Allelic Variation at the 8q23.3 Colorectal Cancer Risk Locus Functions as a Cis-Acting Regulator of EIF3H

Pittman, Alan M.

2010

http://hdl.handle.net/10138/162544
https://doi.org/10.1371/journal.pgen.1001126

Downloaded from Helda, University of Helsinki institutional repository.
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.
Please cite the original version.
Allelic Variation at the 8q23.3 Colorectal Cancer Risk Locus Functions as a Cis-Acting Regulator of EIF3H

Alan M. Pittman1, Silvia Naranjo2, Sanni E. Jalava3, Philip Twiss1, Yussanne Ma1, Bianca Olver1, Amy Lloyd1, Jayaram Vijayakrishnan1, Mobshra Qureshi1, Peter Broderick1, Tom van Wezel4, Hans Morreau4, Sari Tuupanen5, Lauri A. Aaltonen5, M. Eva Alonso6, Miguel Manzanares6, Angela Gavilán7, Tapio Visakorpi8, José Luis Gómez-Skarmeta2, Richard S. Houlston1*

1 Section of Cancer Genetics, Institute of Cancer Research, Sutton, United Kingdom, 2 Centro Andaluz de Biología del Desarrollo, CSIC-UPO, Seville, Spain, 3 Institute of Medical Technology, University of Tampere and Tampere University Hospital, Tampere, Finland, 4 Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands, 5 Department of Medical Genetics, University of Helsinki, Helsinki, Finland, 6 Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain, 7 Centro Nacional de Investigaciones Biomédicas en Red Enfermedades Raras (CIBERER), Universidad Pablo de Olavide-CSIC, Seville, Spain

Abstract

Common genetic variation at human 8q23.3 is significantly associated with colorectal cancer (CRC) risk. To elucidate the basis of this association we compared the frequency of common variants at 8q23.3 in 1,964 CRC cases and 2,081 healthy controls. Reporter gene studies showed that the single nucleotide polymorphism rs16888589 acts as an allele-specific transcriptional repressor. Chromosome conformation capture (3C) analysis demonstrated that the genomic region harboring rs16888589 interacts with the promoter of gene for eukaryotic translation initiation factor 3, subunit H (EIF3H). We show that increased expression of EIF3H gene increases CRC growth and invasiveness thereby providing a biological mechanism for the 8q23.3 association. These data provide evidence for a functional basis for the non-coding risk variant rs16888589 at 8q23.3 and provides novel insight into the etiological basis of CRC.

Citation: Pittman AM, Naranjo S, Jalava SE, Twiss P, Ma Y, et al. (2010) Allelic Variation at the 8q23.3 Colorectal Cancer Risk Locus Functions as a Cis-Acting Regulator of EIF3H. PLoS Genet 6(9): e1001126. doi:10.1371/journal.pgen.1001126

Editor: James M. Ford, Stanford University School of Medicine, United States of America

Received May 14, 2010; Accepted August 13, 2010; Published September 16, 2010

Copyright: © 2010 Pittman et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Cancer Research UK (C12988/A8362 supported by the Bobby Moore Fund), provided principal funding for the study. Additional funding was provided by the European Union (CPBP LSHC-CT-2004-503465), JLG-S acknowledges grants from the Spanish Ministry of Education and Science (BFU2007-60042/PMC, PET2007-0158 and CSD2007-00008) and Junta de Andalucia (CVI-3488). MM acknowledges support from the Spanish Government (BFU2008-00838, CSD2007-00008) and the ProCNIC Foundation. Work in Finland was supported by grants from the Academy of Finland (Finnish Center of Excellence Program 2006-2011), the Finnish Cancer Society, the Sigrid Juselius Foundation, the European Commission (LSHG-CT-2004-512142), Ida Montin Foundation (ST), and Biomedicum Helsinki Foundation (ST). The Funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Richard.houlston@icr.ac.uk

Introduction

Although inherited susceptibility is responsible for ∼30% of all CRC [1], high-penetrance germline mutations in APC, the mismatch repair (MMR) genes, MUTYH, SMAD4, BMPR1A (ALK3) and STRK1 account for <6% of all CRC [2]. Recent genome-wide association (GWA) studies we have conducted have vindicated a polygenic model of susceptibility to CRC based on the co-inheritance of multiple low-risk variants [3–9].

As the SNPs (or markers) genotyped during GWA studies are generally not themselves strong candidates for causality, enumeration of the genetic and functional basis at a specific locus poses a significant challenge. However, as demonstrated by recent studies of the 8q24 and 16q21 risk loci for CRC [10–12], dissecting the genetic and functional basis of associations identified by GWA studies can provide novel insights into cancer biology.

We have recently shown that common variation at 8q23 defined by the SNP rs16892766 influences CRC risk [5,9,13]. To elucidate a basis of this association we have systematically interrogated the 8q23 association signal through targeted re-sequencing, linkage disequilibrium (LD) mapping and functional analyses.

He we show that a variant mapping to 8q23.3 may influence the transcriptional regulation of eukaryotic translation initiation factor 3, subunit H (EIF3H), MIM 603912. These data provides strong support for the functional significance of this SNP and may explain the association observed for CRC at this locus.

Results

To investigate the 8q23 association and estimate the fraction of common variation at this locus, we generated a fine scale map of a 300 Kb region encompassing the rs16892766 association signal (117,650,000–117,950,000bps) using data from 154 SNPs directly genotyped in 1,964 CRC cases and 2,081 controls and an additional 112 SNPs imputed from HapMap (Dataset S1).

A 22 kb genomic region of linkage disequilibrium (LD; Chr8:117,690,773–117,712,909; UCSC March 2006 assembly, NCBI build36.1) capturing rs16892766 provided the best evidence for the 8q23 CRC association signal (Figure 1). To annotate the region we re-sequenced 90 CEU CEPH HapMap individuals (30 trios of U.S. residents of northern and western European ancestry included in the HapMap Phase II project) as this cohort is sufficient to capture all common variation (MAF>5%) [14]. Only
Author Summary

Common inherited variation on human chromosome 8q23 influences the risk of developing colorectal cancer (CRC). To understand the basis of this association we have compared the frequency of common genetic variants at 8q23 in ~2,000 CRC cases and ~2,000 healthy controls. Functional analyses of variants strongly associated with CRC risk showed that the single nucleotide polymorphism rs16888589 underscores the 8q23.3 association. The region of the genome harboring rs16888589 increases the expression of the gene for eukaryotic translation initiation factor 3, subunit H. We show that increased expression of this gene increases CRC growth thereby providing a biological mechanism for the 8q23.3 association. This finding is of particular importance in elucidating the etiological basis of CRC.

389 bps (1.8%) of the 22 kb region was refractory to re-sequencing owing to low-complexity genomic sequence. We identified 103 variants (Table S1); these included 97 SNPs and six insertion/deletion polymorphisms. Of the 103 variants, 74 were common (minor allele frequency [MAF] ≥0.05) but only 29 had been genotyped by HapMap.

We calculated pairwise LD statistics between each of the 74 common SNPs and rs16892766. Eight polymorphisms (7 SNPs, 1 insertion/deletion) showed evidence of high LD with rs16892766 (r^2≥0.50; Figure S1 and Table S1). We genotyped these eight polymorphisms in our series of 1,964 CRC cases and 2,081 controls. The strongest associations were provided by HapMap novel SNPs 28 (117,700,195 bp; P = 4.55×10$^{-6}$), rs16892766 (P = 1.13×10$^{-5}$), rs16888589 (P = 8.42×10$^{-5}$) and rs1986063 (P = 5.49×10$^{-6}$). To explore the possibility that we may have failed to identify a potential candidate variant we re-examined the association and using data generated from sequencing the 90 CEU CEPH HapMap individuals imputed all untyped SNPs in the case-control cohort and tested them for association with CRC (Figure S2). No additional SNP to the nine directly genotyped, provided superior evidence for an association ($P=1.16×10^{-7}$) indicating our selection of candidate SNPs based upon our LD criteria was sufficient to identify a candidate variant. Analysis of the four most significantly associated SNPs—rs16892766, Novel 28, rs16888589 and rs1986063—showed they are strongly correlated with one another (i.e. pairwise r^2>0.75; Figure 1) and constitute a single risk haplotype ($P=8.61×10^{-6}$). Collectively these data support the hypothesis that one of these four variants is likely to contribute to the 8q23 CRC association.

The promoter of the nearest protein-coding gene, EIF3H (eukaryotic translation initiation factor 3, subunit H), maps 140 kb telomeric to rs16892766; hence it is possible that rs16892766 or another SNP in LD, affects an unknown element controlling EIF3H expression. We excluded the possibility the 3q23 association signal is a consequence of a long-range LD with a coding sequence change in EIF3H by resequencing the transcribed regions and splice site boundaries of EIF3H. Only synonymous SNPs were identified and none of these showed evidence of correlation with rs16892766 (i.e. $r^2<0.01$, $D<0.01$). Sequence conservation in non-coding regions has been shown to be a good predictor of cis-regulatory sequences [15]. Moreover, it has been proposed that variation with evolutionary-conserved regions is likely to be associated with phenotypic differences that may contribute to expression of traits [15]. Cross-species sequence comparison of the 22 kb interval revealed the presence of three islands conserved between mammals annotated by rs16892766/Novel 28, rs16888589 and rs11986063 (Figure 1). To further examine the nature of the sequence within the 22 kb region we implemented a number of computational methodologies. Using ESPERR (evolutionary and sequence pattern extraction through reduced representations), which searches for potential regulatory sequences, all three islands are predicted to have regulatory potential [16]. Using Enhancer Element Locator (EEL) software [17] the strongest EEL-predicted regulatory element mapped to island 1 as indicated in Figure 1.

To evaluate the potential enhancer activity of the three putative regulatory regions, we cloned DNA fragments containing the three conserved islands, incorporating the different alleles of rs16892766-Novel 28, rs16888589 and rs11986063, into GFP or Luc reporter vectors designed to assay enhancer activity in zebrafish, Xenopus and mice transgenic assays [10,18,19] or into Luc reporter vectors to evaluate regulatory activity in human CRC cell lines. Although no enhancer activity was detected for any island in the different transgenic experiments, the cell culture assays were compatible with island 2 and 3 acting as weak enhancers. However, no allele-specific differences were observed for the polymorphisms mapping to these islands (Figure S3). In contrast, luciferase assays demonstrated that island 2 functions as a repressor that was allele-specific (Figure 2). The ancestral A allele, but not the risk G allele of rs16888589, significantly repressed luc reporter gene expression ($P<0.01$; Figure 2). These data are consistent with island 2 in the CRC risk region natively functioning as a repressor in allele-specific manner.

To investigate the effect of differential EIF3H expression on the malignant phenotype of CRC, we selected LoVo, which has two copies of EIF3H, and HT-29 which has high gene amplification and expression of EIF3H (Figure S4). In the LoVo CRC line, reduction of EIF3H levels by short interfering RNA (shRNA) reduced cell proliferation (Figure 3). Conversely, EIF3H up-regulation by transfection with lentivirus carrying an EIF3H expression vector pWP1-EIF3H increased cell proliferation (Figure 3). In the CRC cell line HT-29 we were unable to achieve complete knock-down of EIF3H, (Figure S4) most likely due to the high basal level of expression present in this cell line. However, anchorage-independent growth measured by soft agar assay was associated with a 40% reduction in the number of colonies with EIF3H knock-down (Figure 3). Collectively these findings provide evidence that high EIF3H levels influence the establishment and maintenance of CRC.

We have previously found no association between EIF3H expression in EBV-transformed lymphoblastoid cells and 8q23 risk genotype [5]. Likewise, we found no association between rs16892766 and EIF3H mRNA expression in a series of colorectal adenomas and carcinomas (Figure S3), or absence of copynumber gain of 8q23 and EIF3H genotype.

Hypothesising that the 22 Kb region of 8q23 physically interacts with the EIF3H we used chromosome conformation capture (3C) to examine for interaction with the EIF3H promoter. We interrogated a constant promoter fragment against a series of fragments in LoVo and RKO CRC cell lines and a control fibroblast cell line (Figure 5). In both CRC cell lines we observed strong interaction between a fragment encompassing the promoter and island 2 but not island 1 or island 3. Thus, the rs16888589 risk region physically interacts with EIF3H. Intriguingly, a STAT binding site (TTCCCCGAAA) with differential allele affinity by rs16888589 is predicted by TFSearch. Direct evidence for support for allele specific functional consequences for rs16888589 were provided by electrophoretic mobility shift assays (EMSA) showing greater affinity for nuclear protein-DNA complex formation with the risk allele ($P = 5.3×10^{-4}$; Figure 5).
Figure 1. Association between SNPs and colorectal cancer risk at 8q23. (A) Single marker association statistics (-log_{10} P) of directly genotyped SNPs (•, black) and imputed SNPs (•, blue). (B) Linkage disequilibrium (LD) statistics (r^2) of HapMap project data phase II. The darker the shading indicates stronger LD between SNPs. (C) Details of the 22 Kb interval which was resequenced. SNPs displaying the strongest association which were evaluated in biological assays are shown (•, green). Also shown is the sequence conservation across the region in mammals.

doi:10.1371/journal.pgen.1001126.g001
systems we were able to demonstrate that possession of the A allele of rs16888589 may have repressor function on EIF3H. This does not exclude the possibility of the regulatory region we identified influences other genes through cis- and trans-effects. In addition, we cannot rule out the possibility that other, rarer risk alleles within the LD block may also contribute to the risk of CRC.

EIF3H is one of the 13 putative subunits of the eukaryotic translation initiation factor 3 (EIF3). At the cellular level, EIF3H overexpression increases proliferation, growth and survival. eIF3h appears to function through translation, as the initial appearance of overexpressed eIF3h in rapidly induced NIH-3T3 cells correlates tightly with the stimulation of protein synthesis and the generation of malignant phenotypes. Overexpression of EIF3H is seen in prostate, breast, and liver cancer and overexpression of eIF3h malignantly transforms immortal NIH-3T3 cells [21–23]. High level amplification of the EIF3H has also been associated with advanced stage and poor prognosis prostate cancer [24]. This is a general feature of eIF3h, as high levels also affect translation, proliferation, and a number of malignant phenotypes of CHO-K1 and HeLa cells and, most significantly, of primary prostate cell line [23].

Reduction of eIF3h levels in breast and prostate cancer cell lines by shRNA methods has previously been shown to reduce cell proliferation and anchorage-independent growth in soft agar [22]. In our study we have now shown that that manipulating eIF3h expression has a similar effect in CRC. These data provide compelling evidence that high eIF3h levels directly stimulate protein synthesis, resulting in the establishment and maintenance of the malignant phenotype of CRC.

We found no association between rs16892766 and EIF3H mRNA expression in a series of colorectal adenomas and carcinomas. This is perhaps not entirely surprising given the moderate effect of the variant on enhancer activity and the relatively small numbers of samples analysed. Additionally, CRC occurs late in life and it is likely that only a cumulative long-term imbalance in EIF3H expression will influence CRC development. Finally, expression differences may only be relevant to a specific subpopulation of cells such as intestinal stem cells.

It has recently been suggested that analysis of transcript abundance provides a means of establishing a relationship between genotype and phenotype [25]. Hence analysis of the impact of rs16888589 genotype and transcript abundance in different cell lines of colonic tissue at different stages of development and may prove highly informative.

Overexpression of eIF3h has recently been shown to inhibit Myc-dependent induction of apoptosis of primary prostate cells and EIF3H and MYC and may cooperate in enhanced protein translation either in a general way or for a specific subset of mRNAs [23]. We have previously shown that the G allele of the 8q24 variant rs6983267 is preferentially amplified during development of CRC [20]. In contrast there appears to be no such selection for 8q23 alleles according to rs16892766 genotype [20].

In summary, we identified rs16888589 as a genetic risk variant for CRC at 8q23.3 and in vitro experiments showed a functional significance of this SNP. We propose that this risk allele of rs16888589 acts as part of a cis-regulatory element for the EIF3H promoter in CRC, which may mediate CRC risk through control of EIF3H expression.

Materials and Methods

Ethics

Ethical committee approval for this study was obtained from relevant study centres (UK, MREC02/0/97, Netherlands, LUMC/CME P04.124 and the University of Helsinki).
Resequencing-SNP discovery panel

DNA was extracted from 30 CEPH mother-father-child trios (n = 90; U.S. Utah residents with northern and western Europe ancestry; Coriell cell depositories); Phase I and II HapMap cohort.

Genotyping cohort

1,964 CRC cases (964 male; mean age at diagnosis 58 years; SD, 8) ascertained through The National Study of Colorectal Cancer Genetics (NSCCG) [26]. 2,081 healthy individuals (845 males; mean age 57 years; SD, 9) were recruited from NSCCG (871), Genetic Lung Cancer Predisposition Study (1999–2004; n = 706) [27], and the Royal Marsden Hospital Trust/Institute of Cancer Research Family History and DNA Registry (1999–2004; n = 504). All cases and controls were UK residents and had self-reported European ancestry.

Figure 3. Impact of differential EIF3H expression on growth of colorectal cancer cell lines. CRC cell line growth based on AlamarBlue analysis. (A) HT-29 cells transduced with shRNA against EIF3H (shEIF3H) and control (shLUC). No effect on cell growth is seen. (B) LoVo cells transduced with shRNA against EIF3H (shEIF3H) and control (shLUC). Suppression of EIF3H reduced the cell growth of LoVo. (C) LoVo cells transduced with lentivirus carrying EIF3H expression vector (pWP1-EIF3H) and empty vector control (pWP1). The EIF3H overexpression increased significantly the cell growth of LoVo. Mean values ± SEM are shown. (D) Impact of EIF3H expression on anchorage-independent growth of HT-29 colorectal cancer lines in soft agar assay. HT-29 cells transduced with pL3.7 lentivirus carrying shRNA against EIF3H (shEIF3H) or against luciferase (shLUC) were grown in soft agar followed by counting the colonies. Approximately 40% reduction in the number of colonies was found. Mean values ± SEM are shown.

doi:10.1371/journal.pgen.1001126.g003

Resequencing

Sequence changes in 8q23 (117,690,773–117,712,909; UCSC March 2006 assembly, NCBIbuild36.1) were identified by sequencing. PCR and sequencing primers were designed using Primer3 software (sequences available on request). Amplicons were sequenced by ABI chemistry (BigDye v3.1; Applied Biosystems, Foster City, US) and implemented on ABI 3730xl DNA analyzers (Applied Biosystems, Foster City, US). Sequence reads were analyzed using Mutation Surveyor software v3.10 (Softgenetics, State College, US). For QC purposes all chromatograms were visually inspected for base independently by two researchers.

Genotyping

DNA was extracted using conventional methodologies and quantified using PicoGreen (Invitrogen, Renfrew, UK). Custom genotyping was conducted using the Illumina Golden Gate system.
Enhancer reporter assays in Xenopus, zebrafish and mice

The allele-specific fragments (Table S3) of each Island were PCR-amplified, sub-cloned into pCR8/GW/TOPO vector and verified by PCR and direct sequencing. Gateway technology was then used to transfer the DNA fragment to the corresponding destination reporters. For zebrafish transgenesis, we transferred the DNA fragments to the ZED destination vector [18]. This vector contains the Xenopus Cardiac actin promoter driving DsRed as a positive control for transgenesis. Zebrafish transgenic embryos were generated as described [18]. Three or more independent stable transgenic lines were generated for each construct.

Luciferase assay

The allele-specific fragments of each Island were transferred from pCR8/GW/TOPO vectors into pGL3 luc2 using the gateway technology. pGL3 luc2 constructs were amplified in E.coli followed by purification of plasmid DNA using Qiagen Endotoxin-free Maxi-prep kits. LoVo (Human colon adenocarcinoma) and RKO CRC cell lines (ECACC, Salisbury, UK) were grown in F12 (Ham’s) and McCoy’s 5a culture medium, respectively, supplemented with 10% FCS (37°C, 100% relative humidity, 5% CO2).

Cultured cells were seeded in 96-well tissue culture (Greiner) plates, 2.7 × 10⁵ cells/well, in 200 μl of media and grown for ~24 hours until 80% confluent. Transient transfection was carried out with Transfast transfection reagent (Promega, Southampton, UK) at a charge ratio of 1:1 of transfection reagent to DNA in serum free medium. In each well, cells were transfected with 150 ng of pGL3-construct DNA and 5 ng of the internal control plasmid DNA (pRL-CMV, Promega) that encodes the Renilla luciferase gene under the control of the CMV promoter. Six replicates of cells, both LoVo and RKO were transfected by each reporter construct. Each transfection experiment was repeated twice. Transiently transfected cells were grown for 48 hours, following which the luciferase assay was carried out using the Dual-Glo luciferase assay system (Promega, Southampton, UK) as per the manufactures instructions. Firefly luciferase (from the pGL3 constructs) and renilla luciferase (from the pRL-CMV internal control) were measured sequentially on a 96-well (Dynex Inc, West Sussex, UK). The ratio of luminescence from the experimental reporter to the luminescence from the control reporter was calculated for each sample, defined as the relative luciferase activity. Difference in relative activity of each experiment was assessed using the Mann-Whitney test.

Figure 4. Physical interaction of the CRC variant rs16888589 with EIF3H in CRC cell lines. (A) Physical map of the region interrogated by 3C. The position of the constant fragment at the EIF3H promoter is shown in red. Genomic positions of target fragments (Table S3) are denoted by black bars. (b) Graph showing the 3C interaction frequency containing the promoter with each target fragment in the LoVo and RKO CRC cell lines. Error bars represent SEM. The results demonstrate increased interaction frequency in the cell lines between the EIF3H promoter and fragment 12 to which rs16888589 maps. The Y-axis refers to interaction frequency; RKO to the right; LoVo to the left. The assay was performed independently for two and three times in RKO and LoVo colorectal cancer cell lines, respectively. Labels at each data point in the graph denote the name of each target fragment.

doi:10.1371/journal.pgen.1001126.g004
A set of locus specific primers (Table S3) were designed close to the ligations. A set
of primer near to each island. Two negative control primers were mapping 30 kb
upstream and 20 kb downstream the three islands. The primer near to EIF3H promoter
acting as the fixed primer, and different interactions were tested using primers close
to each island. Two negative control primers were mapping 30 kb upstream and 20 kb
downstream the three islands (Figure 4; Table S3). PCR products were run in an agarose
gel and quantified using a Typhoon scanner. Product values were normalised to a
control composed of a BAC containing all test alleles.

Figure 5. Electro-mobility shift assay (EMSA) of rs16888589 showing differential
binding of nuclear protein for A and G alleles. Upper panel shows autoradiographs
for binding of double stranded A-allele and G-allele probes to lymphoblastoid nuclear
extracts; lower panel shows a 4-fold difference in binding between A and
G alleles. doi:10.1371/journal.pgen.1001126.g005

Chromosome conformation capture assay (3C)

3C assay was performed as previously described [29]. Adherent cultured
LoVo or RKO cells were processed to get a single cell preparation. 10^7
cells were fixated with 2% PFA, lysated, and nuclei were digested with HindIII (Roche,
West Sussex, UK). DNA was then ligated with T4 DNA ligase (Promega, Southampton,
UK) in low concentration conditions to favour intramolecular ligations. A set of locus specific primers (Table S3) were designed close to the HindIII site. The primer near to EIF3H promoter was used as the fixed primer, and different interactions were tested using primers close to each island. Two negative control primers were mapping 30 kb upstream and 20 kb downstream the three islands (Figure 4; Table S3). PCR products were run in an agarose gel and quantified using a Typhoon scanner. Product values were normalised to a control composed of a BAC containing all test alleles. We validated the ligation product of Island 2 (I2) with primers close to each island. Two negative control primers showed >90% transduction efficiency were used for the experiments. To enhance the viral transduction, 8 µg/ml of polybrene (Sigma-Aldrich, Milwaukee, WI, USA) was used in every transduction.

Lentivirus production and transductions. Lentiviral constructs were performed as previously described [21]. The sequences of short hairpin RNAs (shRNAs) are given in Table S3. shRNA oligos were obtained from Sigma-Proglo (The Woodlands, TX, USA) and cloned into the lentiviral plasmid Lentilox3.7 (pLL3.7). cDNA clone of EIF3H over-expression and knockdown in colorectal cancer cell lines

Cell lines. HT-29 and LoVo CRC cell lines were obtained from DSMZ (Braunschweig, Germany), and cultured under recommended conditions.

Fluorescence in situ hybridization. Dual-color fluorescence in situ hybridization (FISH) with digoxigenin-dUTP (Roche Diagnostics, West Sussex, UK) labeled PAC probe for EIF3H and FITC-dUTP (NEN, Boston, USA) labeled pericentromeric probe for chromosome 8 (gJM128) were hybridized to interphase nuclei of the cell lines as previously [30]. After stringent washes, slides were stained with antidigoxigenin-horseradish (Roche Diagnostics) and counterstained with an antifade solution (Vectorshied, Vector Laboratories, Burlingame, CA, USA) containing 4,6-diamidino-2-phenylindole (DAPI). FISH signals were scored using Olympus BX50 epifluorescence microscope (Olympus Inc, Tokyo, Japan).

Growth curves and soft agar assays. Growth curves and soft agar assays were performed as previously described [21]. For the growth curves cells transduced with lentiviruses were plated on a 24-well plate at 50 000 cells/ml density. Alamar Blue (Trek Diagnostic Systems, Cleveland, OH, USA) was added to the wells followed by fluorescence measurement after two hours of incubation. Values were normalized against day 1. Each experiment was performed in five replicates and repeated at least twice. For soft agar assay, cells transduced with lentiviruses were trypsinized and diluted of 5000 cells/well was mixed with 5% agarose to form 0.35% upper layer. After two weeks, colonies were photographed under UV-microscope and counted. All experiments were conducted in triplicate and repeated at least twice.
Allelic analysis imbalance analysis

Allelic imbalance in the CRC tumors was scored as described in Tuupanen et al. [20].

EIF3H expression and 8q23 copy number analysis

Snap-frozen rectal adenomas and carcinomas from patients who had not received radiotherapy or adjuvant chemotherapy were evaluated for EIF3H expression and 8q23 copy number. Frozen tumors were macrodissected in a cryostat to obtain tumor percentage assessed (50–80%), guided by H&E-sections. DNA was isolated from tumors using the Genomic Wizard kit (Promega, Madison, WI). Copy numbers were analyzed using GeneChip Mapping 10 K 2.0 arrays (Affymetrix, Inc., Santa Clara, CA) as described previously [31]. RNA was isolated from tumors using the Qiagen RNeasy mini kit with DNaseI digestion (Qiagen Sciences, Germantown, MD) and quality checked by lab-on-a-chip (Agilent Technologies, Agilent Technologies, Palo Alto, California). 2 μg RNA was hybridized to human 35 K oligo microarrays from the CMF of the Netherlands Cancer Institute as previously described [32]. Comparison of the difference in expression levels was assessed using the Mann-Whitney test.

Statistical and bioinformatic analysis

Statistical analyses were undertaken in Stata v10 (Station College, US). Deviation of the genotype frequencies in the controls from those expected under Hardy-Weinberg Equilibrium (HWE) was assessed by χ2 test. Unconditional logistic regression was used to calculate the per allele odds ratio (OR) of CRC and associated 95% confidence intervals (CIs) for each SNP. Haplotype analysis was conducted in Haploview software (v4.0) and tested for association via a likelihood ratio test. Linkage disequilibrium metrics were calculated using Haploview software (v4.0). The weight of evidence in favour of each associated SNP was quantified by calculating Akaike weights [33]. Prediction of the untyped SNPs in the case-control data were performed with MACH1.0 on reference phased haplotypes from HapMap phase II data (January 2007 on NCBI B35 assembly, dbSNP build 125) and the SNP-discovery panel. Reference haplotypes were constructed of all SNPs identified in the re-sequenced interval by use of PHASE software [34].

Supporting Information

Dataset S1 Association Results of SNPs genotyped by Illumina Golden Gate and by Imputation with MACH 1.0.

References

