Measurement of the ZZ production cross section and Z →τ+τ− branching fraction in pp collisions at s=13 TeV

Khachatryan, V.

2016-12-10


http://hdl.handle.net/10138/174837
https://doi.org/10.1016/j.physletb.2016.10.054

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.
Measurement of the ZZ production cross section and Z → ℓ⁺ℓ⁻ℓ′⁺ℓ′⁻ branching fraction in pp collisions at √s = 13 TeV

The CMS Collaboration*

A R T I C L E   I N F O

Article history:
Received 29 July 2016
Received in revised form 9 October 2016
Accepted 21 October 2016
Available online 27 October 2016

Editor: M. Doser

Keywords:
CMS
Physics
Electroweak

A B S T R A C T

Four-lepton production in proton–proton collisions, pp → (Z/γ*) (Z/γ*) → ℓ⁺ℓ⁻ℓ′⁺ℓ′⁻, where ℓ, ℓ' = e or μ, is studied at a center-of-mass energy of 13 TeV with the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 2.6 fb⁻¹. The ZZ production cross section, σ(pp → ZZ) = 14.8+1.9−1.2 (stat.) ± 1.0 (syst.) ± 0.2 (theo) ± 0.4 (lumi) pb, is measured for events with two opposite-sign, same-flavor lepton pairs produced in the mass region 60 < m_{ℓ+ℓ⁻} < 120 GeV. The Z boson branching fraction to four leptons is measured to be B(Z → ℓ⁺ℓ⁻ℓ′⁺ℓ′⁻) = 4.9±1.8(stat.)±0.6(syst.)±0.5(theo) ± 0.1(lumi)×10⁻⁶ for the four-lepton invariant mass in the range 80 < m_{ℓ+ℓ⁻ℓ′+ℓ′−} < 100 GeV and dilepton mass m_{ℓ+ℓ⁻} > 4 GeV for all opposite-sign, same-flavor lepton pairs. The results are in agreement with standard model predictions.

© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³.

1. Introduction

Measurements of diboson production at the CERN LHC allow precision studies of the standard model (SM). These measurements are important for testing predictions that were recently made available at next-to-next-to-leading-order (NNLO) in quantum chromodynamics (QCD) [1]. Comparing these predictions to data at a range of center-of-mass energies gives insight into the structure of the electroweak gauge sector of the SM, and new proton–proton collision data at √s = 13 TeV allow diboson measurements at the highest energies to date. Any deviations from expected values could be an indication of physics beyond the SM.

Previous measurements of the ZZ production cross section from CMS were performed in the ZZ → ℓ⁺ℓ⁻ℓ⁺ℓ⁻ and ZZ → ℓ⁺ℓ⁻νν decay channels, where ℓ = e, μ and ℓ'' = e, μ, τ for both Z bosons produced on-shell, in the dilepton mass range 60–120 GeV [2–4]. These measurements were made with data sets corresponding to integrated luminosities of 5.1 fb⁻¹ at √s = 7 TeV and 19.6 fb⁻¹ at √s = 8 TeV, and agree with SM predictions. The ATLAS Collaboration produced similar results at √s = 7, 8, and 13 TeV [5–7], which also agree with the SM.

Extending the mass window for the dilepton candidates to lower values allows measurements of (Z/γ*) (Z/γ*) production, where “Z” may indicate an on-shell Z boson or an off-shell Z* boson. The resulting sample includes Higgs boson events in the "golden channel" H → ZZ* → ℓ⁺ℓ⁻ℓ⁺ℓ⁻, where ℓ = e, μ, and rare Z boson decays to four leptons. The Z → ℓ⁺ℓ⁻γ* → ℓ⁺ℓ⁻ℓ⁺ℓ⁻ decay was studied in detail at LEP [8] and was observed in pp collisions by CMS [9] and by ATLAS [10]. Though the branching fraction for this decay is orders of magnitude smaller than that for the Z → ℓ⁺ℓ⁻ decay, the precisely known mass of the Z boson makes the four-lepton mode useful for calibrating mass measurements of the nearby Higgs resonance.

This letter reports a study of four-lepton production (pp → ℓ⁺ℓ⁻ℓ⁺ℓ⁻, where ℓ and ℓ indicate electrons or muons) at √s = 13 TeV with a data set corresponding to an integrated luminosity of 2.62 ± 0.07 fb⁻¹ recorded in 2015. From this study, cross sections are inferred for nonresonant production of pairs of Z bosons, pp → ZZ, where both Z bosons are produced on-shell, defined as the mass range 60–120 GeV, and resonant pp → Z → ℓ⁺ℓ⁻ℓ⁺ℓ⁻ production. Discussion of resonant Higgs boson production is beyond the scope of this letter.

2. The CMS detector

A detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [11].

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip
tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), which provide coverage in pseudorapidity $|\eta| < 1.479$ in a barrel and 1.479 < $|\eta| < 3.0$ in two endcap regions. Forward calorimeters extend the coverage provided by the barrel and endcap detectors to $|\eta| < 5.0$. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid in the range $|\eta| < 2.4$, with detection planes made using three technologies: drift tubes, cathode strip chambers, and resistive plate chambers.

Electron momenta are estimated by combining energy measurements in the ECAL with momentum measurements in the tracker. The momentum resolution for electrons with transverse momentum $p_T \approx 45$ GeV from $Z \rightarrow e^+e^-$ decays ranges from 1.7% for nonshowering electrons in the barrel region to 4.5% for showering electrons in the endcaps [12]. Matching muons to tracks measured in the silicon tracker results in a $p_T$ resolution for muons with $20 < p_T < 100$ GeV of 1.3–2.0% in the barrel and better than 6% in the endcaps. The $p_T$ resolution in the barrel is better than 10% for muons with $p_T$ up to 1 TeV [13].

3. Signal and background simulation

Signal events are generated with POWHEG 2.0 [14–16] at next-to-leading-order (NLO) in QCD for quark–antiquark processes and leading-order (LO) for quark–gluon processes. This includes ZZ, $Z\gamma^*$, $Z\gamma\gamma^*$, and $\gamma\gamma\gamma^*$ production with a constraint of $m_{\ell\ell} > 4$ GeV applied between all pairs of oppositely charged leptons at the generator level to avoid infrared divergences. The $gg \rightarrow ZZ$ process is simulated at LO with MCFM v7.0 [17]. These samples are scaled to correspond to cross sections calculated at NNLO for $ qq \rightarrow ZZ$ [1] (scaling K factor 1.1) and at NLO for $ gg \rightarrow ZZ$ [18] (K factor 1.7). The $gg \rightarrow ZZ$ process is calculated to $\mathcal{O}(\alpha_s^3)$, where $\alpha_s$ is the strong coupling constant, while the other contributing processes are calculated to $\mathcal{O}(\alpha_s^2)$; this higher-order correction is included because the effect is known to be large [18].

A sample of Higgs boson events is produced in the gluon–gluon fusion process with POWHEG 2.0 in the NLO QCD approximation. The Higgs boson decay is modeled with PHugen 3.1.8 [19–21]. The $q\bar{q} \rightarrow ZZ$ process is generated with POWHEG 2.0.

The PYTHIA v8.175 [22–24] package is used for parton showering, hadronization, and the underlying event simulation, with parameters set by the CUEPAP1 tune [25]. The NNPDF3.0 [26] set is used as the default set of parton distribution functions (PDFs). For all simulated event samples, the PDFs are calculated to the same order in QCD as the process in the sample.

The detector response is simulated using a detailed description of the CMS detector implemented with the GEANT4 package [27]. The event reconstruction is performed with the same algorithms used for data. The simulated samples include additional interactions per bunch crossing, referred to as “pileup.” The simulated events are weighted so that the pileup distribution matches the data, with an average of about 11 interactions per bunch crossing.

4. Event reconstruction

All long-lived particles in each collision event — electrons, muons, photons, and charged and neutral hadrons — are identified and reconstructed with the CMS particle-flow (PF) algorithm [28, 29] from a combination of the signals from all subdetectors. Reconstructed electrons [12] and muons [13] are candidates for inclusion in four-lepton final states if they have $p_T^e > 7$ GeV and $|\eta^e| < 2.5$ or $p_T^\mu > 5$ GeV and $|\eta^\mu| < 2.4$. These are designated “signal leptons.”

Signal leptons are also required to originate from the event vertex, defined as the proton–proton interaction vertex whose associated charged particles have the highest sum of $p_T^2$. The distance of closest approach between each lepton track and the event vertex is required to be less than 0.5 cm in the plane transverse to the beam axis, and less than 1 cm in the direction along the beam axis. Furthermore, the significance of the three-dimensional impact parameter relative to the event vertex, $\text{SIP}_{3D}$, is required to satisfy $\text{SIP}_{3D} \equiv |\vec{p}/\sigma_{IP}| < 4$ for each lepton, where $\vec{p}$ is the distance of closest approach of each lepton track to the event vertex and $\sigma_{IP}$ is its associated uncertainty.

Signal leptons are required to be isolated from other particles in the event. The relative isolation is defined as

$$ R_{iso} = \left[ \sum_{\text{charged hadrons}} p_T + \max(0, \sum_{\text{neutral hadrons}} p_T + \sum_{\text{photons}} p_T - p_T^{PU}) \right] / p_T^l, $$

where the sums run over the charged and neutral hadrons, and photons, in a cone defined by $\Delta R = \sqrt{(\Delta\eta)^2 + (\Delta\phi)^2} < 0.3$ around the lepton trajectory, where $\phi$ is the azimuthal angle in radians.

To minimize the contribution of charged particles from pileup to the isolation calculation, charged hadrons are included only if they originate from the event vertex. The contribution of neutral particles from pileup is $p_T^{PU}$. For electrons, $p_T^{PU}$ is evaluated with the “jet area” method described in Ref. [30]: for muons, it is taken to be half the sum of the $p_T$ of all charged particles in the cone originating from pileup vertices. The factor one-half accounts for the expected ratio of charged to neutral particle energy in hadronic interactions. A lepton is considered isolated if $R_{iso} < 0.35$.

Emission of final-state radiation (FSR) photons by the signal leptons may degrade the performance of the isolation requirements and Z boson mass reconstruction. These photons are omitted from the isolation determination for signal leptons and are implicitly included in dilepton kinematic calculations. Photons are FSR candidates if $p_T^\gamma > 2$ GeV, $|\eta^\gamma| < 2.4$, their relative isolation (defined as in Eq. (1) with $p_T^{PU} = 0$) is less than 1.8, and $\Delta R(\ell, \gamma) < 0.5$ with respect to the nearest signal lepton. To avoid double counting of bremsstrahlung photons that are already included in electron reconstruction, photons are not FSR candidates if there is any signal electron within $\Delta R(\gamma, e) < 0.15$ or within $|\Delta\phi(\gamma, e)| < 2$ and $|\Delta\eta(\gamma, e)| < 0.15$. Because FSR photons have a higher average energy than photons from pileup and are expected to be mostly collinear with the emitting lepton, a photon candidate is accepted as FSR if $\Delta R(\ell, \gamma)/(p_T^{\gamma})^2 < 0.012$ GeV$^{-2}$.

In simulated $ZZ \rightarrow e^+e^-e^+e^-$ events, the efficiency to select generated FSR photons is around 55%, and roughly 85% of selected photons are matched to FSR photons. At least one FSR photon is identified in approximately 2%, 5%, and 8% of simulated events in the 4e, 2e2\mu, and 4\mu channels, respectively. In data events with two on-shell Z bosons, no FSR photons are selected in the 4e decay channel, while at least one FSR photon is selected in three and five events in the 2e2\mu and 4\mu decay channels, respectively.

The lepton reconstruction, identification, and isolation efficiencies are measured with a tag-and-probe technique [31] applied to a sample of $Z \rightarrow e^+e^-$ data events. The measurements are performed in several bins of $p_T^e$ and $|\eta^e|$. The electron reconstruction and selection efficiency in the ECAL barrel (endcaps) varies from about 85% (77%) at $p_T^e \approx 10$ GeV to about 95% (89%) for $p_T^e \geq 20$ GeV, while in the barrel-endcap transition region this efficiency is about 85% averaged over all electrons with $p_T^e > 7$ GeV. The muons are reconstructed and identified with efficiencies above ~98% within $|\eta| < 2.4$. 

[21]
5. Event selection

The primary triggers for this analysis require the presence of a pair of loosely isolated leptons of the same or different flavors. The highest $p_T$ lepton must have $p_T^1 > 17$ GeV, and the subleading lepton must have $p_T^2 > 12$ GeV if it is an electron or $p_T^2 > 8$ GeV if it is a muon. The dielectron and dimuon triggers require that the tracks corresponding to the leptons originate from within 2 mm of each other in the plane transverse to the beam axis. Triggers requiring a triplet of lower-$p_T$ leptons with no isolation criterion, or a single high-$p_T$ electron without an isolation requirement, are also used. An event is used if it passes any trigger regardless of the decay channel. The total trigger efficiency for events within the acceptance of this analysis is greater than 98%.

A signal event must contain at least two $Z/\gamma^*$ candidates, each formed from an oppositely charged pair of isolated signal electrons or muons. Among the four leptons, the highest $p_T$ lepton must have $p_T > 20$ GeV, and the second-highest $p_T$ lepton must have $p_T^2 > 12$ GeV if it is an electron or $p_T^2 > 10$ GeV if it is a muon. All leptons are required to be separated by $\Delta R(\ell_1, \ell_2) > 0.02$, and electrons are required to be separated from muons by $\Delta R(e, \mu) > 0.05$.

Within each event, all permutations of leptons giving a valid pair of $Z/\gamma^*$ candidates are considered separately. Within each $\ell^+ \ell^- \ell^+ \ell^-$ candidate, the dilepton candidate with an invariant mass closest to 91.2 GeV, taken as the nominal Z boson mass, is denoted $Z_1$ and is required to have a mass greater than 40 GeV. The other dilepton candidate is denoted $Z_2$. Both $m_{Z_1}$ and $m_{Z_2}$ are required to be less than 120 GeV. All pairs of oppositely charged leptons in the candidate are required to have $m_{\ell\ell} > 4$ GeV regardless of flavor.

If multiple $\ell^+ \ell^- \ell^+ \ell^-$ candidates within an event pass all selections, the passing candidate with $m_{Z_2}$ closest to the nominal Z boson mass is chosen. In the rare case of further ambiguity, which may arise in events with five or more signal leptons, the $Z_2$ candidate that maximizes the scalar product of the four leptons is chosen.

Additional requirements are applied to select events for measurements of specific processes. The $Z \rightarrow ZZ$ cross section is measured using events where both $m_{Z_1}$ and $m_{Z_2}$ are greater than 60 GeV. The $Z \rightarrow \ell^+ \ell^- \ell^+ \ell^-$ branching fraction is measured using events with $80 < m_{\ell\ell\ell\ell} < 100$ GeV, a range chosen to retain most of the decays in the resonance while removing most other processes with four-lepton final states.

6. Background estimate

The major background contributions arise from Z boson and WZ diboson production in association with jets and from $t\bar{t}$ production. In all these cases, particles from jet fragmentation satisfy both lepton identification and isolation criteria, and are thus misidentified as signal leptons.

The probability for such objects to be selected is measured from a sample of $Z + \ell_{\text{candidate}}$ events, where $Z$ is a pair of oppositely charged, same-flavor leptons that pass all analysis requirements and satisfy $|m_{\ell\ell\ell\ell} - m_Z| < 10$ GeV, where $m_Z$ is the nominal Z boson mass. Each event in this sample must have exactly one additional object $\ell_{\text{candidate}}$ that passes relaxed identification requirements with no isolation requirements applied. The misidentification probability for each lepton flavor is defined as a ratio of the number of candidates that pass the final isolation and identification requirements to the total number in the sample, measured in bins of lepton candidate $p_T$ and $\eta$. The number of $Z + \ell_{\text{candidate}}$ events is corrected for contamination from WZ production, or ZZ production in which one lepton is not reconstructed. These events have a third genuine, isolated lepton that must be excluded from the misidentification probability calculation. The WZ contamination is suppressed by requiring the missing transverse energy $E_T^{\text{miss}}$ to be below 25 GeV. The $E_T^{\text{miss}}$ is defined as the magnitude of the missing transverse momentum vector $p_T^{\text{miss}}$, the projection on the plane transverse to the beams of the negative vector sum of the momenta of all reconstructed particles in the event. Additionally, the transverse mass $m_T \equiv \sqrt{(E_T^\ell + E_T^{\text{miss}})^2 - (p_T^\ell + p_T^{\text{miss}})^2}$ of $\ell_{\text{candidate}}$ and the missing transverse momentum vector is required to be less than 30 GeV. The residual contribution of WZ and ZZ events, which may be up to a few percent of the events with $\ell_{\text{candidate}}$ passing all selection criteria, is estimated from simulation and subtracted.

To account for all sources of background events, two control samples are used to estimate the number of background events in the signal regions. Both are defined to contain events with a dilepton candidate satisfying all requirements ($Z_1$) and two additional lepton candidates $\ell^+ \ell^-$. In one control sample, enriched in WZ events, one $\ell^+$ candidate is required to satisfy the full identification and isolation criteria and the other must fail the full criteria and instead satisfy only relaxed ones; in the other, enriched in $Z$-jets events, both $\ell^+$ candidates must satisfy the relaxed criteria, but fail the full criteria. The additional leptons must have opposite charge and the same flavor ($e^+e^-, \mu^+\mu^-$). From this set of events, the expected number of background events in the signal region is obtained by scaling the number of observed $Z_1 + \ell^+ \ell^-$ events by the misidentification probability for each lepton failing the selection. Low-mass dileptons may be sufficiently collinear that their isolation cones overlap, and their misidentification probabilities are therefore correlated. To mitigate the effect of these correlations, only the control sample in which both additional leptons fail the full selection is used if $\Delta R(\ell^+, \ell^-) < 0.6$. The background contributions to the signal regions of $Z \rightarrow \ell^+ \ell^- \ell^+ \ell^-$ and $ZZ \rightarrow \ell^+ \ell^- \ell^+ \ell^-$ are summarized in Section 8.

7. Systematic uncertainties

Systematic uncertainties are summarized in Table 1. In both data and simulated event samples, trigger efficiencies are evaluated with a tag-and-probe technique. The ratio between data and simulation is applied to simulated events, and the size of the resulting change in expected yield is taken as the uncertainty for the determination of the trigger efficiency. This uncertainty is around 2% of the final estimated yield. For $Z \rightarrow e^+e^-e^+e^-$ events, the uncertainty increases to 4%.

The lepton identification and isolation efficiencies in simulation are corrected with scaling factors derived with a tag-and-probe technique.

Table 1

<table>
<thead>
<tr>
<th>Uncertainty</th>
<th>$Z \rightarrow 4\ell$</th>
<th>$ZZ \rightarrow 4\ell$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID efficiency</td>
<td>2–6%</td>
<td>0.4–0.9%</td>
</tr>
<tr>
<td>Isolation efficiency</td>
<td>1–6%</td>
<td>0.3–1.1%</td>
</tr>
<tr>
<td>Trigger efficiency</td>
<td>2–4%</td>
<td>2%</td>
</tr>
<tr>
<td>MC statistics</td>
<td>1–2%</td>
<td>1%</td>
</tr>
<tr>
<td>Background</td>
<td>0.7–1.4%</td>
<td>0.7–2%</td>
</tr>
<tr>
<td>Pileup</td>
<td>0.4–0.8%</td>
<td>0.2%</td>
</tr>
<tr>
<td>PDF</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>QCD scales</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>Integrated luminosity</td>
<td>2.7%</td>
<td>2.7%</td>
</tr>
</tbody>
</table>
method and applied as a function of lepton $p_T$ and $\eta$. To estimate the uncertainties associated with the tag-and-probe technique, the total yield is recomputed with the scaling factors varied up and down by the tag-and-probe fit uncertainties. The uncertainties associated with the identification efficiency in the $Z \to \ell^+\ell^-\ell'^+\ell'^-$ (Z → $\ell^+\ell^-\ell'^+\ell'^-$) signal regions are found to be 0.9% (6%) in the 4e final state, 0.7% (4%) in the 2e2$\mu$ final state, and 0.4% (2%) in the 4$\mu$ final state. The corresponding uncertainties associated with the isolation efficiency are 1.1% (6%) in the 4e final state, 0.7% (3%) in the 2e2$\mu$ final state, and 0.3% (1%) in the 4$\mu$ final state. These uncertainties are higher for $Z \to \ell^+\ell^-\ell'^+\ell'^-$ events because the leptons generally have lower $p_T$, and the samples used in the tag-and-probe method have fewer events and more contamination from nonprompt leptons in this low-$p_T$ region.

Uncertainties due to the effect of factorization ($\mu_F$) and renormalization ($\mu_R$) scale choice on the $Z \to \ell^+\ell^-\ell'^+\ell'^-$ acceptance are evaluated with POWHEG and MCFM by varying the scales up and down by a factor of two with respect to the default values $\mu_F = \mu_R = m_T$. These variations are much smaller than 1% and are neglected. Parametric uncertainties (PDF sets, $\alpha_s$) are evaluated using the CTEQ [32] and NNPDF3.0 sets and are found to be less than 1%. The largest difference between predictions from POWHEG and MCFM with different scales and PDF sets, 1.5%, is considered to be the theoretical uncertainty in the acceptance calculation. An additional theoretical uncertainty arises from scaling the POWHEG $q\bar{q} \to ZZ$ simulated sample from its NLO cross section to the NNLO prediction, and the MCFM $gg \to ZZ$ samples from their LO cross sections to the NLO predictions. The change in the acceptance corresponding to this scaling procedure is found to be 1.1%. All theoretical uncertainties are added in quadrature.

The largest uncertainty in the estimated background yield arises from differences in sample composition between the $Z + \ell$ control sample used to calculate the lepton misidentification probability and the $Z + \ell'^{+}$ control sample. A further uncertainty arises from the limited number of events in the $Z + \ell$ sample. A systematic uncertainty of 40% of the estimated background yield is applied to cover both effects. The size of this uncertainty varies by channel, but is less than 1% of the total expected yield.

The uncertainty in the integrated luminosity of the data sample is 2.7% [33].

8. Cross section measurements

The distributions of the four-lepton mass and the masses of the $Z_1$ and $Z_2$ candidates are shown in Fig. 1. The SM predictions include nonresonant ZZ predictions normalized using the NNLO cross section, production of the SM Higgs boson with mass 125 GeV [34], and resonant $Z \to \ell^+\ell^-\ell'^+\ell'^-$ production. The background estimated from data is also shown. The reconstructed invariant mass of the $Z_1$ candidates, and a scatter plot showing the correlation between $m_{Z_2}$ and $m_{Z_1}$ in data events, are shown in Fig. 2. The scatter plot, clusters of events corresponding to $Z \to \ell^+\ell^-\ell'^+\ell'^-$, $Z\gamma \to \ell^+\ell^-\ell'^+\ell'^-$, and $Z \to \ell^+\ell^-\ell'^+\ell'^-$ production can be seen.

The four-lepton invariant mass distribution below 110 GeV is shown in Fig. 3 (top). Fig. 3 (bottom) shows $m_{Z_2}$ plotted against $m_{Z_1}$ for events with $m_{Z_2} > m_{Z_1}$ between 80 and 100 GeV, and the observed and expected event yields in this mass region are given in Table 2.

The reconstructed four-lepton invariant mass is shown in Fig. 4 (top) for events with two on-shell Z bosons. Fig. 4 (bottom) shows the invariant mass distribution for all $Z$ candidates in these events. The corresponding observed and expected yields are given in Table 3.

The observed yields are used to evaluate the $pp \to Z \to \ell^+\ell^-\ell'^+\ell'^-$ and $pp \to ZZ \to \ell^+\ell^-\ell'^+\ell'^-$ production cross sections from a combined fit to the number of observed events in all the final states. The likelihood is a combination of individual channel likelihoods for the signal and background hypotheses with the statistical and systematic uncertainties in the form of scaling nuisance parameters. The ratio of the measured cross section to the SM cross section given by this fit including all channels is scaled by the cross section used in the simulation to find the measured fiducial cross section.

The definitions for the fiducial phase spaces for the $Z \to \ell^+\ell^-\ell'^+\ell'^-$ and $ZZ \to \ell^+\ell^-\ell'^+\ell'^-$ cross section measurements are given in Table 4.
The measured cross sections are
\[
\sigma_{\text{fid}}(pp \to Z \to \ell^+\ell^-\ell'^+\ell'^-) \\
= 30.5^{+5.2}_{-4.7}\text{ (stat)}^{+1.8}_{-1.4}\text{ (syst)} \pm 0.8\text{ (lumi)} \text{ fb},
\]
\[
\sigma_{\text{fid}}(pp \to ZZ \to \ell^+\ell^-\ell'^+\ell'^-) \\
= 34.8^{+4.8}_{-4.3}\text{ (stat)}^{+1.2}_{-0.8}\text{ (syst)} \pm 0.9\text{ (lumi)} \text{ fb}.
\]

The pp → Z → \ell^+\ell^-\ell'^+\ell'^- fiducial cross section can be compared to 27.9^{+1.6}_{-1.5} \pm 0.6 \text{ fb} calculated at NLO in QCD with POWHEG using the same settings as used for the simulated sample described in Section 3, with dynamic scales \( \mu_F = \mu_R = m_{\ell^+\ell^-\ell'^+\ell'^-} \). The uncertainties are for scale and PDF variations, respectively. The ZZ fiducial cross section can be compared to 34.4^{+0.7}_{-0.6} \pm 0.5 \text{ fb} calculated with POWHEG and MCFM using the same settings as the simulated samples, with dynamic scales \( \mu_F = \mu_R = 0.5m_{\ell^+\ell^-\ell'^+\ell'^-} \) for the contribution from MCFM.

Fig. 2. (top) The distribution of the reconstructed mass of the Z1 candidate. Points represent the data, while shaded histograms represent the SM prediction and background estimate. Hatched regions around the predicted yield represent combined statistical, systematic, theoretical, and integrated luminosity uncertainties. (bottom) The reconstructed m_{Z1} plotted against the reconstructed m_{Z1} in data events, with distinctive markers for each final state.


The branching fraction for the Z → \ell^+\ell^-\ell'^+\ell'^- decay, \( B(Z \to \ell^+\ell^-\ell'^+\ell'^-) \), is measured by comparing the cross section given by Eq. (2) with the Z → \ell^+\ell^- cross section, and is computed as...
The observed and expected yields of four-lepton events in the mass region $80 < m_{\ell^+\ell^-\ell'^+\ell'^-} < 100$ GeV and estimated yields of background events evaluated from data, shown for each final state and summed in the total expected yield. The first uncertainty is statistical, the second one is systematic.

<table>
<thead>
<tr>
<th>Final state</th>
<th>Expected $N_{\ell^+\ell^-\ell'^+\ell'^-}$</th>
<th>Background</th>
<th>Total expected</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>4\mu</td>
<td>16.88 $\pm$ 0.14 $\pm$ 0.62</td>
<td>0.31 $\pm$ 0.30 $\pm$ 0.12</td>
<td>17.19 $\pm$ 0.33 $\pm$ 0.63</td>
<td>17</td>
</tr>
<tr>
<td>2e2\mu</td>
<td>15.88 $\pm$ 0.14 $\pm$ 0.87</td>
<td>0.37 $\pm$ 0.27 $\pm$ 0.15</td>
<td>16.25 $\pm$ 0.31 $\pm$ 0.88</td>
<td>16</td>
</tr>
<tr>
<td>4e</td>
<td>5.58 $\pm$ 0.08 $\pm$ 0.53</td>
<td>0.21 $\pm$ 0.10 $\pm$ 0.08</td>
<td>5.78 $\pm$ 0.13 $\pm$ 0.53</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>38.33 $\pm$ 0.21 $\pm$ 1.19</td>
<td>0.89 $\pm$ 0.42 $\pm$ 0.22</td>
<td>39.22 $\pm$ 0.47 $\pm$ 1.21</td>
<td>39</td>
</tr>
</tbody>
</table>


Table 2

Fig. 4. Distributions of (top) the four-lepton invariant mass $m_{\ell^+\ell^-\ell'^+\ell'^-}$ and (bottom) dilepton candidate mass for four-lepton events selected with both Z bosons on-shell.

Points represent the data, while shaded histograms represent the SM prediction and background estimate. Hatched regions around the predicted yield represent combined statistical, systematic, theoretical, and integrated luminosity uncertainties.

$$B(Z \rightarrow \ell^+\ell^-\ell'^+\ell'^-) = \frac{\sigma(pp \rightarrow Z \rightarrow \ell^+\ell^-\ell'^+\ell'^-)}{\sigma(pp \rightarrow Z \rightarrow \ell^+\ell^-)/B(Z \rightarrow \ell^+\ell^-)}$$

where $\sigma(pp \rightarrow Z \rightarrow \ell^+\ell^-) = 1870^{+50}_{-40}$ pb is the $Z \rightarrow \ell^+\ell^-$ cross section times branching fraction calculated at NNLO with FEWZ v2.0 [35] in the mass range 60–120 GeV. Its uncertainty includes PDF uncertainties and uncertainties in $\alpha_s$, the charm and bottom quark masses, and the effect of neglected higher-order corrections to the calculation. The factor $c^{60–120}_{60–100} = 0.926 \pm 0.001$ corrects for the difference in $Z$ mass windows and is estimated using POWHEG. Its uncertainty includes scale and PDF variations. The nominal $Z$ to dilepton branching fraction $B(Z \rightarrow \ell^+\ell^-)$ is 0.03366 [36]. The measured value is

$$B(Z \rightarrow \ell^+\ell^-\ell'^+\ell'^-) = 4.9^{+0.8}_{-0.7}(\text{stat})^{+0.3}_{-0.2}(\text{syst})^{+0.2}_{-0.1}(\text{theo}) \pm 0.1(\text{lumi}) \times 10^{-6},$$

where the theoretical uncertainty includes the uncertainties in $A_c^{60–120}$ $c_{60–100}$ and $\sigma(pp \rightarrow Z \rightarrow \ell^+\ell^-)$.

The measured total cross section can be compared to the theoretical value of 14.5$^{+0.5}_{-0.4}$ pb calculated with a combination of POWHEG and MCFM with the same settings as described for $\sigma_{\text{had}}(pp \rightarrow ZZ \rightarrow \ell^+\ell^-\ell'^+\ell'^-)$. It can also be compared to $16.2^{+0.6}_{-0.4}$ pb, calculated at NNLO in QCD via M福特 [1,38], or $15.0^{+0.7}_{-0.6}$ pb, calculated with MCFM at NLO in QCD with additional contributions from LO $gg \to ZZ$ diagrams. Both values are calculated with the NNPDF3.0 PDF sets, at NNLO and NLO respectively, and fixed scales set to $\mu_F = \mu_R = m_Z$.

The total $ZZ$ production cross section is shown in Fig. 5 as a function of the proton–proton center-of-mass energy. Results from the CMS [2–4] and ATLAS [5–7] experiments are compared to predictions from M福特 and MCFM with the NNPDF3.0 PDF sets and fixed scales $\mu_F = \mu_R = m_Z$. The M福特 prediction uses PDFs calculated at NNLO, while the MCFM prediction uses NLO PDFs. The uncertainties are statistical (inner bars) and statistical and systematic added in quadrature (outer bars). The band around the M福特 predictions reflects scale uncertainties, while the band around the MCFM predictions reflects both scale and PDF uncertainties. The theoretical predictions and all CMS measurements are performed in the dilepton mass range 60–120 GeV. All ATLAS measurements are in the mass window 66–116 GeV. The smaller mass window is estimated to cause a 1.6% reduction in the measured cross section.

9. Summary

Results have been presented for a study of four-lepton final states in proton–proton collisions at $\sqrt{s} = 13$ TeV with the CMS detector at the LHC. The $pp \rightarrow ZZ$ cross section has been measured to be $\sigma(pp \rightarrow ZZ) = 14.6^{+1.9}_{-1.8}(\text{stat})^{+0.5}_{-0.3}(\text{syst}) \pm 0.4(\text{lumi})$ pb.
Table 3
The observed and expected yields of ZZ events, and estimated yields of background events evaluated from data, shown for each final state and summed in the total expected yield. The first uncertainty is statistical, the second one is systematic.

<table>
<thead>
<tr>
<th>Final state</th>
<th>Expected $N_{\ell\ell'}$</th>
<th>Background</th>
<th>Total expected</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>4(\mu)</td>
<td>$21.80 \pm 0.15 \pm 0.46$</td>
<td>$0.00^{+0.24}_{-0.10}$</td>
<td>$21.80^{+0.28-0.47}$</td>
<td>26</td>
</tr>
<tr>
<td>2e2(\mu)</td>
<td>$36.15 \pm 0.20 \pm 0.81$</td>
<td>$0.60 \pm 0.34 \pm 0.24$</td>
<td>$36.75 \pm 0.34 \pm 0.85$</td>
<td>30</td>
</tr>
<tr>
<td>4e</td>
<td>$14.87 \pm 0.12 \pm 0.36$</td>
<td>$0.81 \pm 0.26 \pm 0.33$</td>
<td>$15.68 \pm 0.26 \pm 0.48$</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>$72.82 \pm 0.27 \pm 1.00$</td>
<td>$1.42^{+0.49-0.42}$</td>
<td>$74.23^{+0.56-1.08}$</td>
<td>64</td>
</tr>
</tbody>
</table>

Table 4
Fiducial definitions for the reported cross sections. The common requirements are applied for both measurements.

<table>
<thead>
<tr>
<th>Cross section measurement</th>
<th>Fiducial requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common requirements</td>
<td>$p_{T}^{\ell} &gt; 20$ GeV, $p_{T}^{\ell'} &gt; 10$ GeV, $p_{T}^{Z} &gt; 5$ GeV, $m_{\ell\ell'} &gt; 4$ GeV (any opposite-sign same-flavor pair)</td>
</tr>
<tr>
<td>$Z \rightarrow \ell^{+}\ell^{-}\ell'^{+}\ell'^{-}$</td>
<td>$m_{Z_{c}} &gt; 40$ GeV</td>
</tr>
<tr>
<td></td>
<td>$80 &lt; m_{\ell^{+}\ell'^{-}\ell'^{+}} &lt; 100$ GeV</td>
</tr>
<tr>
<td>$ZZ \rightarrow \ell^{+}\ell^{-}\ell'^{+}\ell'^{-}$</td>
<td>$60 &lt; m_{Z_{1}}$, $m_{Z_{2}} &lt; 120$ GeV</td>
</tr>
</tbody>
</table>

Fig. 5. The total ZZ cross section as a function of the proton–proton center-of-mass energy. Results from the CMS and ATLAS experiments are compared to predictions from matrix and MCFM with NNPDF3.0 PDF sets and fixed scales $\mu_F = \mu_R = m_{Z_{c}}$. Details of the calculations and uncertainties are given in the text. Measurements at the same center-of-mass energy are shifted slightly along the x-axis for clarity.

0.2 (theo) $\pm 0.4$ (lumi) pb for Z boson masses in the range 60 < $m_{Z_{c}} < 120$ GeV. The branching fraction for Z boson decays to four leptons has been measured to be $B(Z \rightarrow \ell^{+}\ell^{-}\ell'^{+}\ell'^{-}) = 4.9^{+0.5}_{-0.2} \, (stat) \times 10^{-6}$ for four-lepton mass in the range $80 < m_{\ell^{+}\ell'^{-}\ell'^{+}} < 100$ GeV and dilepton mass $m_{\ell\ell'} > 4$ GeV for all oppositely charged same-flavor lepton pairs. The results are consistent with SM predictions.

Acknowledgements

We thank Massimiliano Grazzini and his collaborators for providing the NNLO cross section calculations. We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAAD and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts harmonia 2014/14/M/ST2/00428, Opus 2013/11/B/ST2/04202, 2014/13/B/ST2/02543 and 2014/15/B/ST2/ 03998, Sonata-bis 2012/07/E/ST2/01406; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSF; the National Priorities Research Program by Qatar National Research Fund; the Programa Clarín-COFUND del Principado de Asturias; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845.


V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Yerevan Physics Institute, Yerevan, Armenia

University of Sofia, Sofia, Bulgaria

W. Fang

Beihang University, Beijing, China


Institute of High Energy Physics, Beijing, China

Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China


Universidad de Los Andes, Bogota, Colombia

N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia

Z. Antunovic, M. Kovac

University of Split, Faculty of Science, Split, Croatia

V. Brigljevic, D. Ferencek, K. Kadija, S. Micanovic, L. Sudic, T. Susa

Institute Rudjer Boskovic, Zagreb, Croatia


University of Cyprus, Nicosia, Cyprus

M. Finger, M. Finger Jr.

Charles University, Prague, Czechia

E. Carrera Jarrin

Universidad San Francisco de Quito, Quito, Ecuador

A. Ellithi Kamel, M.A. Mahmoud, A. Radi

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

B. Calpas, M. Kadastik, M. Murumaa, L. Perrini, M. Raidal, A. Tiko, C. Veelken

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

P. Eerola, J. Pekkanen, M. Voutilainen

Department of Physics, University of Helsinki, Helsinki, Finland

J. Härkönen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Peltola, J. Tuominiemi, E. Tuovinen, L. Wendland

Helsinki Institute of Physics, Helsinki, Finland

J. Talvitie, T. Tuuva

Lappeenranta University of Technology, Lappeenranta, Finland

IBFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France


Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France


Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

S. Gadrat

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France


Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

T. Toriashvili 16

Georgian Technical University, Tbilisi, Georgia

Z. Tsamalaidze 8

Tbilisi State University, Tbilisi, Georgia


RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany


RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany


RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

T. Schoerner-Sadenius, C. Seitz, S. Spannagel, N. Stefaniuk, K.D. Trippkewitz, G.P. Van Onsem, R. Walsh, C. Wissing

Deutsches Elektronen-Synchrotron, Hamburg, Germany


University of Hamburg, Hamburg, Germany


Institut für Experimentelle Kernphysik, Karlsruhe, Germany

G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, I. Topsis-Giotis

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

A. Agapitos, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi

National and Kapodistrian University of Athens, Athens, Greece

I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Loukas, N. Manthos, I. Papadopoulos, E. Paradas

University of Ioánnina, Ioánnina, Greece

N. Filipovic

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary

G. Bencze, C. Hajdu, P. Hidas, D. Horvath, F. Sikler, V. Veszpremi, G. Vesztergombi, A.J. Zsigmond

Wigner Research Centre for Physics, Budapest, Hungary

N. Beni, S. Czellar, J. Karancsi, A. Makovec, J. Molnar, Z. Szillasi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary

M. Bartók, P. Raics, Z.L. Trocsanyi, B. Ujvari

University of Debrecen, Debrecen, Hungary


National Institute of Science Education and Research, Bhubaneswar, India


Panjab University, Chandigarh, India

Ashok Kumar, A. Bhardwaj, B.C. Choudhary, R.B. Garg, S. Keshri, S. Malhotra, M. Naimuddin, N. Nishu, K. Ranjan, R. Sharma, V. Sharma

University of Delhi, Delhi, India

N. Amapane\textsuperscript{a,b}, R. Arcidiacono\textsuperscript{a,c,14}, S. Argiro\textsuperscript{a,b}, M. Arneodo\textsuperscript{a,c}, N. Bartosik\textsuperscript{a}, R. Bellan\textsuperscript{a,b}, C. Biino\textsuperscript{a}, N. Cartiglia\textsuperscript{a}, F. Cenna\textsuperscript{a,b}, M. Costa\textsuperscript{a,b}, R. Covarelli\textsuperscript{a,b}, A. Degano\textsuperscript{a,b}, N. Demaria\textsuperscript{a}, L. Finco\textsuperscript{a,b}, B. Kiani\textsuperscript{a,b}, C. Mariotti\textsuperscript{a}, S. Maselli\textsuperscript{a}, E. Migliore\textsuperscript{a,b}, V. Monaco\textsuperscript{a,b}, E. Monteii\textsuperscript{a,b}, M.M. Obertino\textsuperscript{a,b}, L. Pacher\textsuperscript{a,b}, N. Pastrone\textsuperscript{a}, M. Pelliccioni\textsuperscript{a}, G.L. Pinna Angioni\textsuperscript{a,b}, F. Ravera\textsuperscript{a,b}, A. Romero\textsuperscript{a,b}, M. Ruspa\textsuperscript{a,c}, R. Sacchia\textsuperscript{a,b}, K. Shchelina\textsuperscript{a,b}, V. Solaa, A. Solano\textsuperscript{a}, A. Staiano\textsuperscript{a}, P. Traczyk\textsuperscript{a,b}

\textsuperscript{a} INFN Sezione di Torino, Torino, Italy
\textsuperscript{b} Università di Torino, Torino, Italy
\textsuperscript{c} Università del Piemonte Orientale, Novara, Italy

S. Belforte\textsuperscript{a}, M. Casarsa\textsuperscript{a}, F. Cossutti\textsuperscript{a}, G. Della Ricca\textsuperscript{a,b}, C. La Licata\textsuperscript{a,b}, A. Schizzi\textsuperscript{a,b}, A. Zanetti\textsuperscript{a}

\textsuperscript{a} INFN Sezione di Trieste, Trieste, Italy
\textsuperscript{b} Università di Trieste, Trieste, Italy


Kyungpook National University, Daegu, Republic of Korea

A. Lee

Chonbuk National University, Jeonju, Republic of Korea

J.A. Brochero Cifuentes, T.J. Kim

Hanyang University, Seoul, Republic of Korea


Korea University, Seoul, Republic of Korea


Seoul National University, Seoul, Republic of Korea


University of Seoul, Seoul, Republic of Korea

Y. Choi, J. Goh, C. Hwang, J. Lee, I. Yu

Sungkyunkwan University, Suwon, Republic of Korea

V. Dudenas, A. Juodagalvis, J. Vaitkus

Vilnius University, Vilnius, Lithuania


National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia


Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia

Universidad Iberoamericana, Mexico City, Mexico

S. Carpinteyro, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

Benemérita Universidad Autonoma de Puebla, Puebla, Mexico
A. Morelos Pineda
Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico

D. Krofcheck
University of Auckland, Auckland, New Zealand

P.H. Butler
University of Canterbury, Christchurch, New Zealand

A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, M.A. Shah, M. Shoailb, M. Waqas
National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

National Centre for Nuclear Research, Swierk, Poland

K. Bunkowski, A. Byszuk, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, M. Walczak
Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia

L. Chchipounov, V. Golovtsov, Y. Ivanov, V. Kim, E. Kuznetsova, V. Murzin, V. Oreshkin, V. Sulimov, A. Vorobyev
Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

Institute for Nuclear Research, Moscow, Russia

V. Epshteyn, V. Gavrilov, N. Lyakhovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, M. Toms, E. Vlasov, A. Zhokin
Institute for Theoretical and Experimental Physics, Moscow, Russia

A. Bylinkin
Moscow Institute of Physics and Technology, Moscow, Russia

M. Chadeeva, E. Popova, E. Tarkovskii
National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia

V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, S.V. Rusakov, A. Terkulov
P.N. Lebedev Physical Institute, Moscow, Russia
A. Baskakov, A. Belyaev, E. Boos, M. Dubinin 41, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Miagkov, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

V. Blinov 42, Y. Skovpen 42

Novosibirsk State University (NSU), Novosibirsk, Russia


State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

P. Adzic 43, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic, V. Milosevic, V. Rekovic

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia


Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

J.F. de Trocóniz, M. Missiroli, D. Moran

Universidad Autónoma de Madrid, Madrid, Spain


Universidad de Oviedo, Oviedo, Spain


Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain


CERN, European Organization for Nuclear Research, Geneva, Switzerland


Paul Scherrer Institut, Villigen, Switzerland

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland


Universität Zürich, Zurich, Switzerland


National Central University, Chung-Li, Taiwan


National Taiwan University (NTU), Taipei, Taiwan

B. Asavapibhop, G. Singh, N. Srimanobhas, N. Suwonjandee

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand


Cukurova University, Adana, Turkey

B. Bilin, S. Bilmis, B. Isildak, G. Karapinar, M. Yalvac, M. Zeyrek

Middle East Technical University, Physics Department, Ankara, Turkey

E. Gülmez, M. Kaya, O. Kaya, E.A. Yetkin, T. Yetkin

Bogazici University, Istanbul, Turkey

A. Cakir, K. Cankocak, S. Sen

Istanbul Technical University, Istanbul, Turkey

B. Grynyov

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine

L. Levchuk, P. Sorokin

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine


University of Bristol, Bristol, United Kingdom


Rutherford Appleton Laboratory, Didcot, United Kingdom

The University of Kansas, Lawrence, USA

A. Ivanov, K. Kaadze, S. Khalil, M. Makouski, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda

Kansas State University, Manhattan, USA

F. Rebassoo, D. Wright

Lawrence Livermore National Laboratory, Livermore, USA


University of Maryland, College Park, USA


Massachusetts Institute of Technology, Cambridge, USA


University of Minnesota, Minneapolis, USA

J.G. Acosta, S. Oliveros

University of Mississippi, Oxford, USA


University of Nebraska-Lincoln, Lincoln, USA


State University of New York at Buffalo, Buffalo, USA


Northeastern University, Boston, USA


Northwestern University, Evanston, USA


University of Notre Dame, Notre Dame, USA
C. Clarke, R. Harr, P.E. Karchin, P. Lamichhane, J. Sturdy

Wayne State University, Detroit, USA


University of Wisconsin – Madison, Madison, WI, USA

1 Also at Vienna University of Technology, Vienna, Austria.
2 Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China.
3 Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France.
4 Also at Universidade Estadual de Campinas, Campinas, Brazil.
5 Also at Universidade Federal de Pelotas, Pelotas, Brazil.
6 Also at Université Libre de Bruxelles, Bruxelles, Belgium.
7 Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany.
8 Also at Joint Institute for Nuclear Research, Dubna, Russia.
9 Also at Cairo University, Cairo, Egypt.
10 Also at Fayoum University, El-Fayoum, Egypt.
11 Also at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia.
12 Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia.
13 Also at University of Florida, Gainesville, USA.
14 Also at P.N. Lebedev Physical Institute, Moscow, Russia.
15 Also at California Institute of Technology, Pasadena, USA.
16 Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia.
17 Also at University of Belgrade, Belgrade, Serbia.
18 Also at INFN Sezione di Roma; Università di Roma; Roma, Italy.
19 Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy.
20 Also at National and Kapodistrian University of Athens, Athens, Greece.
21 Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.
22 Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland.
23 Also at Adiyaman University, Adiyaman, Turkey.
24 Also at Mersin University, Mersin, Turkey.
25 Also at Cag University, Mersin, Turkey.
26 Also at Ozyegin University, Istanbul, Turkey.
27 Also at Dicle University, Diyarbakır, Turkey.
28 Also at Istanbul Technical University, Istanbul, Turkey.
29 Also at Marmara University, Istanbul, Turkey.
Also at Kafkas University, Kars, Turkey.
59 Also at Istanbul Bilgi University, Istanbul, Turkey.
60 Also at Yildiz Technical University, Istanbul, Turkey.
61 Also at Hacettepe University, Ankara, Turkey.
62 Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.
63 Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
64 Also at Instituto de Astrofísica de Canarias, La Laguna, Spain.
65 Also at Utah Valley University, Orem, USA.
66 Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
67 Also at Facoltà Ingegneria, Università di Roma, Roma, Italy.
68 Also at Argonne National Laboratory, Argonne, USA.
69 Also at Erzincan University, Erzincan, Turkey.
70 Also at Mimar Sinan University, Istanbul, Istanbul, Turkey.
71 Also at Texas A&M University at Qatar, Doha, Qatar.
72 Also at Kyungpook National University, Daegu, Korea.