 Resistless fabrication of embedded nanochannels by FIB patterning, wet etching and atomic layer deposition

Han, Zhongmei

IEEE
2015

http://hdl.handle.net/10138/164441

Downloaded from Helda, University of Helsinki institutional repository.
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.
Please cite the original version.
Resistless Fabrication of Embedded Nanochannels by FIB Patterning, Wet Etching and Atomic Layer Deposition

Zhongmei Han, Marko Vehkamäki, Markku Leskelä and Mikko RITALA
Laboratory of Inorganic Chemistry, Department of Chemistry
University of Helsinki
Helsinki, Finland
E-mail: zhongmei.han@helsinki.fi

Abstract—Self-supported SiO₂ structures were fabricated from thermal SiO₂/Si substrates by combining FIB direct writing and selective and anisotropic chemical wet etching of silicon. These structures, such as SiO₂ overhangs on the edges of Si trenches, were then used as templates for ALD of Ta₂O₅ to form sealed nanochannels and cavities. The size of trenches formed by etching through openings in the SiO₂ increases with FIB patterning ion dose as well as KOH etching time. Channel formation results from sealing the trenches by the conformal ALD of Ta₂O₅. The KOH etching time determines the channel size while the ion dose determines final wall thickness after ALD. The fabricated hollow nanochannels are embedded under SiO₂ and surrounded by Ta₂O₅ on crystalline Si. The channel size reaches 50 nm by this fabrication approach with a 60 min KOH etching time.

Keywords—nanochannels; focused ion beam; anisotropic etching; atomic layer deposition; SiO₂/Si

I. INTRODUCTION

Nanoscale channels are interesting nanostructures due to their promising applications such as filters, transistors, nanofluidics, and molecule sensors [1-4]. However, precise control of channel size and wall thickness is an issue for many nanochannel fabrication methods. Atomic layer deposition (ALD) is increasingly used in making 3D nanostructures due to the superior conformality and precise film thickness control [5, 6]. Ultra-thin films have been deposited by ALD on nanostructured templates such as nanopores [7-9], nanofibers [8, 10-12] and nanotubes [13, 14] for making 3D nanostructures. Furthermore, the deposited film materials can be selected depending on the application as many materials, including metals, oxides and nitrides, are available as ALD processes [6].

SiO₂ is an excellent insulating material and has been widely used in silicon-based devices for electrical and optical applications. Patterning of SiO₂ for various applications has been previously reported such as lift-off [15, 16], photolithography [17], electron beam lithography [18-20], reactive ion etching [21, 22], dynamical ploughing [23] and focused ion beam (FIB) direct writing [24, 25]. FIB direct writing is a maskless patterning technology for nanostructure fabrication [26]. In FIB systems, gallium is the mostly used liquid metal ion source owning to its low melting point, commercial availability, and long lifetime. The main concern for FIB patterning is the Ga⁺ implantation and damage to the target surface. However, majority of the gallium residue caused by FIB patterning of silicon can be removed by subsequent wet etching in a KOH/H₂O₂ solution at room temperature [27]. SiO₂ thin films can be grown easily on silicon wafers by thermal oxidation at high temperatures [28]. The thermal oxidation of silicon forms a stable and near-perfect SiO₂/Si interface [29]. In addition, the high etching selectivity between SiO₂ and Si in various etchants such as KOH and HF solutions makes wet etching also a patterning option for SiO₂/Si systems.

In this study, we combined FIB direct writing and chemical wet etching of silicon for nanofabrication of SiO₂ self-supported structures from thermal SiO₂ on Si substrates. The fabricated SiO₂/Si line trenches were used as a template for subsequent ALD of Ta₂O₅ to form embedded hollow nanochannels contacting with crystalline silicon. The resulting channels have a controllable width and height down to sub-100 nm. The fabrication process is illustrated in Fig. 1.

![Fabrication Steps Diagram](image-url)
II. EXPERIMENTAL

A. Fabrication of SiO₂ Structures

Silicon\(\langle 100\rangle\) wafers were thermally oxidized \(1000 \degree C\) to grow 105 nm thick SiO₂ films. The oxidized wafers were cleaved into small pieces \(2 \text{ cm} \times 5 \text{ cm}\) which were then put into a FIB-SEM chamber for the direct writing by 30 keV gallium ion beam with 100 pA current and 90 % overlap. All the milled structures were aligned with the crystal structure by aligning the milled patterns parallel with the cleaved specimen edge. FIB patterned pieces were wet etched in three successive etching steps. 1 mol/L:1 mol/L KOH/H₂O₂ solution was used immediately at room temperature for 3 hours to remove most of the gallium implanted layer and improve the thermal stability of the FIB patterned sites [27]. 1 % HF was used to remove native oxide and 1 mol/L KOH to etch the underlying silicon through the opened sites in SiO₂ and to release SiO₂ with the FIB patterned features.

B. ALD of Ta₂O₅ on SiO₂/Si Structures

ALD of Ta₂O₅ was subsequently performed on the FIB patterned and wet etched samples in a Microchemistry F-120 reactor at 250 \(\degree C\) with Ta(OEt)₅ and water as precursors. Long purges were applied during the ALD process in order to remove the precursor vapors as well as possible from the almost-sealed channels.

III. RESULTS AND DISCUSSION

A. SiO₂ Structures Fabricated by FIB Patterning and Wet Etching

Si was etched from the FIB opened sites with KOH for 2 hours and suspended SiO₂ structures were formed due to the etching of Si below (Fig. 2). It is worth emphasizing that the removal of gallium residues with KOH/H₂O₂ is critical for the use of the FIB patterned SiO₂ layer as a mask for the KOH wet etching of the underlying silicon – without the gallium removal the implanted gallium in silicon would stop or delay the following KOH etching process [27]. This method, combining FIB and wet etching, presents many options for preparing self-supported or hollow SiO₂ structures.

The FIB patterned structures were a circle \(d = 10 \mu m\), a ring \(d_{\text{outer}} = 20 \mu m, d_{\text{inner}} = 19.8 \mu m\), a square matrix \(a = 500 \text{ nm}\) and a line set on a SiO₂/Si piece before the chemical etching steps. The formed structures under SiO₂ shown in Fig. 2(a), (c) and (d) illustrate anisotropic etching of Si \(\langle 100\rangle\) and \(\langle 111\rangle\) planes while the Fig. 2(b) shows larger underetching resulting from much higher etching rate of \(\langle 221\rangle\) and \(\langle 331\rangle\) planes than \(\langle 100\rangle\) plane [30]. In Fig. 2(b), there is a large space under SiO₂ with a supporting pillar in the middle after the KOH etching of Si. The big membrane plate did not bend towards the bottom of etched Si in this case probably due to good stiffness of SiO₂ film and the anisotropic etching in diluted KOH (1 mol/L) at room temperature. After ALD of Ta₂O₅ on the etched SiO₂/Si, the SiO₂ plate was FIB cut to the middle to illustrate the cross section (Fig. 3) of the supporting pillar under the suspended SiO₂ plate in Fig. 2(b).
inlets of desired size, for example.

For line trenches, the patterning ion dose and KOH etching time are significant for the resulting trench size. Fig. 4 shows top-views of four line sets patterned by FIB with various ion doses followed by wet etching in the KOH etchant for 0, 60, 80 and 120 min, respectively. The lateral etch distance increases with etching time, but is independent of ion dose.

B. Nanochannel Formation with ALD

ALD Ta$_2$O$_5$ was chosen as the test material as it is amorphous, insulator, chemically stable and has high refractive index. After the FIB patterned line gaps were all closed by Ta$_2$O$_5$ film, cross sections were made by FIB milling. The SEM images in Fig. 5 show the channels formed after ALD of Ta$_2$O$_5$ thin film. The ion dose used for the FIB patterning increased from left to right in each image shown in Fig. 5, which results in larger opening in the SiO$_2$ layer. More ALD cycles were required for closing wider line gaps, resulting in thicker channel walls because the wall thickness equals to a half of the line gap.

IV. CONCLUSIONS

This paper demonstrated a resistless fabrication method for embedded Ta$_2$O$_5$ channels by FIB direct writing, wet etching and ALD on SiO$_2$/Si substrates. The channel size is determined by KOH etching time and the wall thickness by the ion dose applied to make line opening into the SiO$_2$ layer. The wall materials can be selected depending on the application such as metals, oxides and nitrides as they are widely available in ALD processes, making this a highly versatile approach.
ACKNOWLEDGMENT

We wish to acknowledge financial support from China Scholarship Council (File No. 2011704017). We also gratefully acknowledge Finnish center of excellence in atomic layer deposition.

REFERENCES

