses several anti-apoptotic proteins which 

inhibit elimination of virus-infected cells via induction of apoptosis caspase cascade 

(Kettle et al. 1997, Taylor et al. 2006). 

 

Both humoral and cellular immunity play a role in anti-VV protection, as individuals 

with defects in either branches of immunity are unable to control VV infection (Lane et 

al. 1969). Known envelope proteins of VV can elicit anti-viral NAbs (Galmiche et al. 

1999) and preclinical studies have revealed that these NAbs can protect mice from VV 

infection and disease (Belyakov et al. 2003). In addition, both NK cells and T-cells have 
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been shown to contribute to resistance to VV infection (Karupiah et al. 1990, Selin et al. 

2001, Harrington et al. 2002). CD4+ Th-cell dependent NAb secretion from B-cells has 

been described critical for VV clearing, also by preventing viral replication (Xu et al. 

2004). The role of anti-viral CD8+ T-cells appears to be less significant in primary 

infection and more important during secondary infection due to formation of 

immunological memory (Harrington et al. 2002, Xu et al. 2004).  

 

Unarmed, oncolytic vaccinia virus can exert impressive anti-tumor efficacy in 

transplantable animal models, mainly due to robust oncolysis (Parviainen et al. 2014, 

Parviainen et al. 2015). First-in-human phase I with double-deleted VV suggested that 

even unarmed virus can elicit signs of immune cell activation, at least in peripheral blood 

(Zeh et al. 2015). Instead, the complex nature of human tumors may limit the 

intratumoral spread of VV and thus reduce the treatment effect. To enhance VV potency 

as an immunotherapeutic approach, viral replication has been coupled with expression 

of different immunostimulatory transgenes, which can boost anti-tumor immune 

responses. B18R-deleted vaccinia virus coding for IFN-�� has been reported to induce 

complete tumor responses and immune-mediated protection against tumor re-challenge 

in mice (Kirn et al. 2007). GM-CSF is one of the most studied arming approaches in 

terms of VV immunotherapy with indications of induced anti-tumor immunity both in 

preclinical models (Parviainen et al. 2015) and in human studies (Mastrangelo et al. 

1999). Lastly, CD40L-expressing VVdd was recently introduced but this approach did 

not seem to provide a significant benefit in anti-tumor efficacy compared to unarmed 

VV in immunocompetent mice (Parviainen et al. 2014). CD40L has been reported to 

interfere with VV- and Vesicular Stomatitis Virus (VSV)-based immunovirotherapy by 

eliciting anti-viral immunity (Ruby et al. 1995, Galivo et al. 2010), possibly explaining 

the lack of additive effect of the transgene in vivo. Moreover, VVdd-CD40L seems to 

preferentially favor induction of NK cells and MDSCs rather than anti-tumor T-cells 

(Parviainen et al. 2014), suggesting that the choice of transgene may be critical if 

prominent CTL responses are desired.  
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1.4  Adoptive T-Cell Therapy 

 

Immunotherapy using autologous anti-tumor T-cells is potentially a highly effective 

treatment option for patients with advanced cancer. Adoptive T-cell therapies (ACT) to 

date include transfer of ex vivo expanded tumor-infiltrating lymphocytes (TILs), 

peripheral blood lymphocytes transduced with high-affinity T-cell receptor (TCR) 

targeting HLA-restricted tumor antigens, and peripheral blood lymphocytes transduced 

with chimeric antigen receptor (CAR) targeting antigens on tumor cell surface (Wu et al. 

2012). The latter two approaches depend on single specificity of anti-tumor T-cells, 

whereas personalized TIL therapy has the advantage of targeting broad spectrum of 

tumor (neo-) antigens. On the other hand, generation of genetically re-engineered anti-

tumor T-cells from blood derivates is considered technically more straightforward as 

lack of resectable tumors or the inability to expand TILs are not limiting factors. Re-

targeted tumor-specific T-cells can also potentially be used in allogeneic setting, thus 

enabling the development of ACT into “off-the-shelf” pharmaceutical product. Taken 

together, all three approaches demonstrate that cytotoxic tumor-specific T-cells have the 

potential to eliminate cancer cells and destroy established tumors given favorable 

circumstances. 

 

1.4.1 Cytotoxic T-Cells in Cancer 

 

Cytotoxic T-cell (CTL) is a lymphocyte that can kill cancer cells, virally infected cells 

and damaged cells in a TCR specific manner. Recently, a concept of cancer-immunity 

cycle was proposed in order to explain how tumor antigens can trigger a cytolytic 

immune response (Chen and Mellman 2013). In this cycle, tumor-associated antigens 

(which can be either viral proteins, mutated neo-antigens, derepressed embryonic 

antigens, over-expressed differentiation antigens or normal self-antigens) are released 

from tumor cells concomitantly with different danger-associated molecular patterns 

(DAMPs) associated with trauma, cellular stress, hypoxia and depletion of nutrients 

(such as ATP and HMGB1). Binding of DAMPs to cell surface and intracellular 
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receptors (including TLRs) induces maturation of professional APCs, especially DCs, 

which endocytose and process both exogenous and endogenous antigens in TME (Spel 

et al. 2013, Boone and Lotze 2014).  

 

Following maturation, DCs migrate to secondary lymphoid organs and present the 

processed antigens to effector CTLs in context of MHC class I (signal 1). CTLs are 

called CD8+ T-cells because the interaction between MHC I and TCR must be 

accompanied by a glycoprotein CD8, which acts as a co-receptor that binds to the 

constant portion of MHC I molecule and keeps T-cell and APC bound closely together 

during antigen-specific activation. In addition to formation of MHC class I-peptide-TCR 

complex, CD4+ T helper (Th) licensing via CD40-CD40L interaction is needed to 

induce costimulatory interaction (signal 2) between CTL and APC (Nesbeth et al. 2010a). 

Either B7-1 (CD80) or B7-2 (CD86) on mature DC binds to CD28 receptor on the 

surface of CTL and this engagement enables differentiation, activation and proliferation 

of T-cells. In the absence of signal 2, T-cells become anergic and can undergo apoptosis 

as a protective mechanism to prevent formation of autoimmunity. Finally, primed CTLs 

migrate to TME and infiltrate the tumor bed, where TCR can recognize specific MHC I-

peptide complexes on tumor cells and release cytotoxic granules (containing granzyme 

B and perforins) that mediate direct apoptosis of tumor cells by triggering a cascade of 

caspases. Presence of TILs has been accepted as an independent prognostic factor in 

various cancer types including colorectal cancer (Naito et al. 1998), breast cancer 

(Yoshimoto et al. 1993), ovarian cancer (Sato et al. 2005) and malignant melanoma 

(Haanen et al. 2006). 

 

1.4.2 T-Cell Therapy Based on Tumor-Infiltrating Lymphocytes 

 

Adoptive T-cell transfer of ex vivo expanded TILs in the treatment of metastatic 

melanoma patients was pioneered by Rosenberg and colleagues, who already in the late 

1980’s described anti-tumor activity of TILs grown in the presence of “T -cell growth 

factor”, also known as interleukin 2 (IL-2) (Yang and Rosenberg 1988). Autologous 
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TILs can be expanded from either fragments or enzymatic digests of a resected tumor 

(Yang and Rosenberg 1988, Dudley 2011). In the initial expansion phase TILs are 

cultured in growth medium with IL-2 for a 5-week period (Dudley et al. 2003). The 

intermediate product (“pre-REP” TIL) is then used to generate the final TIL infusion 

product using a rapid expansion protocol (REP) (Riddell and Greenberg 1990, Dudley 

et al. 2003). In most cases, a minimum of 50×106 T-cells are needed after the pre-REP 

phase to yield a sufficient cell number for infusion. The historical overall success rate 

for this has been 60-70 % (Dudley et al. 2003, Dudley et al. 2005, Goff et al. 2010) but 

current protocols can achieve success rates of 80 % and higher (Besser et al. 2010b, 

Dudley et al. 2010, Goff et al. 2010). The second expansion phase involves T-cell 

activation using anti-CD3 antibody and irradiated autologous or allogeneic feeder cells. 

Two days after initiation of REP, IL-2 is added to induce T-cell proliferation and TILs 

are expanded for additional 12 days in culture (Dudley and Rosenberg 2003, Dudley et 

al. 2003). Finally, 1,000- to 2,000-fold expanded TILs are harvested, concentrated and 

infused intravenously into the patient.  

 

In the past, systemic administration of high dose IL-2 was considered to be an essential 

part of successful TIL transfer, as it drives TIL survival and expansion in vivo (Robbins 

et al. 2004, Rosenberg and Dudley 2004, Huang et al. 2005). In contrast, recent studies 

have suggested that intermediate or even low dose of IL-2 might be sufficient (Ellebaek 

et al. 2012). Concomitant to post-treatment IL-2, the patient undergoes preconditioning 

regimen prior to TIL infusion. Lymphodepleting chemotherapy (such as 

cyclophosphamide and fludarabine) is used to eliminate endogenous T-cells including T 

regulatory cells (Tregs) which can interfere with effector TIL function and persistence 

(Dudley et al. 2005, Wang et al. 2005, Dudley et al. 2008b). In addition, total-body 

irradiation (TBI) can be used to further enhance the effect (Dudley et al. 2008b, 

Rosenberg et al. 2011). 

 

Recently, several novel strategies have been employed to improve the function of 

autologous TILs. To avoid terminal differentiation, the pre-REP expansion period of 
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TILs has been reduced to few weeks in the “young TIL” approach (Dudley and 

Rosenberg 2003, Rosenberg et al. 2008). These minimally cultured TILs have longer 

telomeres and express higher levels of effector memory markers CD27 and CD28 

compared to traditional TIL cultures (Tran et al. 2008). Artificial antigen-presenting cells 

(aAPC) have been studied in order to reduce costs related to feeder cells, since they can 

be engineered to express several costimulatory ligands and even secreted or membrane-

bound cytokines (Maus et al. 2002, Suhoski et al. 2007). Finally, for enhanced T-cell 

migration to tumor site, TILs have been transduced with chemokine receptor CXCR2 as 

its ligands, chemokines CXCL1 (KC) and CXCL8 (IL-8), are produced by tumor cells 

and tumor-associated stromal cells (Peng et al. 2010). 

 

TIL therapy capitalizes on polyclonal T-cell infiltrates, which are able to recognize 

multiple tumor-associated antigens (TAA). In fact, flow cytometric screening of TAA-

specificities has revealed that only a small fraction of TILs is specific against well-

defined melanoma-associated antigens and the rest (over 90 %) of TILs react against 

unknown antigens (Hadrup et al. 2009, Andersen et al. 2012). Some of these TILs 

recognize mutated self-proteins (i.e. neo-antigens) (Kvistborg et al. 2012, Robbins et al. 

2013b, Cohen et al. 2015) but also other, non-related epitopes derived from 

cytomegalovirus, Epstein-Barr virus or influenza A virus, emphasizing on the notion that 

not all TILs are tumor-specific (Andersen et al. 2012, Kvistborg et al. 2012). In addition, 

only a small proportion of TILs have been reported tumor-reactive and responsible for 

the most of the tumor cell killing (Kvistborg et al. 2012, Brown et al. 2015), highlighting 

the need to identify and enrich specific TIL subsets over bystander TILs to enhance 

therapeutic efficacy. 

 

1.4.3 T-Cell Therapy Based on Genetically Modified T-Cells 

 

Re-programming peripheral T-cells can be achieved by transduction with a retrovirus 

encoding TAA-specific TCR genes. Engineering blood T-cells enables generation of 

high numbers of high-affinity CTLs with known specificity for adoptive transfer, unlike 
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in TIL therapy where T-cell specificities are largely unknown (Hadrup et al. 2009, 

Andersen et al. 2012). On the other hand, the nature of TCR limits the applicability of a 

certain TCR construct to only a subset of individuals, as TCR only recognizes a specific 

peptide in the context of a specific MHC I. Currently only HLA-A0201 has been 

targeted, which narrows the amount of potential patients to about 30 % of population 

that express at least one HLA-A0201 allele (Wu et al. 2012). The major limitation with 

TCR-transduced T-cells, like with TILs, is that they are vulnerable to tumor MHC I 

downregulation, which can render these T-cells ineffective in recognizing their target 

cells (Hicklin et al. 1999). In addition, mispairing of introduced TCR �. and �� chains with 

endogenous TCR chains is a concern and might lead to reactivity against non-tumor self-

antigens (Bendle et al. 2010). Different approaches are currently under investigation to 

circumvent these problems, including structural modifications of TCRs (Kuball et al. 

2007) and knocking down the endogenous TCR (Provasi et al. 2012). 

 

Gene modification of blood T-cells using chimeric antigen receptor (CAR) is an 

applicable approach in situations where TILs or TCR-modified T-cells are ineffective. 

Adoptive CAR T-cell (CAR-T) therapy enables usage of non-classical T-cell targets 

such as cell surface proteins, carbohydrates and glycolipids. As the recognition does not 

depend on antigen processing and MHC I presentation pathways, the same CAR 

construct can be used in all patients regardless of HLA type (Sharpe and Mount 2015). 

The first generation of CAR consisted of a single-chain variable fragment (scFv) linked 

to transmembrane and cytoplasmic tail of CD3�� co-receptor (Eshhar et al. 1993) (Figure 

2). CAR specificity was based on the scFv part, which contains variable domains of 

heavy and light chains of a monoclonal antibody recognizing tumor antigen (Sadelain et 

al. 2003). First-generation CAR-Ts were able to induce anti-tumor responses but the lack 

of co-stimulation in the tumor rapidly led to poor proliferation and anergy of these cells 

in vivo (Heslop 2010). As �� chain signaling alone was not sufficient to activate CAR-Ts 

(Brocker and Karjalainen 1995, Ramos and Dotti 2011), second-generation CAR-Ts 

were designed to include intracellular co-stimulatory molecules such as CD28, CD134 

(OX-40) and CD137 (4-1BB) (Hombach et al. 2001, Maher et al. 2002). This two-signal 
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model for T-cell activation resulted in enhanced anti-tumor activity (Kowolik et al. 2006, 

Milone et al. 2009) and sparked the development of third-generation CAR-Ts with 

tandem co-stimulatory endodomains. These modifications further improved persistence, 

cytokine production and anti-tumor efficacy of CAR T-cells (Finney et al. 2004, 

Carpenito et al. 2009, Zhong et al. 2010). Recently, a concept of fourth-generation CAR-

Ts was introduced in the form of T-cells redirected for universal cytokine-mediated 

killing (TRUCK) (Chmielewski and Abken 2015). TRUCK is based on secretion of an 

immunostimulatory cytokine (such as IL-12) from CAR-Ts following interaction with 

their target cells, which in turn modulates TME and attracts innate immune cells to 

destroy tumor cells that are not recognized by CAR-T (Chmielewski et al. 2011, 

Chmielewski et al. 2014). Moreover, IL-12 secretion by CAR-T may eliminate the need 

of preconditioning regimens usually associated with ACT (Pegram et al. 2012). 

 
Figure 2. Schematic structure of different generations of CAR-modified T-cells.  First 
generation CAR-T comprised of a single-chain variable fragment (scFv) linked to a 
transmembrane and cytoplasmic tail of CD3�� co-receptor. Second and third generation 
CAR-Ts were designed to include one or two intracellular co-stimulatory molecules such 
as CD28, CD134 and CD137. Fourth generation CAR-T included all of these elements 
and was further modified to secrete immunostimulatory cytokines (such as IL-12) into 
the tumor microenvironment. 
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The extent of tumor-specific, cell surface antigens may prove to be the main limitation 

in the development of novel CAR constructs. As TIL and TCR therapies are based 

recognition of MHC I-peptide complexes, many intracellular antigens have been mapped 

and characterized over the years (Hinrichs and Restifo 2013). In contrast, before the 

concept of CAR-T therapies, there has been limited amount of studies on tumor cell 

surface antigens that could be used as targets for highly specific cancer immunotherapy 

without on-target off-tumor activity. An ideal target antigen for CAR T-cells would have 

strong, unique and stable expression on tumor cells. Unfortunately, most cell surface 

antigens expressed on tumor cells are also expressed on normal tissues, resulting in 

toxicity and autoimmune manifestations. Furthermore, the exact tissue distribution of 

many antigens is unknown, which makes prediction of possible SAE difficult. 

Consequently, inducible Caspase 9 “safety switches”  have been designed to allow quick 

elimination of infused T- cells by administration of a small molecule dimerizer drug in 

case of adverse events (Di Stasi et al. 2011). 

 

1.4.4 Immune Responses 

 

Several clinical studies have been conducted with T-cells expressing transgenic TCRs 

or CAR-Ts in the treatment of solid tumors with some reported on-target and off-target 

toxicities. High-affinity TCRs against different epitopes of melanoma-associated antigen 

A3 (MAGE-A3) have demonstrated unexpected cross-reactivity against brain or cardiac 

tissue proteins in two separate trials, resulting in deaths in both cases (Linette et al. 2013, 

Morgan et al. 2013). TCR targeting carcinoembryonic antigen (CEA) caused transient 

inflammatory colitis in metastatic colorectal cancer patients due to CEA expression on 

normal colonic mucosa (Parkhurst et al. 2011). In addition, TCR-modified T-cells 

specific for melanocyte differentiation antigens gp100 and MART-1 have been causing 

autoimmune adverse events including skin rash, uveitis and hearing loss (Johnson et al. 

2009). First-generation CAR T-cells recognizing carbonic anhydrase IX (CAIX) antigen 

on renal cancer cells resulted in serious on-target off-tumor hepatotoxicity (Lamers et al. 

2006). In another clinical study, third-generation CAR-T against ERBB2 (HER2) 
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induced the release pro-inflammatory cytokines (a condition known as cytokine release 

syndrome, CRS), leading to pulmonary toxicity, acute multiorgan failure and death of 

the patient following T-cell infusion (Morgan et al. 2010). Moreover, multiple doses of 

mesothelin-specific CAR T-cells created with mRNA-based approach have been 

reported to induce an anaphylaxis reaction in one patient, probably due to development 

of IgE antibodies against CAR (Maus et al. 2013).  

 

In theory, as CAR-T modifications include insertions of co-stimulatory molecules, these 

T-cells might display activity towards their original targets as long as endogenous TCRs 

are not knocked out. If these TCRs would be targeted against antigens expressed on vital 

organs, concerns have been raised whether unexpected toxicities could result as “the 

brakes are off”. However, some healthy tissues or cell populations can be killed without 

causing major complications. CAR-T therapy targeting CD19 can induce massive tumor 

regression in patients with chronic lymphocytic leukemia (CLL) and acute 

lymphoblastic leukemia (ALL) (Kochenderfer et al. 2010, Kalos et al. 2011, Porter et al. 

2011, Brentjens et al. 2013, Grupp et al. 2013b). The on-target off-tumor activity of 

CD19 CAR-Ts also leads to depletion of normal B-cells but this can be compensated 

with immunoglobulin replacement therapy (Maude et al. 2015; 2015). Prolonged B-cell 

deficiency is not a life-threatening condition and provides a perfect example of an 

expendable tissue if significant anti-tumor efficacy can be expected. 

 

Anti-tumor effect of ACT might also depend on transferred cells working in cooperation 

with host immune cells. Short-lived, mRNA engineered CAR-Ts, which might be safer 

compared to traditional lentivirus-generated CAR-Ts, have been shown to induce de 

novo immune responses in the form of novel anti-tumor antibodies (Beatty et al. 2014). 

Preclinical studies have concluded that harnessing endogenous immune cells is an 

effective way to expand tumor-specific T-cell repertoire and eliminate tumor cells that 

have lost the expression of target antigen following ACT (Nesbeth et al. 2009, Nesbeth 

et al. 2010b, Spear et al. 2013). Also a few human studies have indicated that adoptive 

T-cell transfer can broaden the repertoire of endogenous anti-tumor T-cells. Adoptive 
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TCR therapy targeting MART-1 was reported to increase blood levels of T-cells specific 

for gp100, tyrosinase and NY-ESO-1 in two melanoma patients with best tumor 

responses (Ma et al. 2013). Similarly, in another study, one patient treated with MART-

1-specific CTL clone experienced a complete response, which was accompanied by 

expansion of new clonotypes of higher avidity following ACT (Vignard et al. 2005). 

These case reports provide important clues about the possible mechanism underlying 

effective T-cell therapies and warrant further studies on the effect of adoptively 

transferred cells on endogenous immune cell subsets. 

 

High selective pressure by monospecific TCR- and CAR-modified T-cells in the absence 

of epitope spreading can induce immune evasion, where antigen-negative tumor cell 

clones achieve growth advantage and contribute to disease relapse (Grupp et al. 2013a, 

Maude et al. 2014, Sotillo et al. 2015). Formation of immune escape variants could be 

circumvented by targeting simultaneously at least two different tumor-associated 

antigens. In B-cell malignancies, a combination of CD19 and CD123 targeted CAR-Ts 

has resulted in more pronounced efficacy compared to monotherapies in preclinical 

studies (Ruella et al. 2015). Dual targeted CAR-Ts have been developed and have 

exerted promising signs of safety and enhanced effector function over monospecific 

CAR-Ts (Hegde et al. 2013). In addition, a recent study showed that T-cells engineered 

to express secretable bi-specific T-cell engager (BiTE) specific for CD3 and EphA2 can 

redirect resident T-cells towards tumor cells (Iwahori et al. 2015). A further 

improvement of this approach could be a CAR construct targeting one TAA and 

secreting BiTE targeting a second TAA, enabling a dual T-cell response against the 

tumor. 

 

In TIL therapy, on-target off-tumor activity should not be an issue, since TILs targeting 

self-antigens have low-affinity TCRs due to central tolerance (Xing and Hogquist 2012). 

Moreover, TILs targeting neo-antigens derived from tumor mutations should, by 

definition, be strictly tumor-specific (Cohen et al. 2015). Still, some TIL treated patients 

develop autoimmune manifestations such as vitiligo and uveitis, but these autoimmune 
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reactions do not seem to correlate with objective antitumor responses (Dudley 2005). 

More importantly, majority of TIL therapy associated toxicities are linked to 

preconditioning regimens (especially TBI) and systemic administration of high dose IL-

2, both of which can cause grade III or IV toxicities and even death (Dudley 2005, 

Dudley et al. 2008c, Besser et al. 2010c). 

 

1.5 Immunotherapy of Solid Tumors 

 

Effective immunotherapy of solid tumors is based on i) inducing potent and specific 

anti-tumor immunity and ii) blocking the immunosuppressive counter-responses 

elicited by solid tumors. Several approaches have included 1) oncolytic viruses that 

induce immunogenic cell death, release PAMPs and trigger systemic anti-tumor 

immunity, 2) adoptive T-cell transfer using TILs or genetically re-directed blood 

lymphocytes to increase the numbers of anti-tumor T-cells, 3) recombinant cytokines to 

enhance maturation of antigen-presenting cells and activity of cytotoxic T-cells, 4) 

checkpoint inhibitors to reduce T-cell unresponsiveness and 5) cancer vaccines to 

induce memory response.  

 

1.5.1 Immune Evasion and Tumor Resistance 

 

Although encouraging clinical signs of efficacy following active and passive 

immunotherapy have been observed in several tumor types, a substantial number of 

patients have derived little to no benefit due to immune evasion and resistance 

mechanisms employed by solid tumors. In terms of immunotherapy, tumor resistance 

can be divided in intrinsic, naturally acquired and therapy-induced resistance 

(Kelderman et al. 2014) (Figure 3). 
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Figure 3. Categories of resistance related to cancer immunotherapy. Intrinsic and 
naturally acquired resistance to anti-tumor immunity result in progressive disease (PD), 
whereas patients which initially respond (complete response, CR or partial response, PR) 
eventually relapse due to therapy-induced rise of resistant tumor cell variants. 
 

Intrinsic resistance refers to a situation where a subset of patients do not respond to 

treatments due to the lack of anti-tumor immunity and failure to elicit T-cell responses 

against tumor-associated antigens either on systemic or local level. This applies to 

immune-compromised patients with HIV infection and patients receiving 

immunosuppressive medication following organ transplantation, both of which carry an 

increased risk of virally induced cancers such as Kaposi’s sarcoma (Butel 2000). 

Systemic intrinsic resistance can also be formed when tumors (over-) express self-

antigens that are susceptible to peripheral tolerance, leading to low avidity of the 

available T-cell repertoire (Kvistborg et al. 2013). However, human tumors have the 
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capacity to express viral-derived or mutated neo-antigens, which are epitopes recognized 

as foreign by the immune system. Several reports indicate that immune detection of such 

neo-antigens may hold the key to successful tumor control (Heemskerk et al. 2013, 

Robbins et al. 2013a, van Rooij et al. 2013, Brown et al. 2014, Champiat et al. 2014, 

McGranahan et al. 2016). Thus, tumors without viral origin and/or with a low mutational 

load may be efficient in evading immune recognition due to lack of immunogenic 

antigens (Alexandrov et al. 2013a, Vogelstein et al. 2013a). Lastly, local intrinsic 

resistance may occur in the form of hostile tumor microenvironment, which may prevent 

tumor-infiltration or effector function of anti-tumor T-cells even though systemic 

responses are induced (Gajewski et al. 2010, Taube et al. 2012, Lutz et al. 2014). Tumor-

level expression of PD-L1 and secretion of inhibitory molecules such as TGF-��, IL-10 

and IDO preceding T-cell infiltration can have a direct inhibitory effect on T-cell 

functionality in TME (Geissmann et al. 1999, Steinbrink et al. 1999, Braun et al. 2005). 

Furthermore, indirect immunosuppression by tolerogenic immature DCs, myeloid-

derived suppressor cells (MDSCs), Tregs, tumor-associated macrophages (TAM) and 

tumor-associated neutrophils (TAN) form a barrier for T-cell mediated tumor destruction 

(Lutz and Schuler 2002, Harlin et al. 2006, Vukmanovic-Stejic et al. 2006, Strauss et al. 

2007, Gabrilovich et al. 2012). 

 

Naturally occurring immune pressure can lead to reduced sensitivity of anti-tumor T-

cells in a process called naturally acquired resistance, which is unique to 

immunotherapy. In this type of situation, signs of ongoing immune response can be 

detected in periphery and tumor tissue but these patients fail to benefit from 

immunotherapy. Multiple inhibitory feedback loops in TME can affect T-cell activity, 

such as expression of checkpoint molecules PD-1, CTLA-4, LAG-3, TIM-3 and BTLA 

(Pardoll 2012). For example, upon binding to specific TAA, TIL can secrete IFN-�� 

which in turn can upregulate PD-L1 expression on the surface of tumor cells (Spranger 

et al. 2013). This leads to interaction between PD-1 on TIL and PD-L1 on tumor cell and 

triggers T-cell exhaustion (Taube et al. 2012). In addition, naturally occurring immune 

responses can induce immunoediting of tumors, leading to downregulation of MHC class 
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I expression on tumor cells (Khong et al. 2004, Pandha et al. 2007) or antigen-negative 

tumor cell variants (Khong and Restifo 2002, Matsushita et al. 2012a). T-cell dependent 

immunoselection process has been identified as a key factor in the formation of less 

immunogenic tumor cell clones evading immune-mediated anti-tumor attack (Shankaran 

et al. 2001, DuPage et al. 2012, Matsushita et al. 2012b), strongly contributing to 

naturally acquired resistance. 

 

The aforementioned upregulation of immune checkpoint molecules can also occur 

following T-cell based immunotherapy, in which case it is defined as therapy-induced 

resistance. In classical oncology, therapy-induced resistance has usually been associated 

with cytotoxics and targeted therapies such as BRAF inhibitors (Chapman et al. 2011, 

Holohan et al. 2013). Treatment with such targeted therapies can result in enrichment of 

resistant tumor clones due to selection pressure and mutations. Similarly, any 

immunotherapeutic approach targeting a single TAA can potentially augment tumor 

immunoediting into antigen-negative and/or less immunogenic tumor cell variants 

(Sampson et al. 2010). In terms of oncolytic viruses, resistance can be acquired following 

repeated virus administration via several different mechanisms including interferon 

signaling (Liikanen et al. 2011a, Liu et al. 2013a), production of neutralizing antibodies 

(White et al. 2008) and recruitment of anti-viral immune cells (Fulci et al. 2007), 

resulting in therapy-induced anti-viral immunity in patients naïve to virus prior to 

therapy.  

 

1.5.2 Clinical Application of Oncolytic Immunotherapies  

 

Both oncolytic viruses and re-directed anti-tumor T-cells can be considered oncolytic 

immunotherapies, as both utilize viral vectors to specifically target and lyse tumor cells. 

More importantly, these therapies can also stimulate immunity against both targeted and 

non-targeted TAAs, potentially resulting in a polyclonal anti-tumor response that may 

delay or inhibit the onset of immune evasion. In addition, both approaches have shown 

emerging clinical signs of induced anti-tumor immunity coupled with promising signs 
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of efficacy. These effects could be further enhanced if tumor resistance could be reduced 

or circumvented, allowing development of ACT and oncolytic viruses into curative 

cancer immunotherapies.  

 

1.5.2.1 Oncolytic Viruses 

 

A few unarmed oncolytic adenoviruses have been tested in clinical studies. 5/2 chimeric 

ONYX-015 resulted in 15-21 % response rate in the treatment of head and neck cancer 

in phase I-II clinical trials (Ganly et al. 2000, Nemunaitis et al. 2001), but failed to induce 

observable responses in other tumor types such as pancreatic and ovarian cancer (Vasey 

et al. 2002, Hamid et al. 2003, Hecht et al. 2003). A highly similar oncolytic adenovirus 

H101 (Oncorine®) also showed good safety and efficacy in clinical trials (Yu and Fang 

2007), and was later approved for the treatment of head and neck cancer in China (Garber 

2006). In contrast, most recent approaches in the field of oncolytic virotherapy have 

relied on inclusion of immunostimulatory transgenes, of which GM-CSF seems to be 

most commonly used in clinical studies to date. Different oncolytic adenoviruses based 

on fully serotype 5 or 5/3 chimeric fiber and hGM-CSF arming have shown signs of anti-

viral and anti-tumor immune cell activation and disease stabilization in patients treated 

in personalized treatment program ATAP (Cerullo et al. 2010, Koski et al. 2010, 

Bramante et al. 2014). Similarly, Ad5/3-D24-hGMCSF (ONCOS-102) therapy resulted 

in 40 % rate of stable disease (SD) in recently completed phase I 

(clinicaltrials.gov/ct2/show/results/NCT01598129 on January 5, 2016), and is currently 

in entering phase I/II trials as mono- and combinatorial therapy.  

 

Other successfully implemented GM-CSF armed viruses in clinical settings include 

oncolytic vaccinia virus JX-594 (Pexa-Vec) and oncolytic herpes simplex virus (HSV) 

Talimogene laherparevec (T-VEC, Imlygic®). Initial phase I study of seven melanoma 

patients treated with JX-594 showed one partial response (PR) and one complete 

response (CR) (Mastrangelo et al. 1999) and subsequent phase I trials resulted in disease 

stabilization in 9/10 patients with primary or metastatic liver cancer and in 10/15 patients 
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with colorectal cancer (Park et al. 2008, Park et al. 2015). As a randomized phase II 

study with Pexa-Vec in refractory, advanced liver cancer patients failed to meet its 

primary endpoint of overall survival, upcoming phase III will focus on first-line 

hepatocellular carcinoma patients (Breitbach 2015).  

 

Out of the several oncolytic viruses studied in clinical trials, T-VEC was the first to 

receive approval from US Food and Drug Administration (FDA) and European 

Medicines Agency (EMA) in October 2015 (Ledford 2015). Initial phase I trial showed 

disease stabilization in three patients with breast cancer or malignant melanoma (Hu et 

al. 2006). Subsequent phase II study with T-VEC focused on solely on late-stage 

melanoma, resulting in 8/50 patients experiencing CR, 5/50 experiencing PR and 10/50 

experiencing SD (Senzer et al. 2009). Furthermore, induction of systemic host immune 

responses against non-injected lesions was observed both studies, suggesting that both 

regional and distant metastases can be targeted (Hu et al. 2006, Senzer et al. 2009, 

Kaufman et al. 2010). Results of phase III study were recently published and showed 

that intralesional T-VEC improved the overall response rate from 5.7 % to 26.4 % and 

durable response rate from 2.1 % to 16.3 % when compared to subcutaneous GM-CSF 

(Andtbacka et al. 2015). The apparent success of T-VEC paves the way for clinical 

approval of other oncolytic viruses and highlights their underlying immunostimulatory 

potential that could be harnessed for vigorous cancer immunotherapy. 

 

1.5.2.2 Adoptive T-Cell Therapies 

 

In clinical studies, autologous TIL transfer in the treatment of metastatic melanoma has 

resulted in 39 % response rate without lymphodepletion (Dudley 2005, Dudley et al. 

2008b) and in 50 % response rate when including cyclophosphamide and fludarabine in 

the treatment protocol (Dudley et al. 2005, Dudley et al. 2008a, Besser et al. 2010a). 

Significant enhancement of objective clinical response to 72 % and impressive 40% rate 

of CR was seen when TBI of 12 Gy was also included (Dudley et al. 2008a, Rosenberg 

et al. 2011). Notably, these clinical responses came at the cost of significant toxicity, 
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raising the question of acceptable risk-to-benefit ratio. Besides melanoma, testing of TIL 

therapy has been limited to few solid tumor types. In a recently published clinical 

protocol, 3/9 metastatic cervical cancer patients treated with human papillomavirus-

targeted TILs experienced objective tumor responses, including two CRs (Stevanovic et 

al. 2015). Overall response rate of 82 % was seen in ovarian cancer patients without IL-

2 administration in early human trials (Aoki et al. 1991), but subsequent trials failed to 

reach similar results and no clinical responses was observed (Freedman et al. 1994). In 

renal cell carcinoma, first study with TILs and low-dose IL-2 resulted in overall response 

rate of 35 % (Figlin et al. 1997). The following randomized phase III trial provided no 

additional benefit from TILs when compared to IL-2 treatment alone, probably due to 

significant difficulties in TIL manufacturing (Figlin et al. 1999). More recently, a new 

clinical trial was started to study the usability of TIL therapy in these and other tumor 

types such as pancreatic cancer, gastric cancer and hepatocellular carcinoma (Andersen 

et al. 2015). 

 

In contrast to major success in hematological malignancies (Kochenderfer et al. 2010, 

Kalos et al. 2011, Porter et al. 2011, Brentjens et al. 2013, Grupp et al. 2013b), the 

efficacy of CAR T-cells in solid tumors has been somewhat disappointing. CAR-Ts 

targeting CAIX in metastatic renal cell carcinoma did not result in any objective clinical 

responses in 11 treated patients (Lamers et al. 2006). Similarly, treatment with CAR-

modified T-cells against �.-folate receptor did not induce any tumor responses in 14 

patients with ovarian cancer (Kershaw et al. 2006). More recently, 3/16 osteosarcoma 

patients infused with HER2 targeted CAR-Ts showed stable disease (Ahmed et al. 2015). 

In neuroblastoma trials, 6 patients were treated with anti-L1-CAM CAR T-cells without 

any clinical responses (Park et al. 2007) but CAR-Ts targeting GD2 led to complete 

response in 3/11 patients (Louis et al. 2011). Currently, several clinical trials in solid 

tumor indications are ongoing, including CAR-Ts targeting mesothelin in metastatic 

mesothelin+ cancers, EGFRvIII in glioma, VEGFR2 in metastatic melanoma and renal 

cancer, and HER2 in glioblastoma, sarcoma and other HER+ malignancies (Fousek and 

Ahmed 2015).  
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Compared to CAR-Ts, TCR-modified T-cells appear to be more efficient in the treatment 

of solid tumors, possibly due to selection of more amenable cancer types. In a clinical 

trial using high affinity TCR for CEA in metastatic colorectal cancer, 1/3 treated patients 

experienced a partial tumor response (Parkhurst et al. 2011). TCR therapy targeting 

melanocyte antigens gp100 and MART-1 led to treatment benefit in 3/16 and 6/20 

melanoma patients, respectively (Johnson et al. 2009). In the previously discussed trial 

with severe neurological toxicity, MAGE-A3-targeted TCR therapy was reported to 

induce objective responses in 5/9 patients with one complete response (Morgan et al. 

2013). Finally, TCR-transduced T-cells specific for HLA-A2 restricted NY-ESO-1 

resulted in tumor responses in 4/6 patients with synovial cell sarcoma and in 5/11 

patients with melanoma, two of them having CR (Robbins et al. 2011). The 

aforementioned results from various clinical studies indicate that ACT can be a powerful 

approach in the treatment of solid tumors as long as key questions concerning toxicity, 

optimal target antigens and the need for preconditioning regimens are resolved. 

 

1.5.3 Other Approaches in Cancer Immunotherapy 

1.5.3.1 Recombinant Cytokines 

 

Modulation of anti-tumor immune response by using recombinant cytokines is another 

approach in cancer immunotherapy. The major limitation of recombinant cytokines is 

their instability and short half-live, necessitating high systemic concentrations for 

substantial effects to occur, often resulting in toxicities as in the case of IL-2 (Tagawa 

2000). Although several recombinant cytokines have been studied in clinical trials, only 

IFN-�. and IL-2 have become established forms of therapy in solid malignancies. IFN-

�.2b (Intron A®) is used in patients with melanoma, AIDS-related Kaposi’s sarcoma and 

cervical intraepithelial neoplasms (Vacchelli et al. 2014b). IL-2 (Aldesleukin®) is 

approved for treatment of metastatic melanoma and renal cell cancer and has shown 

durable complete response rate of 7 % (Atkins 2002, Atkins et al. 2004). However, the 

associated SAE has limited the use of high-dose IL-2 in the clinics, which has led to 
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development of IL-2 variants with greater therapeutic index and less toxicity (Shanafelt 

et al. 2000, Levin et al. 2012). In addition, growth-stimulating cytokines such as GM-

CSF (Leukomax®, Mielogen, Leukine®) and granulocyte colony-stimulating factor (G-

CSF) (Neupogen®) have been used to reconstitute the immune system after 

chemotherapy or lymphoablating regimens (Arellano and Lonial 2008), but have not 

been used as standalone anti-tumor immunotherapeutic agents. Finally, tumor necrosis 

factor �. (TNF-�.) has been EMA approved for the treatment of soft-tissue sarcoma and 

melanoma, administered as isolated limb perfusion in order to limit systemic toxicity 

(Deroose et al. 2011a, Deroose et al. 2011b). Currently several new clinical studies are 

ongoing, most of them focusing on rational combinations with recombinant cytokines 

such as IL-2, IFN-�., IL-7, IL-15 and GM-CSF (Vacchelli et al. 2014b). 

 

1.5.3.2 Monoclonal Antibodies 

 

The clinical utility of monoclonal antibodies (mAbs) was initially limited due to 

complications associated with administering murine mAbs. These complications 

included suboptimal ability of murine Abs to co-operate with human immune cells and 

the induction of host anti-mAb immune responses that elicited rapid clearance of mAbs 

(Weiner 2015). However, recent advances in genetic engineering techniques have led to 

generation of chimeric (33 % mouse protein), humanized (5-10 % mouse protein) and 

fully human mAbs that can mimic the behavior of natural occurring human IgGs (Imai 

and Takaoka 2006). Mechanistically mAbs can be divided in two categories, 

immunostimulatory mAbs and tumor-targeting mAbs.  

 

Immunostimulatory mAbs function by specifically binding to and either activating co-

stimulatory receptors or inhibiting immunosuppressive receptors (Aranda et al. 2014). 

Immune checkpoint inhibitor targeting CTLA-4, known as Ipilimumab (Yervoy®), was 

the first immunostimulatory mAb to get FDA approval in 2011 (Sondak et al. 2011). 

Since then, antagonistic mAbs targeting PD-1, known as nivolumab (Opdivo®) and 

pembrolizumab (Keytruda®), have been approved for the treatment of melanoma, RCC 
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and non-small cell lung cancer (Postow et al. 2015). Also mAbs blocking PD-L1 are 

currently in phase II and III trials (Planchard et al. 2015, Spira et al. 2015). Although the 

concept of checkpoint blockade in both cases is similar, CTLA-4 is thought to inhibit T-

cells in priming phase (regulating de novo immune responses), whereas PD-1 – PD-L1 

axis augments T-cell inhibition in effector phase (influencing ongoing T-cell responses).  

 

Several agonistic mAbs are currently under clinical evaluation. Anti-CD40 mAbs 

capable of inducing tumor cell apoptosis and APC maturation have been studied in phase 

I trials for the treatment of melanoma, pancreatic ductal adenocarcinoma (PDAc) and 

other solid tumor types (Aranda et al. 2014, Hassan et al. 2014). The concept of BiTe 

was recently introduced, having the potential to re-direct T-cells against tumor-

associated surface antigens (Nagorsen and Baeuerle 2011). So far only CD19 x CD3 

BiTe Blinatumomab (Blincyto®) has received FDA approval for the treatment of B-cell 

acute lymphoblastic leukemia, whereas phase I trial with EpCam x CD3 BiTe for the 

treatment of EpCam+ solid tumors is ongoing (Sheridan 2015). Moreover, trifunctional 

mAb Catumaxomab (Removab®), consisting of EpCam x CD3 antigen binding sites and 

intact Fc region, has been EMA approved for treatment of malignant ascites (Bokemeyer 

2010). 

 

In contrast to immunostimulatory mAbs, tumor-targeting mAbs bind to malignant cells 

and exert antineoplastic effects by inhibiting signaling pathways necessary for survival 

and/or proliferation (Vacchelli et al. 2014a). However, treatment with some of these 

mAbs such as anti-HER2 Trastuzumab (Herceptin®) and anti-EGFR Cetuximab 

(Erbitux®) can also lead to selective opsonization of malignant cells, resulting in 

engagement of innate immunity in the form of antibody-depended cell-mediated 

cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) (Hubert and 

Amigorena 2012, Rogers et al. 2014). An important realization so far has been the 

observation that immunoglobulin subclass IgG1 can mediate ADCC but IgG4 cannot 

(Weiner 2015). This has been taken into account in the development of several novel 
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immunostimulatory and tumor-targeting mAbs where ADCC is required for full 

therapeutic effect. 

 

1.5.3.3 Cancer Vaccines 

 

Therapeutic cancer vaccines are designed to eradicate tumor cells through strengthening 

the patients’  own immune responses. Despite extensive clinical testing, the historical 

response rate of therapeutic vaccines using peptides, whole tumor cells, pox viruses or 

DCs has remained in 3.8 % (Rosenberg et al. 2004). The only approved cancer vaccine 

to date is Sipuleucel-T (Provenge®), which is based on ex vivo pulsing of peripheral 

APCs with GM-CSF and prostate antigen PAP. Sipuleucel-T received FDA approval in 

2010 for the treatment of asymptomatic metastatic castrate-resistant prostate cancer 

(Cheever and Higano 2011), as phase III trial of more than 500 patients showed 

improvement in overall survival from 21.7 months in the control arm to 25.8 months in 

the vaccine arm (Kantoff et al. 2010). Many other therapeutic vaccines are currently 

under development or being evaluated in clinical trials, including tumor cell vaccines, 

protein/peptide vaccines and genetic (DNA, RNA and viral) vaccines (Guo et al. 2013).  

 

The highly immunosuppressive microenvironment in solid tumors can quickly eliminate 

or neutralize vaccine-elicited T-cells responses (McGray et al. 2014), which may partly 

explain the lack of anti-tumor activity in previous vaccine trials. Consequently, recently 

launched clinical trials with cancer vaccines have focused on rational combinations with 

checkpoint inhibitors and other immunomodulatory agents to counteract regulatory 

immune mechanisms (Melief et al. 2015). Other major obstacles of cancer vaccinations 

strategies have been the lack of local inflammatory cues and relatively poor 

understanding of the optimal way to induce strong and sustained T-cell response against 

solid tumors. As the understanding of tumor immunology increases, several novel 

approaches are expected to follow in the upcoming years, including oncolytic viruses as 

in situ cancer vaccines. 
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2 AIMS OF STUDY 

 

1. To evaluate  approaches  to  enhance  anti-tumor  efficacy and  reduce  antiviral  

immunity  in the context of oncolytic virotherapy (I, IV) 

2. To study  the homing and  function of  adoptively transferred  T-cells  following  

intratumoral  injection  of immunostimulatory agents (II, III) 

3. To  identify   mechanism-of-action   of   anti-tumor efficacy induced by 

combination of adoptive T-cell therapy and oncolytic adenovirus (II) 

4. To study  the  impact  of  immunostimulatory cytokines on tumor 

microenvironment in the context of adoptive T-cell therapy (III)  
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3 MATERIALS AND METHODS 

 

3.1 Cell Lines 

 

In all the studies, oncolytic adenovirus production was done in human lung 

adenocarcinoma cell line A549 and titering was performed with human E1-transformed 

embryonic kidney cell line HEK293. Production and titering of replication-deficient 

adenoviruses was done in HEK293 cells. In study I, vaccinia virus production was done 

in A549 cells and titering in African green monkey kidney epithelial cell line Vero. In 

studies I and IV, ovarian carcinoma Skov3-Luc cells were used for bioluminescence 

imaging as these cells stably express transgenic firefly luciferace. In studies I, II and III, 

in vivo experiments were conducted with murine melanoma B16.OVA cells, which 

express chicken ovalbumin (OVA) as surrogate tumor antigen. All cell lines used in the 

studies are summarized in Table 1. 

 

Table 1. Cell lines used in the studies. 

Cell line Description Species Source Used in  

study 

A549 lung 

adenocarcinoma 

human ATCC I, II, III, IV 

HEK293 transformed 

embryonic kidney 

cells 

human Microbix I, II, III, IV 

Vero kidney epithelial 

cells 

African 

green 

monkey 

ATCC I 

786-O renal carcinoma human ATCC I 
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Skov3-Luc ovarian carcinoma human provided by 

Dr. Negrin 

(Stanford 

Medical 

School, 

Stanford, 

CA) 

I, IV 

B16.OVA melanoma mouse provided by 

Prof. Vile 

(Mayo 

Clinic, MN) 

I, II, III 

B16.F10 melanoma mouse ATCC II 

 

All cell lines were maintained in either RPMI 1640 or DMEM containing 10 % fetal calf 

serum (FCS), 1× L-glutamine and 1× penicillin/streptomycin. In addition, 10 % G-418 

was added into the growth medium of B16.OVA cells. 

 

3.2 Patient Tumor Explant Tissues 

 

Fresh ovarian cancer tissue samples were obtained from Women’s Hospital of Helsinki 

University Central Hospital with informed consent and ethical committee permission 

(373/E6/2003). Primary tumor tissue from patients undergoing surgery was placed in a 

chilled 50 ml Falcon tube containing DMEM supplemented with 10 % FCS, L-glutamine 

and penicillin/streptomycin and transported to BSL-2 laboratory for further processing. 

 

3.3 Adenoviruses  

 

The replication-deficient adenoviruses used in studies I and II were E1- and E3-deleted 

adenoviruses with firefly luciferase transgene inserted into the deleted E1 region under 

cytomegalovirus (CMV) promoter. In study I, neutralizing antibody assay was done with 
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Ad5/3-Luc, a chimeric serotype 5 adenovirus modified with serotype 3 knob. In study 

II, pre-immunization of mice was performed with Ad5-Luc, which is fully serotype 5 

adenovirus. 

 

The replication-competent adenoviruses used in studies I, II and IV were all 5/3-fiber 

chimeric, oncolytic adenoviruses harboring a 24 base-pair deletion (D24) in the 

retinoblastoma (Rb) binding region of E1A. In study I, Ad5/3-D24-TK/GFP was used 

for fluorescence microscopy as the virus contains a transgene encoding green fluorescent 

protein (GFP). In study II, experiments were conducted with Ad5/3-D24 and Ad5/3-

D24-hGMCSF. Although the latter contains a transgene, it was considered to be unarmed 

as human granulocyte macrophage colony-stimulating factor (hGMCSF) is not 

biologically active in murine cells (Shanafelt et al. 1991).  

 

Production and characterization of replication-deficient and replication-competent 

adenoviruses are described in the original publications and references. Briefly, 

adenoviruses were amplified in A549 or HEK293 cells, purified on double cesium 

chloride gradients and titered by spectrophotometry (for VP/ml) and by standard tissue 

culture infectious dose 50 (TCID50) assay (for PFU/ml). Furthermore, presence of 

transgenes and other genetic modifications and the absence of wild-type adenovirus were 

confirmed with polymerase chain reaction (PCR). All adenoviruses used in the studies 

are summarized in Table 2. 

 

Table 2. Adenoviruses used in the studies. 

Virus Transgene Used in 

study 

Reference 

Ad5/3-Luc luciferase I (Kanerva et al. 2002) 

Ad5-Luc luciferase II (Kanerva et al. 2002) 

Ad5/3-D24 - II, IV (Kanerva et al. 2003) 
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Ad5/3-D24-

TK/GFP 

green fluorescent 

protein 

I, IV (Raki et al. 2007) 

Ad5/3-D24-

hGMCSF 

human granulocyte 

macrophage colony-

stimulating factor 

II (Koski et al. 2010) 

 

3.4 Vaccinia Viruses  

 

The vaccinia viruses used in study I were of Western Reserve strain with total deletion 

in the vaccinia growth factor (VGF) and partial deletion in thymidine kinase (TK) gene. 

Production and characterization of these replication-competent, double deleted vaccinia 

viruses (VVdd) are described in references (Table 3). Briefly, vaccinia viruses were 

amplified in A549 cells, purified on sucrose cushion and titered by plaque assay (for 

PFU/ml) in Vero cells. Presence of transgenes was confirmed PCR and fluorescence 

microscope. All vaccinia viruses used in the studies are summarized in Table 3. 

 

Table 3. Vaccinia viruses used in the studies. 

Virus Transgene Used in 

study 

Reference 

VVdd-Luc luciferase I (Guse et al. 2010) 

VVdd-tdTomato tdTomato I (Parviainen et al. 2014) 

 

3.5 In Vitro  Studies 

3.5.1 Cytotoxicity Assays 

 

To study cell killing efficacy of oncolytic adenovirus on murine B16.OVA cells (study 

I), B16.OVA cells were plated in 96-well plates (1×104 cells/well) and infected in 

triplicates with different concentrations of Ad5/3-D24-TK/GFP in 2% RPMI. Progress 

of infection was monitored daily and cell viability was assessed 13 and 22 days post-
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infection by CellTiter 96 Aqueous One Solution Cell Proliferation Assay (Promega) 

according to manufacturer’s instructions. 

 

To study synergistic cell killing of oncolytic adenovirus and oncolytic vaccinia virus 

(study I), A549 or 786-O cells were seeded in 96-well plates (5×104 cells/well) and 

infected in six replicates with different multiplicity of infection (MOI) of Ad5/3-D24-

TK/GFP and VVdd-tdTomato. Cell viability was assessed 72 hours post-infection by 

CellTiter 96 Aqueous One Solution Cell Proliferation Assay per manufacturer’s 

instructions. 

 

3.5.2 Electron Microscopy 

 

Skov3-Luc cells were infected with Ad5/3-D24-TK/GFP (100 PFU/cell) and VVdd-

tdTomato (10 PFU/cell) and sorted for GFP+ TdTomato+ double positive cells 24 hours 

post-infection. Co-infected cells were gently scraped of the culture dish and fixed 

immediately with 2 % glutaraldehyde. After storing the samples overnight in +4ºC, cells 

were dehydrated and embedded in LX-112 resin. Finally, the cells were sectioned, 

mounted on electron microscope (EM) grids and analyzed under JEOL 1400 

Transmission EM. 

 

3.5.3 111In-oxine Cell Labeling 

 

For in vitro cell viability assay, 1×105 OT-I T-cells were labeled with 0-3.70 Bq 111In-

oxine (half-life of 2.83 days) per cell for 15-20 min in room temperature. Radiolabeled 

OT-I cells were washed twice with growth medium and placed in a 24-well plate wells 

in lymphocyte media supplemented with anti-CD3e (Abcam) and mIL-2 (R&D 

Systems). Cells were monitored for 7 days and finally cell viability and proliferation 

were assessed by Trypan Blue staining. The optimal dose for in vivo studies was 

determined as a dose that didn’t induce significant cell death but inhibited lymphocyte 
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proliferation, so that migration into tumors was the only measured parameter in 

SPECT/CT imaging. 

 

3.6 In Vivo Studies 

 

All in vivo studies were carried out in accordance with the Act on the Protection of 

Animals Used for Scientific or Educational Purposes (497/2013) and the Government 

Decree on the Protection of Animals Used for Scientific or Educational Purposes 

(564/2013). Animal protocols were reviewed and approved by the National Animal 

Experiment Board (Eläinkoelautakunta ELLA) of the Regional State Administrative 

Agency of Southern Finland (ESAVI/4621/04.10.03/2012). 

 

4-7 week old mice were ordered from Harlan Laboratories, Jackson Laboratories or 

Taconic. Mice were housed in individually ventilated cages in BSL2 level facility and 

the health status of the mice was examined daily. Intratumoral injections (I, II, III) and 

in vivo imaging (I, II, IV) were performed under isoflurane gas anesthesia. All efforts 

were made to minimize suffering and mice were euthanized if their general condition 

deteriorated or if one of the two tumor diameters reached 18 mm. 

 

3.6.1 Animal Models 

3.6.1.1 Immunodeficient Mouse Models  

 

In study I, nude Naval Medical Research Institute (NMRI) mice were implanted 

subcutaneously with 3×106 human A549 cells into both flanks. When tumors reached 

injectable size, xenografts on the right flank were treated intratumorally with either 50 

�—l PBS, 1×108 PFU Ad5/3-D24 or 1×107 PFU VVdd-tdtTomato. After 48 hours, mice 

were treated intravenously with either 1×108 PFU Ad5/3-D24 or 1×107 PFU VVdd-

tdTomato. After another 48 hours, tumors and livers were harvested for plaque assay, 

TCID50 and qPCR. 
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Also in study I, nude NMRI mice were implanted subcutaneously with 2.5×105 murine 

B16.OVA cells into right flank. Tumors of injectable size were treated intratumorally 

with either 50 �—l PBS or 1×1010 VP Ad5/3-D24 or 1×108 PFU VVdd-tdTomato. After 3 

days, mice were treated intratumorally with either 50 �—l PBS or 1×1010 VP Ad5/3-D24 

or 1×108 PFU VVdd-tdTomato. Growth of subcutaneous tumors was calculated using 

formula length×width2×0.52. 

 

In study I and IV, female severe combined immunodeficiency (SCID) mice were 

implanted intraperitoneally with 3×106 human Skov3-Luc cells. In study I, mice were 

treated intraperitoneally either with 100 �—l PBS or 1×109 VP Ad5/3-D24. After 48 hours, 

mice were treated intraperitoneally with either 100 �—l PBS or 1×108 PFU VVdd-Tomato. 

The virus treatments were continued weekly for total of four weeks. In study IV, mice 

were treated intraperitoneally with either 100 �—l PBS or ruxolitinib (LC Laboratories). 

After minimum of 2 hours, mice were treated intraperitoneally either with 100 �—l PBS 

or 1×109 VP Ad5/3-D24. Virus treatments were continued once a week and ruxolitinib 

three times a week. In both studies, growth of intraperitoneal tumors was measured twice 

a week by IVIS imaging system.  

 

3.6.1.2 Immunocompetent Mouse Models  

 

In studies I-III, immunocompetent female C57BL/6 mice were implanted 

subcutaneously with 2.5×105 murine B16.OVA cells into right flank. Tumors usually 

became injectable (>3 mm in diameter) on day 10 post-implantation.  

 

In study I, mice were primed intratumorally with either 50 �—l PBS or 1×1010 VP Ad5/3-

D24 or 1×108 PFU VVdd-tdTomato. To compensate for the lack of adenovirus 

replication in the mouse model system, mice were re-injected with 1×1010 VP Ad5/3-

D24 the following day. Six days post-treatment one set of mice was euthanized and 

tumors were harvested for plaque assay and TCID50. To study the effect of boosting, 

the virus regimen was repeated on another set of primed mice using intratumoral 
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administration of PBS, Ad5/3-D24 or VVdd-tdTomato. Tumor growth was followed for 

12-14 days, after which tumors were collected for flow cytometry and serum for 

neutralizing antibody assay. 

 

In study II, mice were treated intratumorally with 50 �—l PBS or 1×109 VP Ad5/3-D24-

hGMCSF on six consecutive days. On the first day of virus treatment, mice were also 

adoptively transferred with 5×105 or 2×106 CD8a-enriched T-cells isolated from spleens 

and lymph nodes of C57BL/6-Tg(TcraTcrb)1100Mjb/J (OT-I) mice. Tumor growth was 

followed for 14 days, after which tumors and tumor-draining lymph nodes were collected 

for flow cytometry and spleens for interferon-�� ELISPOT. For B16.F10 challenge 

experiment, tumor-naïve or virus/T-cells combination treated, B16.OVA-bearing mice 

were implanted subcutaneously with 2.5×105 murine B16.F10 cells into left flank on day 

13 post-transfer. Emergence or growth of B16.F10 tumors was followed for 14 days. 

 

In study III, mice were either left non-injected or injected intratumorally with 50 �—l PBS 

or recombinant cytokines five times a week for two weeks. On the first day of 

intratumoral treatments, mice also received intraperitoneally an adoptive transfer of 

2×106 CD8a-enriched OT-I T-cells (in 100 �—l plain RPMI). Tumor growth was followed 

for 14 days, after which tumors were collected for cytokine analysis and flow cytometry. 

 

3.6.2 Isolation and Expansion of T-Cells 

 

Ovalbumin-specific, TCR transgenic OT-I mice recognize OVA residues 257-264 

(SIINFEKL) in the context of H-2Kb. For studies with adoptive transfer of T-cells, 

spleen and lymph nodes were harvested from OT-I mouse and minced in 10 % RPMI 

using a scalpel. Cells were passed through a 70 �—m sterile filter and centrifuged at 1100 

rpm for 4 min, after which red blood cells were lysed with Ammonium-Chloride-

Potassium (ACK) lysis buffer. Remaining immune cells were washed twice with 10 % 

RPMI and resuspended in lymphocyte medium (RPMI 1640, 10 % FBS, 20 mM L-

Glutamine, 1× Pen/Strep solution, 15 mM HEPES, 50 ��M 2-mercaptoethanol, 1 mM Na 
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pyruvate) supplemented with 160 ng/ml recombinant murine IL-2 (R&D Systems) and 

300 ng/ml soluble anti-mouse CD3e antibody clone 145-2C11 (Abcam).  

 

Cells were grown for two days, after which cytotoxic CD8+ T-cells were enriched using 

mouse CD8a+ T-cell Isolation Kitt II and LS columns (Miltenyi Biotec) per 

manufacturer’s recommendations. Non-target cells (i.e. T helper cells, B cells, NK cells, 

dendritic cells, macrophages, granulocytes, endothelial cells and erythroid cells) were 

magnetically labeled with biotin-conjugated antibodies and anti-biotin MicroBeads, 

allowing depletion of non-CD8a+ cells. The flow-through, representing the enriched 

CD8+ T-cells, was collected and resuspended in lymphocyte medium with mIL-2 and 

anti-CD3e. T-cells were expanded in numbers for five additional days, harvested and 

adoptively transferred into recipient B16.OVA-bearing mice. 

 

3.6.3 Recombinant Cytokines 

 

Carrier-free murine cytokines without BSA (Table 4) were thawed, reconstituted in PBS 

at a stock concentration of 100 �—g/ml and stored in aliquots at -80ºC. Right before 

intratumoral administration, one aliquot was thawed, diluted in PBS and kept on ice until 

use.  

 

Table 4.  Recombinant murine cytokines used in the study. 

Group Dose/Mouse/Day 

(�—g) 

Dose/Mouse/Day 

(U) 

Commercial 

supplier 

GM-CSF 1 N/A Invitrogen 

IL-2 0.3 3 000 Invitrogen 

IFN-�.2 0.3 3 000 eBioscience 

IFN-�� 1.75 10 000 eBioscience 

TNF-�. 0.5 N/A R&D Systems 

 *N/A = not assessed 
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3.6.4 Ruxolitinib 

 

To analyze the effect of antiviral signaling on tumor resistance, SCID mice bearing 

intraperitoneal Skov3-Luc tumors were treated with Janus kinase 1 and 2 inhibitor 

ruxolitinib. Ruxolitinib phosphate salt (LC Laboratories) was reconstituted in PBS 

containing 1 % bovine serum albumin (BSA) and injected intraperitoneally (0.4 mg in 

100 �—l PBS) into mice on days 0, 2, 4, 7 and 9 after starting virus treatments. 

 

3.6.5 NK Cell Depletion 

 

To deplete NK cells, C57BL/6 mice were treated intraperitoneally with anti-asialo GM1 

antibody (Wako Chemicals). 35.7 �—l of undiluted antibody was given per mouse for total 

of 4 times before and after B16.OVA tumor implantation (on days -3, 0, 7 and 15). 

Tumor growth was followed for 14 days, after which spleens were collected for flow 

cytometry to confirm NK-depletion. 

 

3.6.6 Pre-Immunization 

 

To study the effect of pre-existing anti-Ad immunity, a set of mice was immunized by 

two intramuscular injections of replication-deficient Ad5-Luc1 (1×107 VP in 20 �—l PBS). 

Three weeks later, virus-naïve and pre-immunized B16.OVA-bearing mice were treated 

intraperitoneally with 2×106 CD8a-enriched T-cells on day 0 and intratumorally with 50 

�—l PBS or 1×109 VP Ad5/3-D24-hGMCSF on six consecutive days. Tumor growth was 

followed for 14 days, after which spleens were collected for flow cytometry. 

 

3.6.7 Bioluminescence Imaging 

 

SCID mice bearing Skov3-Luc xenografts were imaged twice per week with IVIS 

(Xenogen). Each mouse received 3 mg D-Luciferin (Synchem) in 100 �—l PBS 

intraperitoneally and was anaesthetized with isoflurane. Mice were imaged 8 min later 
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for 10 sec and relative tumor burden was quantified by IVIS signal intensity 

(photons/second/cm2/steradian). 

 

3.6.8 SPECT/CT Imaging 

 

For in vivo nanoSPECT/CT imaging, CD8a+ enriched and expanded OT-I cells were 

suspended in saline and injected into intraperitoneal cavity of recipient mice (with a dose 

of 4.6 ± 1.3 MBq per animal). Adenovirus- and PBS-treated mice were imaged with a 

preclinical four-headed gamma camera with integrated CT system (Bioscan Inc) on days 

1, 4 and 7 post-transfer. Mice were anaesthetized with isoflurane during the scan. CT 

images were acquired with 55 kVp X-ray tube voltage and 500 ms exposure time and 

SPECT images in 16 projections and 230 s per gantry position. The amount of migrated 

OT-I cells in tumors was quantified as percentage of activity in tumor from the total 

activity in the whole body divided by the tumor volume (mm3). Radioactive signal in the 

tumors was further corroborated by ex vivo measurement using gamma counter Wizard 

3 (Perkin Elmer) on day 7 post-transfer (study end-point).  

 

3.7 Ex Vivo Studies 

3.7.1 Infection of Primary Surgical Patient Tissues 

 

Under aseptic conditions, tumor tissue was cut into small pieces (~2 mm3) using a scalpel 

and each piece was placed in a 24-well plate well containing 0.5 ml 10 % DMEM. These 

tumor bits were infected with 1×108 PFU Ad5/3-D24-TK/GFP and/or 1×107 PFU VVdd-

tdTomato per slice. Infected tumor tissue was followed under a fluorescence microscope 

for 7 days, after which samples were collected for quantification of infectious virus 

(PFU/g tumor). 
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3.7.2 Quantification of Viral DNA  

 

In study I and II, murine tumors were collected and digested overnight with proteinase 

K in tissue lysis buffer ATL at 500 rpm +56�|C. Total DNA was extracted using the 

QIAamp DNA Mini Kit (Qiagen) per manufacturer's instructions. Quantitative PCR 

targeting the adenoviral E4 gene, vaccinia virus terminal VGF region, human ��-actin or 

mouse ��-actin was performed as described earlier (Kanerva et al. 2002, Vähä-Koskela 

et al. 2015). Primers and probes used are summarized in Table 5. 

 

Table 5. Primers and probes used in virus qPCR. 

Virus Name Sequence (5´-3´) 

Adenovirus FWD GGAGTGCGCCGAGACAAC 

 REV ACTACGTCCGGCGTTCCAT 

 probe TGGCATGACACTACGACCAACACGATCT 

Vaccinia virus FWD GATGATGCAACTCTATCATGTA 

 REV GTATAATTATCAAAATACAAGACGTC 

 probe AGTGCTTGGTATAAGGAG 

Human ��-actin FWD TCACCCACACTGTGCCCATCT 

 REV GTGAGGATCTTCATGAGGTAGTCAGTC 

 probe ATGCCCTCCCCCATGCCATCCTGCGT 

Mouse ��-actin FWD CGAGCGGTTCCGATGC 

 REV TGGATGCCACAGGATTCCAT 

 probe AGGCTCTTTTCCAGCCTTCCTTCTTGG 

 

3.7.3 Quantitation of Infectious Virus  

 

Virus from ex vivo infected patient tumor bits was rescued by homogenization (using 

Tissue Master 125 rotor from Omni International) and three freeze-thaw cycles. 

Adenovirus was isolated by filtering the part of the lysed samples twice through 0.2 �—m 
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filter (Whattman) and centrifugating at 6000 rpm +4�|C for 4 min. TCID50 assay was 

performed with filtered samples to quantify infectious adenovirus (PFU/ml). In addition, 

plaque assay was performed with non-filtered part of the lysed samples to quantify 

infectious vaccinia virus (PFU/ml). 

 

3.7.4 Neutralizing Antibody Titers  

 

In study I, neutralizing antibodies (NAbs) for adenovirus and vaccinia virus were 

measured from serum samples of virus-treated mice on day 12 post-treatment. To 

inactivate the complement system, serum samples were incubated at +56ºC for 90 min 

and serial dilutions were prepared in plain DMEM. Diluted samples and VVdd-Luc (0.1 

PFU/cell) or Ad5/3-Luc (100 VP/cell) were mixed for 30 min in room temperature on a 

shaker. A549 cells on 96-well plate (1×104 cells/well) were washed with plain DMEM 

and treated in triplicates with serum+virus mix. After 1 h incubation, fresh 10 % DMEM 

was added per well and cells were incubated ON at +37ºC. Finally, growth medium was 

removed and cells were lysed with Reporter Lysis Buffer (Promega) and a single freeze-

thaw cycle. Bioluminescence was measured with Luciferase Assay System using 

TopCount luminometer (PerkinElmer). 

 

3.7.5 Cytokine and Chemokine Analysis  

 

For multiplex analysis of murine cytokines and chemokines, 10-100 mg of tumor tissue 

was collected, snap-frozen in dry ice and stored at -80ºC. Tumors were homogenized 

with Tissue Master 125 rotor in ice-cold PBS supplemented with 0.1 % BSA and 

protease inhibitor cocktail (Sigma-Aldrich). Homogenized samples were centrifuged at 

2000×g +4�|C for 10 min and the supernatant was added on pre-wet 96-well filter plate 

containing Mixed Capture Beads (CBA Flex Set, BD). The plate was shaken for 5 min 

at 500 rpm and incubated for 1 hour at RT (in foil). Next, PE Detection Reagent was 

added, plate was shaken for 5 min at 500 rpm and incubated for 1 hour at RT (in foil). 

Vacuum manifold was applied to aspirate the liquid from wells and the beads were 
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resuspended in Wash Buffer by shaking the plate for 5 min at 500 rpm. Finally, samples 

were run with BD FACSArray bioanalyzer or BD Accuri C6 flow cytometer and 

analyzed using FCAP Array software (BD). 

 

3.7.6 Enzyme-Linked ImmunoSpot (ELISPOT) Assay 

 

For detection of IFN-�� secretion, 1×105 live splenocytes from virus- or mock-treated 

mice were plated into pre-washed and serum-blocked 96-well ELISpot plate. 400 ng of 

HAdV-5 Penton peptide pool, TRP-2 peptide SVYDFFWL, gp100 peptide 

KVPRNQDWL or ovalbumin peptide SIINFEKL was added per well and incubated for 

45 hours at +37°C (in foil). Cells were removed and the plate was washed 5 times with 

PBS containing 0.5 % FCS. Detection antibody R4-6A2-biotin was added and incubated 

for 2 hours at RT. Plate was washed again 5 times and incubated in Streptavidin-ALP 

for 1 hour at RT. Finally, BCIP/NBT-plus substrate solution was added and the plate 

was incubated for 20 min (until spots emerged). Color development was stopped by 

extensive washing with tap water, the plate was left to dry and the number of spots/well 

was quantified by AID ELISpot Reader System (Aid Autoimmun Diagnostika). 

 

3.7.7 Flow Cytometry 

 

3.7.7.1 Tissue Processing 

In studies I, II and III, solid tissues (spleens, tumor-draining lymph nodes and B16.OVA 

tumors) were minced in 10 % RPMI using a scalpel, treated with ACK buffer to lyse red 

blood cells and passed through a 70 �—m sterile filter to create single-cell suspensions. In 

some experiments, tumor tissue was incubated in 10 % RPMI supplemented with 

collagenase type P and benzonase-nuclease for 1-2 hours at 37ºC. After processing, cells 

were either analyzed immediately or frozen in -80ºC for later analysis. 
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3.7.7.2 Staining of Surface Markers 

 

In studies I, II and II, approximately 1-2×106 cells were allocated per well in a round-

well 96-well plate. Cells were washed with FACS stain buffer containing fetal bovine 

serum and �”0.09 % sodium and centrifuged at 500×g +4�|C for 5 min.  For pentamer 

staining, cells were resuspended in stain buffer and incubated with Pro5 MHC Pentamer 

(10 �—l/well) at RT for 20 min (in foil). Cells were washed again and resuspended in 

antibody cocktail containing stain buffer and optimal amounts of fluorochrome 

conjugated antibodies. After incubation on ice for 30 min (in foil), cells were washed 

twice, resuspended in stain buffer and analyzed by flow cytometry (BD FACSAria or 

BD Accuri C6), counting at least 100,000 events per sample. 

 

3.7.7.3 Staining of Intracellular Markers  

 

In studies II and III, single-cell suspensions of tumors were stimulated for 6 h with 1× 

Cell Stimulation Cocktail (eBioscience) containing phorbol myristate acetate (PMA) and 

ionomycin in the presence of brefeldin A. After stimulation, cells were first stained for 

cell surface antigens, washed and fixed with IC Fixation Buffer (eBioscience) for 20-60 

min in RT (in foil). After centrifugation at 400×g RT for 5 min, cells were permeabilized 

twice by resuspending in 1× Permeabilization Buffer (eBioscience) and centrifugating 

at 400×g RT for 5 min. For detection of intracellular antigens, the fixed and 

permeabilized cells were resuspended in antibody cocktail containing Permeabilization 

Buffer and optimal amounts of fluorochrome conjugated antibodies. After incubation at 

RT for 60 min (in foil), cells were washed twice, resuspended in stain buffer and 

analyzed on BD Accuri C6 flow cytometer, counting at least 100,000 events per sample. 

 

3.7.7.4 Antibodies 

 

All the antibodies and pentamers for flow cytometry are summarized in Table 6. 
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Table 6. Antibodies used in the studies. 

Antibody 

 

Host species Commercial 

supplier 

Catalogue 

number 

CD8b-FITC rat eBioscience 11-0083-85 

Foxp3-APC rat eBioscience 17-5773-82 

CD25-PE rat eBioscience 12-0251-82 

CD19-PE rat eBioscience 12-0193-82 

H-2Kb-PE mouse eBioscience 12-5958-82 

H-2Kb-SIINFEKL-PeCy7 mouse eBioscience 25-5743-80 

CD8a-APC rat eBioscience 17-0081-82 

CD45-APC rat eBioscience 17-0451-82 

CTLA-4-PE armenian hamster eBioscience 12-1522-81 

PD-1-PeCy7 armenian hamster eBioscience 25-9985-80 

NK1.1-FITC mouse eBioscience 11-5941-81 

F4/80-APC rat eBioscience 17-4801-82 

CD44-FITC rat eBioscience 11-0441-81 

CD62L-PE rat eBioscience 12-0621-81 

CD69-PeCy7 armenian hamster eBioscience 25-0691-82 

IFN-��-APC rat eBioscience 17-7311-82 

CD31-FITC rat eBioscience 11-0311-82 

gp38-PE golden syrian 

hamster 

eBioscience 12-5381-82 

CD8a-PerCP-Cy5.5 rat eBioscience 45-0081-82 

CD4-PerCP.Cy5.5 rat BD 550954 

CD3-PeCy7 rat BD 560591 

CD11c-FITC armenian hamster BD 553801 

Gr-1-FITC rat BD 553127 

Ly6G-PE rat BD 551461 

CD11b-PerCP-Cy5.5 rat BD 550993 
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Ly6C-APC rat BD 560595 

CD86-PE rat BD 553692 

CD3-APC armenian hamster BD 553066 

CCR7-PerCP-Cy5.5 rat BD 560812 

CD124-PE rat BD 552509 

CD206-FITC rat Biolegend 141704 

TIM-3-APC rat Biolegend 119705 

SIINFEKL-pentamer-APC - Proimmune F093-4B 

KVPRNQDWL-pentamer-

APC 

- Proimmune F1333-4A 

SVYDFFVWL-pentamer-

APC 

- Proimmune F185-4A-E 

 

 

3.8 Statistics 

 

Statistical analyses were performed with MedCalc (MedCalc Software), SPSS version 

21 (SPSS IBM) and GraphPad Prism 6 (GraphPad Software Inc.). Comparisons between 

two groups were done using unpaired, two-tailed Student’s t-test. Comparisons between 

multiple groups were done using one-way ANOVA followed by Tukey’s post-hoc test. 

Area-under-curve (AUC) analysis was used for IVIS imaging data and repeated 

measures ANOVA for log-transformed tumor volume data. Differences were considered 

statistically significant when p-value was less than 0.05. 
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4 RESULTS AND DISCUSSION 

 

4.1 Presence of One Oncolytic Virus Does Not Preclude the Infection by 

Another Virus in Heterologous Virotherapy (I) 

 

Oncolytic viruses can be used as an effective immunotherapeutic approach due to their 

inherent immunostimulatory capacity which can render tumors susceptible to 

recognition by the host immune system. At the same time, induction of anti-viral 

immunity is a problem especially in terms of multiple virus injections, which can lead to 

anti-viral rather than anti-tumor responses. In vaccine studies, this unfavorable anti-

vector response has been circumvented by switching to another, immunologically 

distinct virus vector coding for the same target antigen. Similar prime-boost approach 

was recently taken in a preclinical study, where heterologous virotherapy with oncolytic 

adenovirus Ad5-wt and Lister strain of vaccinia virus demonstrated strong CD3+ T-cell-

dependent therapeutic efficacy in hamster models (Tysome et al. 2012). Unfortunately, 

efficient replication of both oncolytic viruses is unlikely to occur in clinical situations, 

as human tumors are more complex in terms of heterogeneity, tumor stroma and innate 

immune responses. We set out to study how limited replication capacity of one of the 

two viruses, in this case oncolytic adenovirus, would affect the efficacy and anti-viral 

responses in heterologous adeno-poxvirus combination setting. The hypothesis was that 

virus-triggered inflammation could offset the lack of replication (Hallden et al. 2003) 

and that the combination therefore could still be efficacious. 

 

First, we assessed how co-infection of human cancer cell lines and primary tumor tissues 

affects replication of oncolytic viruses Ad5/3-D24-TK-GFP and VVdd-tdTomato. In 

spite of saturating doses of both viruses (100 PFU/cell and 10 PFU/cell, respectively), 

only 10 % of human A549 lung adenocarcinoma cells were found to be GFP+ tdTomato+ 

double positive (Figure 1a, Study I). Nevertheless, mature virus particles were detected 

in double positive Skov3-Luc cells by electron microscopy, indicating that co-infection 

is possible but not preferred (Figure 1c, Study I). Also when primary surgical tumor 
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samples were co-infected, viruses preferentially occupied individual infection regions 

but persisted similarly despite heterologous infection (Figure 1e-f, Study I). 

 

To reveal the level of possible systemic virus-virus interference, subcutaneous A549 

tumors were established in flanks of nude mice and treated intratumorally with PBS or 

the first virus. Two days after intratumoral administration, the mice were treated 

intravenously with PBS or the second virus, and functional titers of both viruses were 

determined from the tumor. Interestingly, vaccinia virus infection was found from PBS-, 

Ad- and non-injected tumors (determined by plaque assay and qPCR). In constrast, 

adenoviral genomes were detected with similar pattern when analyzed by qPCR, but 

infectious adenovirus was found only from PBS- or VV-injected tumors (Figure 2 and 

Supplementary Figure 3, Study I), suggesting that physical manipulation of the tumor 

tissue may promote entry of systematically delivered adenovirus. In conclusion, vaccinia 

virus seems to be more suitable for systemic administration, especially in the case of 

priming virus-naïve tumors in adeno-poxvirus therapy. 

 

4.2 Adeno-Vaccinia Virus Combination Therapy Results in Tumor Growth 

Suppression Even if Adenovirus Replication Is Inhibited (I) 

 

Next, we wanted to study the effect of combination therapy in different mouse models 

exhibiting either acquired anti-adenoviral resistance (Skov3-Luc) or poor susceptibility 

to adenoviral replication (B16.OVA). It has previously been shown that SCID mice 

bearing intraperitoneal Skov3-Luc xenografts can become adenovirus-refractory after 

repeated virus administration (Liikanen et al, 2011), and similar effect was seen in our 

experiment (Figure 3a, Study I). Conversely, injection of oncolytic vaccinia virus two 

days after each adenovirus treatment significantly slowed down the tumor growth and 

delayed the induction of acquired resistance (Figure 3a, Study I). Of note, eventually the 

combination treated Skov3-Luc tumors became resilient even to vaccinia virus (day 28 

post-infection). 
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Immunocompetent hamsters are ideal models to study the adenoviral replication and 

oncolysis, especially of Ad5-based vectors (Diaconu et al. 2010), which is why it is not 

surprising that Ad-VV combination therapy was highly effective in these animals 

(Tysome et al. 2012). In order to study optimal treatment regimens of heterologous 

prime-boost viruses when a tumor is intrinsically semi- to non-permissive for adenoviral 

replication (as shown in Supplementary Figure 4, Study I), we turned to B16.OVA 

mouse model. Immunocompetent C57BL/6 mice bearing B16.OVA tumors were treated 

intratumorally with the first virus (prime) and six days later with the second virus (boost) 

(Supplementary Figure 5, Study I). Interestingly, groups of mice receiving vaccinia virus 

prime (VV-Ad, VV-VV) showed statistically significant suppression of tumor growth 

compared to mice with Ad prime (Ad-VV, Ad-Ad) (Figure 4a, Study I).  

 

4.3 Anti-Viral Immunity and Virus Titers in Mice Treated with Heterologous 

Prime-Boost Regimen (I) 

 

As expected, homologous Ad-Ad treatment resulted in robust anti-viral immunity 

(measured by neutralizing antibodies) and reduced adenovirus titers in tumors (Figure 

4b and d, Study I). By contrast, Ad-VV prime-boost regimen resulted in low NAb titers 

and high Ad and VV titers (Figure 4b-d, Study I), whereas VV-Ad regimen reduced Ad 

and VV levels compared to single treated tumors. This reduction of both virus titers was 

accompanied by significant increase of NK cells in VV-Ad treated tumors (Figure 5b, 

Study I), suggesting possible presence of antiviral NK cells. Furthermore, prominent 

infiltration of CD3+ CD8+ T-cells was detected in all virus-treated tumors compared to 

PBS-controls (Figure 5a, Study I). Depletion experiments revealed that both of these 

immune cell subsets proved to be dispensable for the oncolytic efficacy of VV (Figure 

5c-d, Study I), thus confirming viral replication and oncolysis to be the main mechanism 

for anti-tumor activity. 

 

In summary, by contrast to the results of Tysome et al (2012), where the best regimen in 

virus-permissive, immunocompetent hamsters was Ad prime and VV boost, we found 
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that restricted replication of the priming virus may affect both i) the efficacy of the 

combination therapy and ii) determine which heterologous virus regimen would be 

optimal. In our hands, VV prime seemed to give the best results in terms of overall 

efficacy, with the heterologous VV-Ad prime-boost only trending toward better tumor 

growth control compared to homologous VV therapy (p=0.0755). Finally, these results 

speak for the importance of tumor lysis, in the case for the oncolytic capacity of the virus 

during priming, which would be expected to release more tumor-associated antigens for 

antigen cross-presentation, and thereby lead to a greater CD8+ T-cell response compared 

with priming without lysis. Moreover, such prime-boost regimens could benefit from 

using oncolytic adenovirus with D24 modification and 5/3 chimeric fiber for enhancing 

safety and infectivity in human cells compared to wild type Ad5. This small alteration 

might further enhance virus-induced anti-tumor immune responses in heterologous 

adeno-pox virotherapy, regardless of the lack of viral replication. 

 

4.4 Oncolytic Adenovirus Improves the Anti-Tumor Efficacy of Adoptive T-

Cell Therapy in A Poorly Permissive Model (II) 

 

Adoptive T-cell transfer represents a promising immunotherapeutic approach for 

treating cancer using ex vivo expanded tumor-specific T-cells, derived from either 

tumor-infiltrating lymphocytes (TILs) or genetically re-directed peripheral blood T-cells. 

Several pre-clinical and clinical studies have provided proof-of-concept results but poor 

to modest response rates in advanced solid tumors, probably due to T-cell hypofunction 

and tumor-induced immunosuppression (Gilham et al. 2012, Moon et al. 2014). So far, 

the biggest success stories using transgenic T-cells have been accomplished in the 

treatment of CD19-expressing hematological malignancies using CAR T-cells (Kalos et 

al. 2011, Grupp et al. 2013b), highlighting the need to develop novel approaches to 

achieve similar efficacy in solid tumors.  

 

Tumor microenvironment plays a critical role in the outcome of several different cancer 

therapies (Tsai et al. 2014), especially in the case of immunotherapies based on the 
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activity of anti-tumor T-cells. TME is a complex network of cancer cells, stromal cells 

and tumor-infiltrating immune cells, which can be immunosuppressive, 

immunostimulatory or even display both characteristics depending on the interaction 

with other immune cells and resulting cytokine milieu in the tumor. Over the course of 

tumor development, immunosuppressive immune cell populations are preferred as part 

of the immune evasion tactic that tumors employ to escape from recognition and 

destruction by the host immune system. We hypothesized that the intrinsic 

immunostimulatory capacity of oncolytic adenovirus could be utilized to increase tumor 

immunogenicity, alter cytokine content and change the immune cell balance towards 

anti-tumor rather than pro-tumor responses. 

 

To assess whether multiple intratumoral injections of adenovirus could be used to mimic 

infection caused by viral replication, subcutaneous B16.OVA melanoma tumors were 

treated on six consecutive days with 1×109 VP Ad5/3-fiber chimeric adenovirus. 

Significant suppression of tumor growth was observed (Figure 1a, Study II) with 

concomitant increase in tumor-specific T-cells (Figure 1e-f, Study II), implicating that 

adenovirus can induce anti-tumor response despite absence of viral replication. This data 

is in line with previous studies reporting that adenovirus infection in the tumor can 

induce anti-tumor activity (Ruzek et al. 2002, Tuve et al. 2009). In addition, antiviral 

immunity was evoked as copy number of virus genomes in tumors declined over time 

(Figure 1b, Study II). Similar results in terms of anti-tumor and antiviral effects were 

obtained in Study I with 10-fold higher adenovirus doses (Figure 4a-b, Study I).  

 

Next, we studied if this adenovirus-mediated increase in tumor immunogenicity would 

improve the efficacy of adoptive OT-I T-cell transfer. With identical virus-injection 

regimen as before, significant improvement in B16.OVA tumor growth control was 

observed both with 5×105 and 2×106 OT-I T-cells (Figure 2a-b, Study II). Neither lower 

nor higher T-cell dose alone was able to suppress tumor growth, confirming clinical 

observations of poor efficacy of T-cell therapy used as a single agent in the treatment of 

solid, immunosuppressive tumors. 
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4.5 Antiviral T-Cell Immunity Does Not Reduce Efficacy of the Combination 

Therapy (II) 

 

Most humans develop anti-adenoviral immunity early in life (Lenaerts et al. 2008), 

which might affect the efficacy of oncolytic adenoviruses in treatment of human patients. 

We wanted to investigate the role of pre-existing immunity by pre-immunizing a group 

of mice twice with Ad5-based vector intramuscularly three weeks prior to intratumoral 

treatments. Despite induction of antiviral T-cells (Figure 2d, Study II), the tumor growth 

curves of pre-immunized and virus-naïve mice completely overlapped (Figure 2c, Study 

II), suggesting that at least in mice pre-existing antiviral T-cells do not hinder the 

efficacy of combination therapy. Nevertheless, mimicking this type of human situation 

in mice is challenging due to obvious differences in tropism, replication capacity and 

encounter frequency of the virus. To overcome pre-existing humoral anti-viral immune 

responses, alternating the serotype (Mastrangeli et al. 1996) or using capsid modified 

viruses such as Ad5/3-D24 (Sarkioja et al. 2008) may prove useful.  A further approach 

used in immunovirotherapy is using fully serotype 3 (Ad3) oncolytic adenoviruses which 

might be especially useful in case of high anti-Ad5 neutralizing antibodies (Hemminki 

et al. 2011). 

 

4.6 Strong Anti-Tumor Response Following Adenovirus and T-Cell Therapy Is 

Due To Increase in Endogenous Melanoma-Specific TILs (II) 

 

To evaluate possible immunological factors behind the rigorous therapeutic effect, 

tumor-infiltrating lymphocyte populations were analyzed. Surprisingly, tumor-

trafficking of transferred OT-I T-cells was not enhanced by adenovirus injections (Figure 

2e-f, Study II), despite the observation that adenovirus infection can upregulate 

intratumoral expression of IFN-�� –inducible chemokines (Supplementary Figure 1, 

Study II). Instead, we observed a significant increase in tumor-infiltration of endogenous 

CD8+ T-cells targeting melanoma-associated antigens TRP-2 and gp100 following 
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adenovirus/T-cell combination therapy (Figure 3, Study II). Similar results were 

obtained from ELISPOT analysis using splenocytes derived from combination treated 

mice (Figure 4b-c, Study II). In addition, both tumors and tumor-draining lymph nodes 

(tdLN) of Ad/T-cell treated mice contained higher levels of CD86+ antigen-presenting 

cells (APCs) and fibroblastic reticular cells (FRCs) than those of control mice, indicating 

adenovirus-triggered enhancement in antigen cross-presentation (Figure 6 and 7, Study 

II). 

 

As differences in T-cell responses and in antigen presentation seemed to be the most 

prominent among the immune cell subtypes analyzed (Figure 3 and Supplementary 

Figure 4, Study II), we wanted to study whether T-cell activation status was changed 

following virotherapy. Interestingly, virus-treated mice had increased levels of CD8+ 

CD69+ CD25+ TILs on day 14 post-transfer compared to PBS-treated controls and 

significantly less TILs positive for anergy marker TIM-3 than non-injected mice (Figure 

5, Study II).  Furthermore, adenovirus-treated tumors contained elevated levels of IFN-

�� expressing CD8+ TILs compared to control tumors (Figure 4a, Study II), indicating 

that local immunosuppression was overcome. Taken together, combining adenovirus 

injections with adoptive T-cell therapy may present a feasible way to enhance activation 

of anti-tumor immune cells in order to treat highly immunosuppressive solid tumors. 
 

4.7 Systemic Anti-Tumor Efficacy Is Augmented By the Combination Therapy 

with Adenovirus and Adoptive T-Cell Transfer (II) 

 

In addition to increased levels of endogenous tumor-specific T-cells, a marked reduction 

in B16.OVA metastasis was seen in tumor draining lymph nodes of combination treated 

mice on day 14 post-transfer (Figure 4d, Study II). We took this as a promising sign of 

virus-induced anti-tumor immunity and wanted to study whether these treated mice 

could reject parental B16.F10 tumor cells not expressing the target antigen OVA. 

Following B16.F10 challenge, 67 % of mice treated with virus/T-cell combination 

rejected the tumor challenge, whereas only 10 % of treatment-naïve control mice were 
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B16.F10-free on day 14 post-implantation (Figure 4e, Study II). This strongly suggests 

that the combination treatment can induce systemic, endogenous anti-tumor immunity 

and decrease peripheral tolerance of anti-tumor T-cells. 

 

In conclusion, intratumoral administration of adenovirus can cause a cancer vaccine -

like effect by acting as an adjuvant and inducing responses against several naturally 

occurring tumor epitopes. This type of expansion in T-cell repertoire has been reported 

previously from several immunotherapy studies targeting a single, well-defined TAA 

(Lally et al. 2001, Butterfield et al. 2003, Lurquin et al. 2005, Carrasco et al. 2008). It 

might even prove to be crucial for the clinical success of immunotherapy, since tumors 

are highly adaptive and a selective pressure by monoclonal T-cell response may easily 

lead to antigen-negative tumor cell variants (Khong and Restifo 2002, Matsushita et al. 

2012a). Moreover, OVA can be considered as a model for mutated tumor-associated 

(neo-) antigens, which represent an appealing target for CARs and high-avidity TCRs 

(Hacohen et al. 2013, Heemskerk et al. 2013) in order to avoid off-tumor toxicity and 

autoimmunity. As neo-antigens are gaining ground in the field of cancer immunotherapy, 

future studies will show whether targeting neo-antigens can also expand the endogenous 

T-cell repertoire as suggested here. 

 

4.8 Intratumoral Administration of Recombinant Cytokines Enable Efficient 

T-Cell Therapy (III) 

 

Unfavorable ratios between different immune cells displaying effector or suppressor 

properties in TME often limit the efficacy of T-cell based therapies in solid tumors 

(Kunert et al. 2013). As several recombinant cytokines have been approved for human 

use for different indications (Vacchelli et al. 2014b), we decided to study whether direct 

administration of IFN-�.2, IFN-��, IL-2, TNF-�. or GM-CSF into tumors would affect the 

cellular composition of TME and the activity of TCR-transgenic anti-tumor T-cells after 

adoptive transfer.  
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Using the previously established model (Study II), mice bearing B16.OVA tumors were 

treated intraperitoneally with 2×106 CD8a+ OT-I cells and intratumorally with different 

doses of recombinant cytokines (Table 4). On day 14 post-transfer, four out of five 

cytokines (IFN-�.2, IFN-��, IL-2, TNF-�.) combined with T-cells induced significant 

tumor suppression compared to control groups (Figure 1a and Supplementary Figure 2, 

Study III). Interestingly, intratumorally administered recombinant GM-CSF exerted 

growth-stimulatory effect and resulted in increased tumor volumes compared to PBS 

control group. Similar pro-tumor effect of GM-CSF has been previously described 

(Bronte et al. 1999, Obermueller et al. 2004, Bayne et al. 2012, Pylayeva-Gupta et al. 

2012). However, the dosing and timing of GM-CSF administration seems to be critical, 

as GM-CSF has been used previously with success as a recombinant cytokine 

(Geynisman et al. 2013) and as a virus-vectored transgene (Cerullo et al. 2010, 

Andtbacka et al. 2015). 

 

4.9 Recombinant Cytokine Therapy Leads to Alteration of the TIL profile (III) 

 

To dissect the possible factors underlining the improved efficacy of ACT, we analyzed 

the phenotype and specificity of T-cells infiltrating the cytokine-treated tumors by flow 

cytometry. In line with the previous study with adenovirus (Study II), none of the 

recombinant cytokines were capable of increasing the tumor-levels of transferred OT-I 

T-cells (Figure 2b-c, Study III). Instead, tumors treated with GM-CSF, IFN-�. and IL-2 

contained significantly more endogenous CD8+ TILs than control tumors (Figure 5a, 

Study III) and some of these cells were targeting melanoma-associated antigens TRP-2 

and gp100, especially in the case of INF-�� and IL-2 (Supplementary Figure 3e-f). 

Moreover, intratumoral administration of IFN-�� increased the levels of central memory 

T-cells (TCM) in tumors, whereas intratumoral IL-2 promoted TIL differentiation into 

effector memory T-cells (TEM) (Figure 5b, Study III). These examples underline the 

capacity of cytokine therapy in modifying the T-cell profile of tumors and suggest that 

recombinant cytokines can induce repertoire expansion of anti-tumor T-cells, although 



 

75 
 

the extent of the response may be less prominent than seen with adenovirus (Figure 3, 

Study II). 

 

4.10 In Situ Cytokine Therapy Modifies the Cellular Composition of Tumor 

Microenvironment (III) 

 

Different myeloid- and lymphoid-lineage cells comprise a major part of TME, and the 

balance between such anti-tumor and pro-tumor immune cells can determine the 

outcome of adoptive T-cell therapy (Kunert et al. 2013). Hence, we analyzed immune 

infiltrates of cytokine-treated tumors and found that IFN-�.2 and IL-2 favor the 

proliferation of intratumoral NK cells (Figure 4b, Study III), whereas IFN-�� leads to 

increased tumor-accumulation of CD11b+ F4/80+ macrophages (Study 4c, Figure III). 

In contrast, GM-CSF injections skewed polarization of myeloid cell subsets into 

immunosuppressive M2 macrophages and monocytic MDSCs (Figure 4d and f, Study 

III), which may explain the poor anti-tumor efficacy of GM-CSF in this study. Moreover, 

GM-CSF seemed to increase intratumoral levels of tolerogenic DCs, characterized by 

the lack of co-stimulatory molecule CD86 (Figure 3, Study III). On the other hand, IL-2 

administration augmented maturation of these intratumoral CD11c+ dendritic cells 

(Figure 3, Study III), but also polarized CD4+ TILs into Treg phenotype (Supplementary 

Figure 3d, Study III). These results suggest that the same cytokine can simultaneously 

induce both anti-tumor and immunosuppressive responses, which in the case of IL-2 is 

well-documented (Boyman and Sprent 2012). As the anti-tumor effect of tumor-specific 

T-cells rely strongly on the cell composition of the TME, detailed characterization of 

therapy-induced immunosuppressive cell subsets may prove to be crucial in terms of 

overall efficacy and mechanism. 
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4.11 Local Administration of Immunostimulatory Cytokines Induces T-Cell 

Activation and Reduces T-Cell Exhaustion (III) 

 

As recombinant cytokines were found to influence intratumoral myeloid cell populations 

that can either induce peripheral tolerance or activate anti-tumor T-cells (Gajewski et al. 

2013), we studied the activation and exhaustion status of TILs following cytokine 

therapy. Interestingly, IFN-�.2 and IL-2 injected tumors contained higher numbers of 

activated CD69+ IFN-��+ CD8+ TILs than control tumors (Figure 5c, Study III), 

indicating that local cytokine therapy either increased tumor-infiltration of activated T-

cells or enhanced activity of pre-existing TILs. Notably, analysis of T-cell exhaustion 

markers CTLA-4 and PD-1 revealed that in situ cytokine treatment reduced the level of 

TIL exhaustion over time (Figure 6 and Supplementary Figure 4, Study III). This 

downregulation of CTLA-4 and PD-1 was observed only in the groups with significant 

anti-tumor efficacy (IFN-�.2, IFN-�� and IL-2), whereas control (non-injected and PBS) 

treated and GM-CSF treated mice exhibited high, constitutive expression of exhaustion 

markers on CD8+ TILs (Figure 6, Study III). 

 

In summary, these results indicate that carefully selected immunomodulatory cytokine 

can counteract tumor-associated immunosuppression and T-cell hypofunction, thus 

enabling effective T-cell therapy in solid tumors. Moreover, the mode of action of such 

selective immunomodulation can be multi-factorial and include enhanced activity and/or 

accumulation of several immune cell subsets (Supplementary Figure 5, Study III) that 

engage the immune system to kill tumor cells, leading to growth suppression or even to 

complete destruction of the established tumor. 

 

4.12 Interferon Type I Does Not Inhibit Infection and Spread of Oncolytic 

Adenovirus In Vitro  (IV) 

 

As antiviral signaling has previously been shown mediate tumor resistance to oncolytic 

viruses (Liikanen et al. 2011b, Liu et al. 2013b, Ruotsalainen et al. 2015), we examined 
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whether treatment with small-molecule inhibitor ruxolitinib could improve the efficacy 

of oncolytic adenovirus in virus-resistant ovarian carcinoma model. Ruxolitinib is 

known to inhibit Janus kinase 1 (JAK 1), an essential part of IFN-I signaling (Schindler 

et al. 2007), and has been shown to enhance replication of interferon-sensitive oncolytic 

VSV in vitro (Escobar-Zarate et al. 2013).  

 

To study the direct effect of IFN-exposure on tumor cell protection, Skov3-Luc cells 

were pre-treated with human IFN-�� and/or ruxolitinib and infected two hours later with 

Ad5/3-D24 or VSV-D51 at 1 PFU/cell. Six days post-infection, viability of Skov3-Luc 

cells was assessed by Coomassie Blue staining. Interestingly, treatment with IFN type I 

had no inhibitory effect on progressive infection and oncolysis of Ad5/3-D24 (Figure 1, 

Study IV). Similar results were obtained with cytokines IFN-�� and TNF-�. (Figure 3b, 

Study I). In contrast, IFN I-sensitive VSV-D51 was completely halted by IFN-�� and 

even low doses of ruxolitinib could fully reverse the antiviral effect, as reported by 

previous the study (Escobar-Zarate et al. 2013). The inability of soluble antiviral factors 

to limit the spread of adenovirus was further corroborated in another in vitro experiment, 

where filtered supernatant from adenovirus-infected splenocytes had no inhibiting effect 

on Ad5/3-D24-TK-GFP infection rate in Skov3-Luc cells (Figure 2, Study IV). The 

complete lack of adenoviral resistance in vitro suggests that mere exposure to soluble 

interferon or other anti-viral cytokines is not enough to halt replication of oncolytic 

adenovirus in Skov3-Luc cells and thus do not account for antiviral resistance of the 

model. 

 

4.13 JAK1/2 Inhibitor Ruxolitinib Can Increase Tumor Control of Oncolytic 

Adenovirus In Vivo (IV) 

 

To analyze if ruxolitinib has an impact on antiviral resistance in vivo, we employed the 

same virus-resistant intraperitoneal Skov3-Luc xenograft model as reported previously 

(Liikanen et al. 2011b). In contrast to in vitro results, ruxolitinib was able to significantly 

improve the anti-tumor efficacy of oncolytic Ad5/3-D24 in SCID mice during treatment 
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(Figure 3, Study IV). This is in line with previous observations, where Skov3-Luc tumors 

were able to resist adenovirus-mediated oncolysis in vivo but lost this ability ex vivo 

when tumor stroma was removed (Liikanen et al. 2011b).  

 

The tantalizing difference in adenoviral cell killing capacity in vivo and in vitro strongly 

point towards importance of cell-to-cell contact and the presence of stromal or immune 

cells in the maintenance of anti-viral resistance. Interestingly, in our hands Skov3-Luc 

tumors started growing again 12 days after last ruxolitinib injection, suggesting that 

virus-resistance was slowly re-acquired via recovery of some particular anti-viral 

(immune) cell subset. Despite being immunodeficient by definition, SCID mice have 

residual immunity such as NK cells (Dewan et al. 2005). The role of NK cells in terms 

of oncolytic viruses may be complex, since NK cells can exhibit both antiviral (Biron et 

al. 1999) and anti-tumor properties (Cheng et al. 2013). A recent clinical study described 

that ruxolitinib impairs NK cell function in patients treated for myeloproliferative 

neoplasm and this defect is associated with increased virus infection rates (Schonberg et 

al. 2015a). It is plausible that the additive effect of ruxolitinib on the efficacy of oncolytic 

adenovirotherapy in vivo actually relates to impaired function of anti-adenoviral NK 

cells. In addition, induction and persistence of antiviral potency of tumor 

microenvironment may require cell-to-cell contact between antiviral immune (NK) cells 

and tumor cells, since direct exposure to soluble factors (such as recombinant IFN-�� or 

supernatant from infected splenocytes) alone is unable to inhibit the spread of oncolytic 

adenovirus.  

 

Tumor infiltration of anti-viral NK cells might also explain the results of Liikanen et al 

(2011), who showed preliminary evidence of tumor stroma having a role in maintaining 

antiviral resistance. Out of several pathways analyzed, upregulation of IL-10 signaling 

pathway and increase in interferon-induced MxA was found in virus-resistant Skov3.ip 

tumors (Liikanen et al. 2011b). This is especially interesting in the terms of NK cell 

activation, as IL-10 can upregulate MxA expression in NK cells (Mocellin et al. 2004) 

and could therefore account for some of the MxA positive subpopulations in Skov3.ip 
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tumors. Consequently, immune cell composition of tumor microenvironment may be a 

critical factor in terms of successful adenovirotherapy, as low level of MxA in pre-

treatment tumor biopsies has been associated with a trend towards improved overall 

survival following oncolytic adenovirotherapy in cancer patients (Taipale et al. 2015). 
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5 SUMMARY AND CONCLUSIONS 

 

The field of oncolytic viruses has experienced a paradigm shift over the last 5-10 years: 

previously oncolytic viruses were thought to act primarily through viral replication and 

the subsequent lysis of cancer cells; nowadays the dogma has transitioned towards a 

concept of therapeutic in situ cancer vaccine, where oncolysis leads to release of tumor-

associated antigens and virus infection results in danger signals that can be efficiently 

recognized by host immune cells. Realization of the huge immunostimulatory potential 

of oncolytic viruses has since resulted in several translational approaches that combine 

viruses with standard chemotherapy (Cerullo et al. 2011, Liikanen et al. 2013), immune 

checkpoint blockade (Puzanov et al. 2013) and other cancer therapies (Turnbull et al. 

2015).  

 

Repeated administration of the same oncolytic vector suffers from naturally acquired or 

therapy-induced anti-viral resistance that that may hamper the viral spread and 

replication. In order to reduce immune responses against the vector, different viruses can 

be alternated. Such heterologous prime-boost setting has been utilized with various 

viruses, such as Ad and VSV (Bridle et al. 2009, Bridle et al. 2010), VSV and Maraba 

virus (Pol et al. 2014), Ad and Semliki Forest virus (SFV) (Näslund et al. 2007), VV and 

SFV (Vähä-Koskela et al. 2013) and Ad and VV (Tysome et al. 2012). In study I, we 

examined the latter combination in a situation where replication of one of the viruses 

was basally or progressively limited, reflecting a possible situation in advanced human 

tumors. In this setting, we found no conclusive evidence of superiority of one priming 

virus over another. Instead, it became evident that replication capacity of adenovirus as 

a prime is important and may enable the immunity-mediated anti-tumor responses 

observed in the previous report (Tysome et al. 2012). Alternating the vector between Ad 

prime and VV boost also resulted in delayed induction of therapy-induced resistance, 

which was associated with improved control of tumor growth. In contrast, vaccinia 

prime, especially VV-Ad regimen, seemed to induce anti-viral NK cells which resulted 

in reduced titers of both viruses but did not notably reduce therapeutic efficacy. These 
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examples underline the complexity of anti-viral immunity and indicate that two distinct 

viruses elicit immunological consequences both locally and systematically, which, 

depending on the context, may affect treatment efficacy of oncolytic virotherapy. 

 

Adoptive T-cell therapy can result in impressive clinical results when it’s combined with 

different pre- and post-conditioning regimens (Dudley et al. 2005, Dudley et al. 2008a, 

Besser et al. 2010a), most of which aim to reduce tumor-level immunotolerance and T-

cell hypofunction. However, significant toxicities have been associated with these 

regimes due to their systemic and non-specific effect which also affects normal tissues 

(Dudley 2005, Dudley et al. 2008c, Besser et al. 2010c). In study II, we examined 

whether oncolytic adenovirus could augment efficacy of ACT without concomitant 

conditioning. Interestingly, intratumorally administered adenovirus was able to reverse 

tumor immunosuppression and restore activity of TILs, concurrently with inducing an 

endogenous T-cell response against well-characterized melanoma-associated antigens. 

This also translated into therapeutic effect, as primary tumors seized growing and 

majority of the mice were able to reject the challenge of OVA-negative tumor. Induction 

of such systemic polyclonal T-cell response may be a requisite for successful cancer 

immunotherapy, as it reduces the risk of tumor immune evasion via targeting multiple 

epitopes simultaneously. 

 

A critical factor of successful immunotherapy in solid tumors is the tumor 

microenvironment, which can greatly contribute to hyporesponsiveness of T-cells 

infiltrating the tumor bed (Kunert et al. 2013). In study III, we analyzed whether cellular 

composition of tumor microenvironment could be modulated in favor of ACT. By 

administrating recombinant cytokines daily, we were able to show that selective 

immunomodulation can increase the anti-tumor efficacy of adoptively transferred T-

cells. This increase in T-cell activity was accompanied by changes in quantity and 

function of effector cells and suppressor cells, tipping the scale towards anti-tumor 

responses. However, in spite of apparent benefit to anti-tumor efficacy, the poor 

pharmacokinetics may limit the usability of recombinant cytokines in this setting. 
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Instead, oncolytic viruses offer an advantageous way to ensure sustained and local 

expression of the desired transgenes. Several human studies have been performed with 

non-replicating adenoviruses coding for cytokines such as IL-2, IFN-�. and IFN-�� 

(Dummer et al. 2008, Sterman et al. 2011, Khammari et al. 2015), showing that vector-

mediated cytokine delivery is viable concept. Moreover, preclinical data support the use 

of oncolytic Ad platform to deliver cytokines in the TME in order to improve T-cell 

therapy (Nishio et al. 2014, Yan et al. 2015). 

 

Importantly, inclusion of cytokine-armed oncolytic adenoviruses in ACT regimens could 

decrease the need to eliminate other lymphocytes competing with infused TILs for 

homeostatic �� chain cytokines (such as IL-7 and IL-15) (Klebanoff et al. 2005). 

Continued production of cytokines could notably increase the levels of intratumoral 

cytokines compared to endogenous secretion, making lymphodepleting chemotherapy 

redundant. Moreover, systemic IL-2 administration could be replaced by local virus-

vectored production. Would high intratumoral levels of IL-2 be sufficient to induce 

durable responses depends on the question which one, anergy or lack of proliferation, is 

the bigger obstacle hindering the current success of ACT in solid tumors. If the 

transferred T-cells only need re-activation locally after infiltrating the tumor bed, 

intratumoral IL-2 production may be sufficient. However, if prominent T-cell 

proliferation and sustained persistence is desired, low-dose systemic IL-2 may be 

required since clonal expansion of effector T-cells takes place mainly in the secondary 

lymphoid organs, necessitating IL-2 presence also in the periphery. 

 

Anti-viral NK cells might be of a special concern in the case of IL-2 encoding oncolytic 

adenoviruses, as IL-2 is a pleiotropic cytokine that affects several immune cell subsets, 

one of them being NK cells. The activation and proliferation of antiviral NK cells by 

locally produced IL-2 might interfere with spread of the virus and hinder the therapeutic 

efficacy, thus highlighting the importance of effective anti-viral agents that could be 

used in combination with approaches that indirectly induce high levels of NK cells. 

Ruxolitinib represents an appealing approach in this respect as it is already FDA and 
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EMA approved for the treatment of intermediate or high-risk myelofibrosis 

(Mascarenhas and Hoffman 2012). According to a recently published report, transient 

blocking of anti-viral NK cells with small molecule inhibitors, including ruxolitinib, can 

enhance helper-dependent adenovirus (HD-Ad) mediated gene delivery in an in vitro co-

culture system with human cells (Ankathatti Munegowda and Hu 2015). In Study IV, 

we found that ruxolitinib potentiates oncolytic adenovirus in vivo, despite the 

observation that adenovirus was completely resistant to IFN-mediated inhibitory effect 

in vitro. This led us to speculate that ruxolitinib affected immune cells such as NK cells 

which contribute maintenance of anti-viral resistance. Moreover, the discontinuation of 

ruxolitinib resulted in slow reconstitution of anti-viral state, suggesting that recovery of 

cellular component had occurred. 

 

As the results depicted in Study IV represent the only in vivo studies of ruxolitinib in 

context of oncolytic viruses (at least to our knowledge), further studies are warranted. 

Clinical studies with ruxolitinib have suggested that impaired NK cell function may be 

linked to increased virus infection rate in myelofibrosis patients (Schonberg et al. 

2015a), raising concerns about opportunistic virus infections. Nevertheless, ruxolitinib-

related effect on NK cells have been reported reversible and patients who have 

discontinued the therapy have experienced recovery of NK cell levels to normal values 

(Schonberg et al. 2015b). Finally, a phase II trial found that ruxolitinib can extend the 

survival of pancreatic cancer patients who have high levels of the inflammation marker 

C-reactive protein in their blood (Hurwitz et al. 2015), highlighting the possible utility 

of ruxolitinib and other similar small molecule inhibitors as immunomodulators in 

cancer therapy. 

 

As described in Study II, combination treatment with virus and T-cells had appealing 

benefits such as the capacity to induce systemic immunity and to increase repertoire 

expansion of anti-tumor T-cells. On the other hand, the combinatorial approach was 

unable to cure mice, probably because mice �Å like most rodents �Å are non-permissive for 

human adenovirus replication (Jogler et al. 2006). As discussed, we hypothesize that 
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improved efficacy in solid tumors could be achieved if adenoviral replication would be 

coupled with expression of virus-produced cytokines to enhance T-cell function even 

further. Furthermore, the importance of tumor cell oncolysis cannot be underestimated 

as this may lead to continuous viral spread, constant danger signal in the tumor and 

debulking of high tumor mass, which has been previously linked to impairment of tumor-

specific T-cells (Prato et al. 2013). Interestingly, a recently developed model based on 

semi-permissive Syrian Golden hamsters allowed assessment of these aspects of 

oncolytic adenovirus and, similarly to mouse data, showed enhanced anti-tumor efficacy 

when combined to adoptive T-cell therapy (Siurala et al. 2016). Further studies will 

determine whether this anti-tumor effect can be enhanced even further with cytokine-

armed oncolytic adenoviruses and subsequently result in equal or even better efficacy 

than regimens containing pre- and post-conditioning therapies. 

 

In conclusion, successful implementation of oncolytic immunotherapy necessitates 

overcoming critical barriers such as premature viral clearance by anti-viral mechanisms 

and impairment of TIL function by tumor-level immunotolerance. The results presented 

in this thesis provide further clues on how to hit the immunotherapeutic ‘sweet spot’ in 

terms of immunomodulation and complement the ongoing efforts to translate the success 

of preclinical studies into patient benefit. 
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6 FUTURE PERSPECTIVES 

 

Cancers related to chronic mutagenic exposure (such as tobacco smoking in lung 

adenocarcinoma or UV light in malignant melanoma) carry frequent mutations 

(Alexandrov et al. 2013b). Interestingly, these cancer types seem most amenable to 

immunotherapies such as checkpoint inhibitors (Snyder et al. 2014, Rizvi et al. 2015). 

However, the prevalence of somatic mutations differs greatly between and within 

different cancer types (Alexandrov et al. 2013b), indicating that simplistic categorization 

into “less mutated” or “less immunogenic” tumors based on a specific cancer type does 

not exclude the possibility of benefiting from cancer immunotherapy. 

  

A typical solid tumor contains 30-70 mutations that possess the capability to function as 

de facto tumor-specific neo-antigens (Vogelstein et al. 2013b). As most of these 

mutations affect intracellular proteins, mutant residues must be presented in the context 

of HLA in order to elicit anti-tumor responses. Based on theoretical predictions, typical 

breast or colorectal cancer has been estimated to contain 7-10 mutant proteins that can 

bind to a HLA type of a given individual (Segal et al. 2008). Recently, significant effort 

has been put into directing T-cell activity towards these neo-antigens that represent the 

“Holy Grail”  of cancer immunotherapy, as their expression is limited to the tumor cells 

eliminating the risk of off-target toxicities. Encouragingly, preliminary mouse and 

human data has shown that mutant peptides can be successfully used in cancer vaccine 

platforms (Sampson et al. 2010, Castle et al. 2012). Thus, the discovery and utilization 

of neo-antigens represent the next level of cancer immunotherapy and approaches 

capable of inducing neo-antigen targeted immune responses, such as oncolytic 

immunotherapies, may be in the forefront of this progress. 

 

Despite decades of continuous research and development, curable immunotherapies are 

still scarce. However, new technologies and improved understanding of tumor 

microenvironment are paving the way for next generation of cancer treatments. The new 
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era of oncology, consisting of personalized medicine, cancer immunotherapy and 

combinatorial approaches, has already provided proof-of-concept results. The fast-

growing field of cancer immunotherapy continues to show promise and may eventually 

enable effective treatment and even cures of cancers resistant to conventional therapies. 

At the very least, novel combinations of passive and active immunotherapies represent 

significant improvements in the treatment of a variety of solid cancers provided that 

critical barriers such as intrinsic and adaptive resistance mechanisms are overcome. 
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