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Abstract. We investigate the dependency of Higgs inflation on the non-renormalisable match-
ing between the low energy Standard Model limit and the inflationary regime at high ener-
gies. We show that for the top mass range mt & 171.8 GeV the scenario robustly predicts
the spectral index ns ' 0.97 and the tensor-to-scalar ratio r ' 0.003. The matching is how-
ever non-trivial, even the best-fit values mh = 125.09 GeV and mt = 173.21 GeV require a
jump δλ ∼ 0.01 in the Higgs coupling below the inflationary scale. For mt . 171.8 GeV,
the matching may generate a feature in the inflationary potential. In this case the predicted
values of ns and r vary but the model is still falsifiable. For example, a detection of negative
running of spectral index at level αs . −0.01 would rule out Higgs inflation.
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1 Introduction

The Standard Model (SM) Higgs could be the inflaton field explaining the origin of structure
in the universe. The Higgs inflation scenario [1] assumes a large non-minimal curvature
coupling ξRh2 for the SM Higgs. This ensures the required flat potential during inflation
assuming that higher order curvature terms are suppressed. The suppression is a non-trivial
constraint on ultraviolet physics [2]. However the setup is self-consistent as all the energy
scales are below the perturbative unitarity cutoff during inflation [3, 4].

However, even in the absence of higher order curvature operators, the inflationary poten-
tial is not uniquely determined by the measured SM parameters and the non-minimal coupling
ξ [4–6]. This is because the non-renormalisable setup which does not allow straightforward
running of the SM couplings up to the inflationary scale. The running of SM couplings can
be computed perturbatively around the electroweak vacuum h = 246 GeV up to energies
µ ∼MP /ξ. In the inflationary regime h &MP /ξ the Higgs potential is approximatively shift
symmetric which enables perturbative treatment of radiative corrections also over the scales
MP /ξ . µ . MP /

√
ξ [3, 7, 8]. The matching of these two regimes is however obscured by

manifestly non-renormalisable physics at intermediate scales [4–6].
Assuming the Higgs inflation indeed took place in the early universe, the system of

SM coupled to gravity should have an ultraviolet completion which eventually determines
the matching [4, 5, 7, 9]. Without the exact solution at hand, however, we are led to
parameterise the effects of the unknown non-renormalisable physics. Here we follow [4, 5]
and model its impact by introducing two effective parameters, δλ and δyt, which represent
unknown jumps in the Higgs and top Yukawa couplings at the intermediate scale µ ∼MP /ξ.
These parameters together with the perturbative running at low and high energy regimes
then connect the measured SM couplings to the effective Higgs potential during inflation.

There are several consistency constraints which restrict the viable choices of parameters
δλ and δyt. First, the jump δλ cannot in general be chosen zero. This is because the Higgs
coupling runs negative before the inflationary scale unless the top quark is significantly
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below its best fit value mt ' 173.21 GeV [10]. Inflation then requires the coupling to jump
positive before inflation which necessitates a large enough positive δλ [5]. Second, the required
relaxation of the inflationary Higgs condensate into the SM vacuum during reheating further
constraints δλ and δyt. The reheating constraints are non-trivial if the Higgs coupling runs
negative and generates a negative energy minimum between the inflationary plateau and
the SM vacuum. Third, the primordial perturbations generated during inflation should have
the observed properties which also constrains the matching parameters. Specific choices of
δλ and δyt may generate a feature in the inflationary potential which in the extreme case
becomes an inflection point [4, 5, 11, 12].

In this work we investigate in detail the impact of matching parameters in Higgs infla-
tion. By varying the Higgs and top masses within their experimental two-sigma limits and
scanning over a wide range of δλ, δyt and ξ, we establish a systematical picture of the full
range of possible observational signatures in the scenario. We show that for top mass values
mt & 171.8 GeV, the observed amplitude of primordial perturbations Pζ = 2.138 × 10−9

[13] can be obtained only for parameter combinations which yield the spectral index and
tensor to scalar ratio consistent with the standard predictions of Higgs inflation, n = 0.97
and rT = 0.003 [1, 14]. For mt . 171.8 GeV the observed amplitude can also be obtained for
matching parameters which generate a feature in the inflationary potential and still allow for
reheating into the SM vacuum. In this case ns and rT can vary over a broad range of values
[4, 5, 11]. However, we show that the scenario is still falsifiable as the predictions for the
spectral index ns, its running αs and the tensor-to-scalar ratio rT always satisfy a consistency
relation. Combining the results, we discuss in detail how the requirement of successful Higgs
inflation followed by reheating into the SM vacuum constrain the viable values of δλ and δyt
for different choices of the Higgs and top masses and the non-minimal coupling.

The paper is organised as follows. In Section 2 we summarise the setup for Higgs
inflation and introduce the matching parameters. In Section 3 we discuss the form of the
effective Higgs potential during inflation and its dependence on the matching. In Section
4 we discuss the consistency conditions on matching parameters implied by reheating and
the end of inflation. In Section 5 we analyse the observational signatures of the model and
investigate how the predictions for a given choice of SM parameters depend on the matching.
Finally, in Section 6 we present our conclusions.

2 The setup for Higgs inflation

Including the non-minimal Higgs coupling to spacetime curvature the Lagrangian for gravity
and Standard Model fields reads

L =
M2
P

2
R+

ξ

2
h2R+ LSM . (2.1)

Here the gauge-invariant operator h2 = 2Φ†Φ denotes the length of the Higgs doublet Φ
and in the following we will call h the Higgs field. The non-minimal coupling is inevitably
generated by radiative effects and it has a major role in explaining the vacuum stability even
if the Higgs would not act as the inflaton [15–17]. In addition to the non-minimal coupling a
generic effective Lagrangian is expected to contain all possible higher order terms. In Higgs
inflation the couplings of higher order operators are required to be small and ξ should be
large [1] which are non-generic conditions on the ultraviolet physics [2]. However, the setup
is self-consistent as the perturbative unitarity is preserved during inflation without any need
to include higher order terms [3, 4].
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It is convenient to make a conformal transfomation in Eq. (2.1) such that gµν →
Ω2gµν with Ω2 = 1 + ξh2/MP . In this so called Einstein frame the gravitational part of the
Lagrangian takes the form of Einstein gravity. The scalar kinetic term can be brought to
canonical form in this frame by a suitable redefinition of the Higgs field χ(h) and a rescaling
of the fermions by ψ → ψ/Ω3/2. In terms of the canonically normalised Einstein frame
quantities the parts of the Lagrangian (2.1) including gravity and couplings of the Higgs
boson and top quark are given by [4]

L =
1

2
M2
PR+

1

2
DµχDµχ−

λ

4
F 4(χ) + iψ̄tD/ψt +

yt√
2
F (χ)ψ̄tψt . (2.2)

Here F (χ) reduces to χ ' h for small field values and approaches constant for large field
values

F (χ) =
h

(1 + ξh2/M2
P )1/2

=

χ , χ�MP /ξ

MP√
ξ

(
1− e−

√
2/3 χ/MP

)1/2
, χ�MP /ξ

. (2.3)

In the small field limit χ�MP /ξ the action (2.2) reduces to SM in flat space. Radiative
corrections can be computed perturbatively up to the unitarity cutoff MP /ξ where non-
renormalisable gravitational interactions can no longer be neglected. On the other hand,
in the inflationary regime, χ � MP /ξ, the effective potential has an approximative shift
symmetry and the unitarity cutoff is pushed up to MP /

√
ξ [4, 5]. This warrants perturbative

treatment of radiative corrections also over scales MP /ξ . µ .MP /
√
ξ.

However, in the intermediate regime µ ∼ MP /ξ, non-renormalisable operators are not
suppressed and the perturbative analysis loses its validity. This leads to ambiguity in match-
ing the low energy SM limit and the inflationary high energy regime [4, 5]. Therefore, even if
there would be no higher order curvature corrections to Eq. (2.1) the inflationary potential
is not uniquely determined by the measured SM parameters and the non-minimal coupling
ξ alone.

2.1 Matching the low and high energy regimes

Here we follow the approach of [4, 5] and postulate that the system of SM coupled to gravity
has an ultraviolet completion described by Eq. (2.2). The matching of the SM limit χ �
MP /ξ and the inflationary regime χ� MP /ξ should then be determined by the exact non-
perturbative solution. As the form of the postulated solution is not known, however, the
matching is undetermined. Here we adopt a phenomenological approach and parameterise
our ignorance of the non-perturbative solution. We then proceed to systematically investigate
how predictions of the Higgs inflation depend on the unknown physics and how the matching
implied by successful Higgs inflation differs for different choices of SM parameters.

Following [4, 5] we introduce effective matching parameters to connect the low and
high energy solutions for the running SM of couplings. The beta functions can be computed
perturbatively in both limits. However, their solutions in the high energy regime contain a
priori arbitrary constants of integration. Matching the two regimes amounts to determining
these constants. For example, cancelling one-loop divergences in the effective Higgs coupling
λ requires adding a counterterm to Eq. (2.2) of the form [5]

δL =

(
−2

ε

9λ2

64π2
− γ + ln(4π) + δλ

)(
F ′2 +

1

3
F ′′F 2

)2

F 4 , (2.4)
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where ε = 4− d. This vanishes for χ�MP /ξ and for χ�MP /ξ it reduces to the operator
F 4. Consequently, the effective coupling λ(µ)F 4 jumps by an arbitrary finite amount δλ when
moving from small field values to the inflationary regime. The top Yukawa yt and weak gauge
couplings g, g′ may feature similar jumps which stem from mass corrections proportional to
F ′ and F ′′. In our analysis we will include only the jumps δλ and δyt for the Higgs and top
couplings.

We choose to match the low and high energy regimes at the point, χ1, where F (χ) given
by Eq. (2.3) switches from one branch to another

χ1 =
MP√
ξ

(
1− e−

√
2/3 χ1/MP

)1/2
. (2.5)

In the following we will always choose the renormalisation scale µ equal to the top quark
mass. This amounts to approximatively minimising the leading logarithmic corrections δV ∼
m4
t ln(µ2/m2

t ) to the effective potential. With this choice, the matching scale µ1 = µ(χ1) is
given by

µ1 =
yt(µ1)χ1√

2
. (2.6)

The running of couplings in the low energy limit µ � µ1 is determined by the usual
SM beta functions in flat space, see e.g. [10]. In the high energy regime µ � µ1 the Higgs
potential settles to a constant and the system is formally analogous to chiral electroweak
theory [7, 18]. In matching the two regimes we allow for jumps in the Higgs and top Yukawa
couplings

λ(µ1) = λSM(µ1) + δλ, (2.7)

yt(µ1) = ySMt (µ1) + δyt .

Here λSM(µ) and ySMt (µ) denote solutions of the SM renormalisation group equations and
we evaluate all couplings in the MS scheme and Landau gauge. We solve them to next
to next to leading order precision using the code available at [19]. We treat the jumps δλ
and δyt as a priori free parameters constrained only by the requirement of perturbativity,
|λ(µ1)| < 1 and |yt(µ1)| < 1. Note that the effective potential and couplings are not directly
physical but the inflationary perturbations are. For a different choice of gauge and the
renormalisation scheme, the effective potential and also the values of δλ and δyt leading to
the same observables would in general be different. Here we stick to one choice and scan
over all possible values of the matching parameters. Hence, our results for the inflationary
observables are in this regard fully general.

The running in the high-energy regime µ > µ1 is solved from the one-loop chiral beta
functions which read

16π2βλ = −6y4t +
3

8
(2g4 + (g′2 + g2)2) + λ(−3g′2 − 6g2 + 12y2t ) , (2.8)

16π2βyt = yt

(
−17

12
g′2 − 3

2
g2 − 8g23 + 3y2t

)
,

16π2βg3 = −7g23 ,

16π2βg′ =
27

4
g′2 ,

16π2βg = −13

4
g2 .
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The initial conditions for λ and yt are set by Eq. (2.7) at the matching scale µ = µ1. We
assume that there are no corresponding features in the gauge coupling RGEs. Their initial
conditions are given by gi(µ1) = gSMi (µ1) and we use the best fit values as the input for
their SM running. The couplings in the inflationary regime thus depend on the set of five
parameters (mh,mt, ξ, δλ, δyt).

In Eq. (2.8) the last term of βλ is suppressed compared to the first two due to the
smallness of λ and we will neglect it. To the same precision we can also neglect the running
of the non-minimal coupling ξ [7] and we will hence treat ξ as a constant. The change in its
value over the inflationary energies is anyway negligible and its value at low energies is of
little interest as there are no useful experimental bounds for its value there.

3 The inflationary potential

For χ � v = 246 GeV the renormalisation group improved tree-level effective potential can
be approximated by

V (χ) =
λ(µ)

4
F 4(χ) , µ =

yt(µ)F (χ)√
2

. (3.1)

Here the running of the coupling λ(µ) from the low energy SM limit up to inflationary
energies is determined by Eqs. (2.7) and (2.8). We have chosen the renormalisation scale µ
such that leading logarithmic corrections to the potential δV ∼ m4

t ln(µ2/m2
t ) are small and

can be neglected. While the full effective potential does not depend on the choice of µ, the
error in its perturbative approximation in general does.

The exponential form of Eq. (2.3) drives the potential nearly constant V ' λM4
P /4ξ

2

for large field values. This makes inflation possible in the regime χ &MP [1]. The amplitude
of primordial perturbations, the spectral index, its running and the tensor-to-scalar ratio are
given by the standard single field slow roll expressions.

Pζ =
M−2P

2ε

(
H

2π

)2

, ns − 1 ≡
dPζ
dlnk

= 2η − 6ε , (3.2)

αs ≡
dns
dlnk

= −2Ξ− 24ε2 + 16εη , rT = 16ε .

The slow roll parameters are defined by

ε =
M2
P

2

(
V ′

V

)2

, η = M2
P

V ′′

V

2

, Ξ = M4
P

V ′V ′′′

V 2
. (3.3)

The third slow roll parameter is commonly denoted by ξ but here we use Ξ to distinguish it
from the non-minimal coupling. All the quantities are evaluated at the horizon crossing of
observable modes. Throughout this work we assume this corresponds to NCMB = 60 e-folds
before the end of inflation.

The first and second derivatives of the Higgs potential Eq. (3.1) are given by

V ′ =
F 3F ′

4
(4λ+ βλ) (3.4)

V ′′ =
(F 3F ′)′

F 3F ′
V ′ +

F 2F ′2

4

(
4βλ +

dβλ
dlnµ

)
. (3.5)

Generically one expects that βλ and its derivative in Eqs. (3.4) and (3.5) can be neglected
during inflation as they are suppressed by higher powers of couplings. This corresponds
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to the standard Higgs inflation [1] where the amplitude P depends on the ratio λ/ξ2 and
the number of e-folds NCMB left at the horizon crossing of observable modes and all other
quantities in Eq. (3.2) depend on NCMB only.

The situation is different in the non-generic parameter regime where λ = O(βλ) at the
inflationary scale. In this case the running of λ may lead to accidental suppression of the first
and second derivatives [4, 5, 11]. Consequently, the inflationary potential may have a feature
V ′′ ' 0 or even an inflection point V ′ ' V ′′ ' 0. The spectrum of perturbations will then
sensitively depend on the matching parameters. It should be noted that cancellation between
parametrically different quantities Eqs. (3.4) and (3.5) is not generic. For example, inflection
point configurations require λ = O(β2λ/y

2
t ) = O(10−6) which implies fine-tuning of δλ and

δyt to the level of sixth digits [4, 5]. Here we leave questions of naturalness aside, and simply
aim to systematically investigate all possible observational signatures of the Higgs inflation
and to clarify their dependence on the matching. Note that with the two free parameters
δλ and δyt it is not possible to simultaneously have accidental suppression of more than
two independent derivatives of the potential. We therefore neglect the second derivatives
d2βλ/dlnµ2 which would appear in V ′′′ and only include terms up to dβλ/dlnµ.

The possible features in the inflationary potential can be conveniently classified in terms
δ1,2 defined by

4λ(µ) + βλ(µ) ≡ λ(µ)δ1(µ) (3.6)

4βλ(µ) +
dβλ(µ)

dlnµ
≡ β(µ)δ2(µ) . (3.7)

For each set of SM parameters and the non-minimal coupling ξ, the choice of matching
parameters δλ and δyt uniquely determines δ1,2(µ) through Eqs. (2.7) and (2.8). The cases
where δ1,2 = O(1) correspond to an almost featureless potential and the spectrum of produced
perturbations is to a good approximation described by the standard results of Higgs inflation.
The inflection point is generated if δ1 = δ2 = 0 at some scale µ in the inflationary regime.
The cases between these limits correspond to milder features in the potential which may still
affect the observables.

By scanning over δλ and δyt and numerically computing the inflationary dynamics we
will establish a systematical picture of the observational signatures which can be obtained for
each choice of SM parameters and ξ. In addition to their impacts on inflationary observables,
the matching parameters are generically constrained also by the reheating stage after the end
of inflation. This holds true even for the standard case of Higgs inflation with no features in
the potential. We now turn to discuss these consistency conditions and then combine them
with the analysis of observable signatures in Section 5.

4 Consistency conditions for the matching

For best fit values of the SM parameters the Higgs coupling λ(µ) becomes negative at
scales µ & 1010 GeV [10]. In this case the Higgs inflation can be realised only if the non-
renormalisable physics at the intermediate scales µ ∼MP /ξ affects the running such that λ
becomes again positive in the inflationary regime µ &MP /ξ. In the effective parametrisation
(2.7) this requires a jump δλ from negative to positive values at µ = µ1. The inflationary
regime χ & χ1 will then be separated from the electroweak vacuum by a negative energy
minimum of the potential located at χ ∼ χ1 [5].
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In the presence of the negative energy minimum, the relaxation of the inflationary Higgs
condensate into the electroweak vacuum during reheating is a non-trivial condition. If the
minimum is sufficiently deep |V (χ1)| . λinfMP

4/ξ2, the Higgs may instead end up into
the negative energy minimum. In this case reheating of the observed Universe would not
be possible. In [5] it was proposed that thermal corrections could lift the negative energy
minimum leading to successful reheating. This requires large enough reheating temperature
which constrains the viable range of matching parameters.

4.1 Thermal corrections and reheating

After the end of inflation the Higgs becomes massive V ′′ ∼ H2 and starts to oscillate around
the minimum of its potential. The dominant decay channel of the coherently oscillating con-
densate is the non-perturbative production of weak gauge bosons [20, 21]. They will further
decay into quarks and leptons generating a thermal bath of SM particles. Detailed analysis
of the process is beyond the scope of the current work. Here we follow [5] and investigate
when thermal corrections can lift the negative energy minimum in the most optimal case
where all the inflationary energy is instantaneously converted into the thermal bath. This
represents the minimal, necessary condition for reheating into the electroweak vacuum. As
the actual decay is not instant and the energy transfer is not complete the actual sufficient
condition could be even tighter.

Thermal corrections to the effective Higgs potential are given by

∆V (T, χ) = T
∑
i

∫
d3k

(2π)3a3
ln(1± e−β(k2/a2+m2

i (T ))) , (4.1)

where the plus sign corresponds to fermions and minus sign to bosons. Here we will include
only the dominant contributions which arise from top quarks and weak gauge bosons. Their
thermal masses are given by

m2
Z(T ) =

g21(µg) + g22(µg)

4
F 2(χ), (4.2)

m2
W (T ) =

g22(µg)

4
F 2(χ), (4.3)

mt(T ) =
yt(µt)√

2
F (χ), (4.4)

and we evaluate the couplings respectively at scales µg = 7T and µt = 1.8T [22]. In computing
the couplings we use the SM renormalisation group equations matched to chiral SM at µ1
according to Eqs. (2.7) and (2.8).

If the Higgs coupling runs negative below the inflationary scale, the zero temperature
potential has a negative energy minimum, Vmin = V (χmin), between the electroweak vacuum
and the inflationary regime. We require that the negative energy minimum is lifted by
thermal corrections such that the global minimum of the potential corresponds to χ = 0.
This implies the condition

∆V (Treh, χmin) > −V (χmin) . (4.5)

We evaluate the thermal corrections using the highest possible reheating temperature Treh
which corresponds to instant reheating and full conversion of the inflationary energy into
radiation

Treh =

(
30Vinf
g∗π2

)1/4

. (4.6)
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Here g∗ = 106.75 is the effective number of degrees of freedom. For most choices of the match-
ing parameters, the negative minimum is located at the matching scale Vmin ' λ(µ1)χ

4
1/4

where the Higgs coupling jumps from negative to positive. It is however also possible that
λ does not jump all the way up to positive values at µ1. It may instead jump close to zero
and cross zero at a higher scale (still below inflation). In this case the minimum is located
somewhere between χ1 and the inflationary regime. To account for all possible forms of the
potential, we compute the effective potential Eq. (3.1) and determine the location χ1 of the
negative minimum separately for each parameter set (mh,mt, ξ, δλ, δyt).

In the following we will take Eqs. (4.5) and (4.6) as our criteria for successful reheating.
The conditions translate into bounds on the effective jump parameters δλ and δyt which
will depend both on the low energy SM parameters mh and mt and on the non-minimal
coupling ξ. Increasing the top mass or decreasing the Higgs mass leads to more negative
values of the Higgs coupling and hence tighter constraints. The non-minimal coupling enters
the problem through two opposite effects. Decreasing ξ moves the matching scale µ1 ∝ ξ−1 to
higher values leading to more negative λ(µ1). On the other hand, it increases the inflationary
energy scale as Vinf ∝ ξ−2. Which of the effects dominates depends on the parameters and
will be investigated numerically below.

We reiterate that Eqs. (4.5) and (4.6) only give the minimal necessary conditions for
reheating. The actual sufficient conditions for the relaxation of the Higgs condensate into the
electroweak vacuum could be tighter. Determining the sufficient conditions would require
a careful investigation of the reheating stage and resonant decay of the Higgs condensate
accounting for the dynamical backreaction of the generated bath of light SM particles. This
is beyond the scope of our current work. Moreover, as the phenomenological matching,
Eqs. (2.7) and (2.8), may not represent the actual form of the negative energy minimum
there is little point in going beyond the order of magnitude estimates within this simplistic
prescription.

4.2 End of inflation

Depending on the choice of δλ and δyt, the potential may contain a local maximum in the
regime µ > µ1. A maximum between the field value χCMB at horizon exit of observable modes
and end of slow roll regime χend would be fatal as there would be no graceful exit from the
inflationary regime. A maximum before the observable range of e-folds, χmax > χCMB is in
principle be allowed, see e.g. [6]. It would however imply tuning of initial conditions. The
initial field value should be chosen in the range χ < χmax or otherwise there would again be
no graceful exit.

Here we require that the initial conditions for inflation can be chosen arbitrarily in the
regime χ > χCMB and that there is always a graceful exit from inflation. We therefore impose
the condition

V ′(χ) 6 0 , for χ > χend. (4.7)

Together with the successful reheating condition Eqs. (4.5) and (4.6) this further constrains
the choices of matching parameters. This restricts in particular the jumps in the top Yukawa
coupling δyt which directly affects the running of λ(µ) in the inflationary regime.

The condition Eq. (4.7) still allows for choices of δλ and δyt which may generate a local
maximum after the end of slow roll inflation. In that case we require V (χmax) < V (χend)
such that relaxation to the electroweak vacuum is possible.
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5 Observational signatures

We now turn to analyse the observational predictions of Higgs inflation. Our goal here is to
establish a systematical picture of the observational signatures and their dependence on the
matching of the low and high energy regimes. The results will also demonstrate how each
choice of mh,mt and ξ in general implies a different connection between the two regimes
separated by perturbatively non-renormalisable physics.

In terms of the parameterisation introduced in Eqs. (3.6) and (3.7), the standard Higgs
inflation [1] corresponds to parameter sets (mh,mt, ξ, δλ, δyt) which yield δ1,2 = O(1). In
this case the running of λ has a negligible during inflation and the inflationary dynamics
essentially corresponds to R2 inflation [23]. The spectrum, spectral index, its running and
the tensor-to-scalar ratio are then to good approximation given by

Pζ =
λN2

CMB

72π2ξ2
, ns = 1− 2

NCMB
, αs = − 2

N2
CMB

, rT =
12

N2
CMB

, (5.1)

which do not directly depend on the matching parameters. Setting NCMB = 60 one obtains
the well-known standard predictions of the Higgs inflation.

On the other hand, the inflationary dynamics is strongly dependent on the matching
for the choices of δλ and δyt which yield δ1 � 1 or |δ2| � 1. An extreme example is the
inflection point scenario [4, 5] which corresponds to δ1 = δ2 = 0 such that the first and
second derivatives of the potential vanish locally. More generally, the inflationary potential
may contain a milder feature where the second derivative vanishes locally V ′′ = 0 but the
first derivative may be non-vanishing. The observational signatures then depend sensitively
on δλ and δyt which determine both the location of the feature and the form of the potential
in its neighbourhood. As we have already discussed above, the cases δ1,2 � 1 always imply
some tuning of δλ and δyt. Here we do not address the naturalness of the tuning but simply
investigate all possible observational signatures.

We have numerically investigated the inflationary dynamics for each parameter set
(mh,mt, ξ, δλ, δyt). We scan over Higgs and top masses within the observational 2-σ bounds
mh = 125.09±0.24 GeV and mt = 173.21±1.22 GeV [24] and vary the non-minimal coupling
in the range 1 6 ξ 6 104. We let the matching parameters δλ, δyt take any values which
are consistent with perturbativity |λ(µ)| < 1 and |yt(µ)| < 1 and satisfy the conditions Eqs.
(4.5), (4.6) and (4.7). For each combination (mh,mt, ξ, δλ, δyt), we evaluate the inflationary
observables Eq. (3.2) at the field value χCMB corresponding to NCMB = 60 efolds before the
end of inflation. In this way we are able to systematically determine all the possible obser-
vational signatures of the Higgs inflation. Note that by setting NCMB = 60 we neglect the
logarithmic dependence on reheating temperature which may differ for different parameter
choices. This does not restrict the generality of our results as the scan still covers all possible
shapes of the Higgs potential at any inflationary field value. The variation of NCMB would
only affect the precise relation between δλ and δyt and the observational signatures.

The results are depicted in Fig. 1. This shows the possible values of the spectral index
ns, the tensor-to-scalar ratio rT and the running of the spectral index αs for parameter sets
which yield the observed amplitude of perturbations Pζ = (2.139 ± 0.063) × 10−9 [13]. The
standard Higgs inflation, realised for parameter combinations (mh,mt, ξ, δλ, δyt) which yield
δ1,2 = O(1), corresponds to the red dot in the figure, ns = 0.967 and rT = 0.0033 [1]. Other
points in the plot correspond to matching parameters which yield δ1,2 � O(1). The further
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Figure 1. The possible combinations of the spectral index ns, its running αs and tensor-to-scalar
ratio rT that can be obtained in Higgs inflation requiring that Pζ = 2.14 × 10−9. The red point
corresponds to the standard case with no features in the inflationary potential. Values in the white
regime cannot be obtained in Higgs inflation for any choice of parameters.

the point is from the standard prediction, the smaller the values of δ1 and δ2 are 1 Note
that as opposed to [5] we find parameter combinations (mh,mt, ξ, δλ, δyt) which yield a large
tensor-to-scalar ratio rT & 0.1 and still meet the necessary criteria for successful reheating
Eqs. (4.5) and (4.6). They correspond to cases where λ(µ) does not run negative below µ1
Eq. (2.6) and jumps downwards after the matching scale, δλ < 0.

We stress we have scanned over all possible values of the matching parameters δλ and
δyt consistent with perturbativity and reheating. The results in Fig. 1 therefore show the full
range of observational signatures which can be obtained in Higgs inflation for any matching
of the low and high energy regimes described by Eq. (2.7) (we only show the observationally
interesting regime here, the possible values of ns and rT do extend outside the depicted
range).

Therefore, we find that even if the matching parameters δλ and δyt may significantly
affect the observables, the Higgs inflation is still falsifiable if only the Lagrangian in the
inflationary regime is given by Eq. (2.1). For example, a detection of negative running of the
spectral index at the level αs . −0.01 would suffice to rule out the model. This holds for any
value of the non-minimal coupling ξ and irrespectively of details of the non-renormalisable
intermediate scale physics encoded in δλ and δyt. Moreover, even if rT can be tuned almost
independently of ns by adjusting the parameters (mh,mt, ξ, δλ, δyt), a large tensor-to-scalar
ratio within the Higgs inflation is necessarily accompanied by an enhanced positive running
of the spectral index as seen in Fig. 1.

1For δ1 . 10−3 the region in the immediate vicinity of the feature may be dominated by quantum fluctua-
tions which lead to essentially stochastic motion for [V ′| < H3 [25]. Removing this range of values for δ1 does
not affect Fig. 1 but the eventual observable effects of the quantum kicks should in principle be investigated
separately [26].
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5.1 Observational constraints on the matching

It is also interesting to investigate in more detail how viable values of δλ and δyt within the
Higgs inflation scenario depend on SM parameters and the non-minimal coupling ξ.

In the limit of standard Higgs inflation, δ1,2 = O(1), the inflationary predictions are
given by Eq. (5.1) and do not directly depend on the matching. However, even in this limit
the jumps δλ and δyt cannot be chosen freely. Matching the amplitude of perturbations
to the observed value Pζ = 2.139 × 10−9 [13] and imposing the reheating conditions Eq.
(4.5) heavily constrains the possible choices. The viable values of δλ and δyt for the best fit
Higgs and top masses are depicted in the left panel of Fig. 2 as a function of the non-minimal
coupling ξ. Only positive values of the jump δλ are possible in this case as the Higgs coupling

Figure 2. The matching parameters δλ, δyt and non-minimal coupling ξ which yield the observed
amplitude of perturbations and allow for reheating into the electroweak vacuum. The left panel shows
the results for the best fit values mh = 125.09 GeV, mt = 173.21 GeV and the right panel for a small
top mass mh = 125.09 GeV, mt = 170.0 GeV. In the left panel all points correspond to inflationary
potential with no features. In the right panel, points in the regime ξ . 300 yield a feature in the
potential.

λ(µ) runs negative in the SM regime. It is also noteworthy that the required value of the
non-minimal coupling sensitively depends on the jumps δλ and δyt. The possible values of
the non-minimal coupling are constrained from below by the reheating condition Eq. (4.5) as
the negative minimum gets deeper the smaller the value of ξ is. However, even for the best
fit SM parameters we find that the Higgs inflation can be realised for non-minimal coupling
values as low as ξ = O(400).

The dependence of the matching parameters on the Higgs and top masses is illustrated
in Fig. 3 for different values of ξ. As the non-minimal coupling decreases, the viable range
of mh,mt for any choice of matching parameters shrinks towards smaller top masses. This is
again due to the reheating condition Eq. (4.5). In Fig. 3 we have only shown the results for
matching parameters which yield the standard Higgs inflation with no features δ1,2 = O(1).
For mt & 171.8 GeV, the choices which would generate features in the potential always yield
a too small amplitude for perturbations. This is because the amplitude scales as Pζ ∝ ξ−2

and for mt & 171.8 GeV the reheating condition Eq. (4.5) constrains ξ to values which are
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Figure 3. The dependence of matching parameters on mh and mt in the case with no features in the
potential. All points yield the observed amplitude of perturbations and allow for reheating into the
electroweak vacuum. Below the dashed line there are also viable choices of δλ and δyt which generate
features in the potential.

too large to yield the observed amplitude for δ1,2 � 1. The predictions of Higgs inflation are
thus uniquely given by Eq. (5.1) for top mass values in the range mt & 171.8 GeV.

The situation is different in the regime mt . 171.8 GeV marked by the dashed line in
Fig. 3. Here the observed amplitude of perturbations can be obtained also for δλ and δyt
which generate a feature in the potential, δ1,2 � 1, and still pass the reheating condition Eq.
(4.5). This is also seen in the right panel of Fig. 2 which illustrates the possible values of
δλ, δyt and ξ for a successful Higgs inflation with mt = 171.0 GeV. In the regime ξ & 300, the
viable values of δλ and δyt yield δ1,2 = O(1) and lead to the standard case with no features.
The region ξ . 300 on the other hand corresponds to matching parameters which generate
a feature in the potential, δ1,2 � 1. This regime is absent in the left panel which shows
the corresponding results for the best fit values of SM parameters. In this case the observed
amplitude can only be obtained in the regime with no features.

In the presence of a feature the observational signatures are not unique but depend on
the matching and vary over the values shown in Fig. 1. Changing δλ and δyt affects both
the shape of the feature (the values of δ1,2 in Eqs. (3.6) and (3.7)) and its location compared
to the field value χCMB at the horizon crossing of observable modes. The dependence on δλ
and δyt is in general different for different choices of mh,mt and ξ. An example is seen in
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Figure 4. The dependence of the spectral index ns and tensor-to-scalar ratio rT on the matching
parameters for a sample point mh = 125.09 GeV, mt = 171.05 GeV and ξ = 59. All points yield the
observed amplitude of perturbations and the mutual dependence of δλ and δyt is shown in left panel.

Fig. 4 which shows how the spectral index and tensor to scalar ratio depend on the matching
parameters for a sample point mh = 125.09 GeV, mt = 171.05 GeV and ξ = 59.

The smallest possible values of the non-minimal coupling ξ for which the observed
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amplitude can be obtained are depicted in Fig. 5. All points shown in the figure pass the
minimal conditions for successful reheating Eq. (4.5). As already noticed in [4, 5] the Higgs
inflation can be realised even for ξ . 10 in the regime of low top mass values. The viable
choices of matching parameters δλ and δyt corresponding to small ξ all yield features in the
inflationary potential.

Log

Figure 5. The smallest possible values of the non-minimal coupling ξ for which the observed ampli-
tude of perturbations can be obtained and reheating into the electroweak vacuum is possible.

6 Conclusions

In Higgs inflation the connection between the SM limit at low energies and the approxima-
tively shift symmetric inflationary plateau at high energies is obscured by manifestly non-
renormalisable physics at intermediate scales. A possible resolution is that the non-minimally
coupled inflationary limit is obtained as a UV completion of SM coupled to gravity. Without
the exact solution at hand, however, the matching of the effective low and high energy limits
in the scenario is to large extent ambiguous.

Here we have thoroughly analysed the observational signatures of Higgs inflation and
their dependence on the mathcing. Following [5] we model the impacts of unknown non-
renormalisable physics by two free parameters δλ and δyt which connect the low and high
energy running of Higgs and top Yukawa couplings. By varying the Higgs and top masses
within their observational two sigma bounds, letting the non-minimal coupling to take values
in the range ξ = 1...104 and scanning over δλ and δyt we have established a systematical
picture of the model predictions.

We find that generating the observed amplitude of perturbations in general requires
non-zero positive values for δλ. For example, for the best fit values mt = 173.21 GeV and
mh = 125.09 GeV the Higgs coupling runs negative at µ ' 1011 GeV and a jump δλ ∼ 0.01 to
positive values is necessary for inflation to take place. Both δλ and δyt and the non-minimal
coupling ξ are further constrained by the required decay of the inflationary Higgs condensate
into the electroweak vacuum despite the negative energy minimum in the zero temperature
potential. Perturbations and the reheating constraint together make the required ξ value
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dependent on δλ and δyt and even relatively small values of ξ can lead to successful inflation.
For the best fit SM parameters, the lowest possible value is ξ ' 400.

For top mass values in the range mt & 171.8 GeV we find that successful Higgs inflation
is only possible for matching parameters which yield the standard R2 inflation predictions for
the spectral index ns ' 0.97 and tensor-to-scalar ratio rT ' 0.003. In the regime mt . 171.8
GeV the observed amplitude of perturbations together with successful reheating can also be
obtained for δλ and δyt which are tuned to generate a feature in the inflationary potential.
In this case, ns and rT can vary over broad range depending on the values of the matching
parameters. Remarkably, however, we find that the scenario is falsifiable even in this limit.
For any choices of δλ, δyt and ξ the predictions for ns, its running αs and rT are constrained
to the surface shown in Fig. 1. For example, a detection of negative running of the spectral
index at level αs . −0.01 would rule out the scenario irrespectively of details of the matching.
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