KELTALIEON (LYCOPODIUM COMPLANATUM L.) ITIÖLLI-
NEN UUDISTUMINEN ETELÄ-SUOMESSA KLOONIEN LAA-
JUUTTA JA IKÄÄ KOSKEVAN TUTKIMUKSEN VALOSSA

EINO OINONEN

SUMMARY:
SPORAL REGENERATION OF GROUND PINE (LYCOPODIUM COMPLANATUM L.)
IN SOUTHERN FINLAND IN THE LIGHT OF THE DIMENSIONS AND THE AGE
OF ITS CLONES

HELSINKI 1967
Alkusanan

Helsingissä, maaliskuussa 1967

EINO OINONEN
Sisältö

1. Tutkimustavoitteet ja -menetelmä .. 5
2. Alustavaa keltaileon biologiasta 8
3. Rakenteellisia tunnuksia .. 16
4. Esiintymisen mittaminen .. 19
5. Laajuus-ikä -tutkimuksen aineisto 22
 51. Esimerkkejä keltaliekoesiintymien laajuuden suhteesta puiston ilmaluomien ikä- ja paloalkulukuihin sekä rinnakkaisuksista sanajalkakloonien mittaushetiden kanssa ... 22
6. Tulokset ... 60
 61. Vhdistelmän samanpaikkaisen keltalieko- ja sanajalkakasvustojen laajuuksien rinnakkaisuksista ... 60
 62. Vhdistelmän keltaliekokasvustojen laajuuksien sekä puiston ilmaluomen aikamäärillien rinnakkaisuksista ... 64
 63. Keltalieko- ja sanajalkakloonien levि�minen rinnakkaisaikataulu ... 65
 64. Kasvustojen levि�minen muutamien jälleenmittausten mukaan ... 67
7. Tarkastelma.. 68
Vitekirjallisuus ... 74
Summary ... 76

1. Tutkimustavoitteet ja -menetelmä

Sanajalan (Pteridium aquilinum (L.) KUNN.) itiöllisen uudistumisen ongelma tutkiaan kirjoittaja päätyi selventävän tuloksien kloonien laajuuden ja iän kautta (OINONE 1967 a ja b). Lähtökohtana oli olettamus, että sanajalta uudistuu etupäässä tulen steriloinnalla kasvupaikoilla ja että uudistumisen aikamarginaali on lyhyt, ehdokäs voin yhteen kasvukautten rajoittua. Tunnuslaita homogeeneistä esiintymien laajuutta verrattii samanpaikkaisista puiston kairauksista esiintuih paloalkoihin ja todettiin, että laajuudet kytköityivät kiinteästi niihin.

Kentiesön eräänä ollenliena vaikeutena oli se seikka, että monilla paloalkoiilla, missä oli helposti rajoittettavia erikoistunnukset omaavia sanajalan esiintymiä, eivät ollut jäljellä vanhoja tai palokoraisia puistoja, joiden ikämittauksin kasvustojen laajuutta olisi voitu rinnastaa. Työn alku vaiheessa, jolloin eteneminen oli harvinaisimpientä poikkeamamutoitojen hyväksikäytön varassa ja siten varsin hidasta, vajutivat tällaiset menetykset hyvin tuntuvilta. Jotta ko. esiintymät, jotka usein olivat saaneet sururia, eivät olisi jääneet irrallisksi ja hyödyttömiksi, oli harkittava muita keinoja niiden kiinnittämiseksi. Tältä pohjalta kehitetti seuraavanlainen suunnitelma.

misnöpeus on lajin liittyvä, suunnilleen tasaisena keskimääräisarvona saman-
laatuilla kasvupaikoilla ilmenevä ominaisuus.

Näiden perusteiden mukaan näytti mahdolliselta rinnastaa kuloista kulun-
nessaan aikaan sanajalan ohella muitakin lajeja. Mikäli niiden yksilökasvustoja
esiintyi koiltaan vastaavan suuruisina — ottaen huomioon kunkin lajin leviä-
misnopeuden — ne ilmiasisivat samanaikaisena syntymistä, ja laajemmalta alueelta
samansuuruisina toistuessaan kuvastaisivat uudistumistekijän yhteisyyttä ja äkki-
lisyttä.

Useiden eri kasvilajien yksilöllisestä vaihtelusta sekä rakenteellisestä että
fenologisesti oli työn tassä vaiheessa tehty havaintoja, jotka viitattivat eten-
misen mahdollisuksiin rajoitetuissa puitteissa samalla tavoin kuin mm. sanan-
kauskäytännössä. Oletettiin, että ottamalla huomioon vain poikkeamanmuoto-
jen esiintymistä sekä erillisä homogeenisia kasvutolaikkuja — erityisesti ympe-
rämiäisiä — eivät virhemahdollisuudet yksilöämisessä kenties pääsee pahoin häi-
ritseviksi. Menetelmää oli täysi syy kokeilla ja vasta sen jälkeen arvostella sen
kelpoisuutta.

Varsin pian ensimmäisten tarkastelujen, mittausten ja kartoitusten jälkeen
osoittautuivat tulokset verrattain lupaaviksi. Havaittiin, että eri metisöitä tar-
joavat vaihtelevasti mahdollisuksia eri kasvilajien oletettujen yksilökasvus-
tojen samanaikaiseen selvitämiseen — ja palojen ajankohtien kiinnittämiseen.
Näiden kaikkien samanaikainen esillä tavoitettu yksilöiden erotettu eli ei kuitenkaan ole välttämättömistä. Jossakin tapauksessa voidaan mitata esiinty-
mien laajuuden suhteen esim. lajeja A, B, C, D, H ja I, toisessa taas esim. lajeja B, D, H ja K, kolmannessa A, C, D ja G, j.n.e., yleensä kuitenkin kahta tai
muutamaa lajia samalla kertaan, yhdistelmän vain vaihdellessa jonkin verran. Yhteisenä tekijänä on kulkinaturkimerkiala aina jokin laji joidenkin muiden
näytealojen kanssa. Vaikka siis osa näytealoista olisi toisinsa näiden sel-
laisia, että niillä ei osilla lainkaan yhteistä, koko sarja voidaan silti liittää
välivien (sijaisten) avulla yhteen. Jos rinnakkaisuus osoittautuu jotkin lajen
lajin välillä säännölliseksi, saadaan sarjan kaikkien parallelejä ja laajuis-
ka-kysymys ratkeamaan kohta kun ratkaisu on saatu aikaan yhdensä jäs-
en kohdalla (kuva 1).

Muun kasvilaajiston sisällyttämisen sanajakauskäytännössä aiheutti melkoista
lisäkuormitusta työssä, mutta toisaalta sen katsottiin tarjovan useita tärkeitä
tekijöitä. Sanajalan yksinäisklooneille saatetaan puuttuvien testointien sija-
sia, laajuuden aitoudelle kontrollikeinoa, palojen ajankohtille tarkistuksia, ja
samalla kehittyi menetelma, jonka avulla näytti olevan mahdollista rakentaa
aikataulu monien yleisten kasvilaajien kasvustoja leviämiseen sekä suunta
valtaisaa diaspore- uudistumiseen. Rinnakkaisaikataulun kokoonominen tuli näin
tutkimuksen uudeksi tavoitteeksi.

Aineiston keruu tänään kokonaisuuden piirsiin tuli varsin vapaaksi. Keräästä
oli mahdollisuus suorittaa melkeinämissä hyvänsä, mistä vain selkeitä esiint-
tymäpareja löytyi. Palojen ajankohtien jääminen määrittämättömiksi joillakin
näytealoilla vanhojen puiden puuttumisen vuoksi ei tullut esteeksi vertailujen
suorittamiselle. Eduskurin on myönsä tättä tavoin hyvän sattumanvaraisena
ja osaksi myös sanajalasta riippumattomasti. — Rinn-
akkaismittauksia tehtiin myös muurahaiskeojen (Formica rufa L., coll.) poh-
jan laajuudesta sekä turpeenisäisten hillikkerostien syvyyssä hoidossa pneum-
namilla ja kaksamaiden painameteen pienillä suukoirilla.

Aineisto ei ollut vielä kaikin kohdin riittävä, vaan vaatii joukon täydennyskylä.
Tästä syystä ja osaksi myös siksi, että esitys ei paisuisi liian laajaksi, monitaho-
seksi ja raskaaksi, ko. vertailulajit ja -kohteet on suunniteltu esiteltäväksi
etupäässä yksi kerrallaan erillisissä tutkimmissa ja myöhemmin seuraan yhteen-
vetto, jossa simulointisuorat saadaan näkyviin kokonaistulokset.

Sanajalan laajuis-ikä -suhteen tultaan ratkaisuksia ensimmäiseksi ja ilman
muiden kasvilaajien apua, tästä on nyt päinvastoin voitu käyttää hyväksi näiden
leviämisen selvittämisessä.
Keltalieko (Lycopodium complanatum L.) valittiin tämän tutkimuksen ensimmäiseksi rinnakkaislajiksi sanajalalle. Valinta perustui laajahkoihin alustaviin selvityksiin ja vertailuihin, joista ilmeni joukko yhtäläisyksiä näiden kasvilajien uudistumisessa, kasvustojen leviämisessä ja pysyvyydessä.

2. Alustavaa keltalieon biologiasta

Huikan varattuneempien muotojen yksinäisillä versajo taavetti yleensä vain muurasta metsistä, kulkuteiden varsilla ja muiden kulttuurialueilla, kun taas vanhoissa metsissä oli tavallisesti suurempia laikkuja, jotka liittyivät usein varsinsa ja tulevien laatuisesiin laikkuiksi.

Edellä esitettyt havainnot keltalieon itisäntyvien pientaimien harvinaisuudesta ovat yhtä tärkeää BRUCHMANNIN (1898) julkaisemien tietojen kanssa (ks. myös VARAS 1937, s. 18). BRUCHMANN löysi lajin protalloitoja ja taimia n. 20 v:n ikäisistä itisäntymiskiistä Sekasssa. Sitä vastoin hän ei löytänyt niitä vanhemmista mestikästä laajempien kasvustojen seasta tai näiden välisistä alueista. Alle 20 v:n (8—14 v.) ikäisissä metsikässä hän tapasi vain muuria alkeista aidoja ja — varsikoita. Nämä kasvukohteilla oli mielteiä säännöllisesti puolilahdoa puuainesta tai kuorenkappaleista humukerkroksessa, jonka vuoksi BRUCHMANN päätetti, että maassa oleva lahotu on keltalieon ja eräiden muidenkin lielokalajien itioiden luontainen itämisalusta. Hän arveli myös, että kussakin

istutusmetsiköissä lienevät ollut vain yhtä ainoasta liekkojen vuosiluokkaa ja että kyseiset ikäluokat olivat tiettävästi (suurassa) suhteessa istutusten ikään. Uudistusmarginaali olisi siis tämän mukaan lyhyt ja myötyväikä vuosinaan siten saman suuruvuuden toistumien syntymiseen kasvupaikkahistoriallisesti samannarvoisella paimella tai seudulla, mikäli vegetatiivisen leviäminen nopeus on kullakin yksilöllisellä suunnilleen yhtälainen.

BRUCHMANNIN tutkimusten mukaan keltalieon pienikaikokset itiöt (0.03—0.04 mm) kuuluvat sadeveden mukana maan sisään, milloin maa on riittävä huokoista, mutta jäävät tiiviillä mailla enimmäkseen sammallerkroksseen tai maanpinnaan. Niitä voida kuljettaa myös pienelämät, ja ne voivat hautautua karikkeen alle vuosien mittaan (EAMES 1936, s. 14). Kaiken siis joutuneet itiöt itävät — eivät kuitenkaan yli 8—10 cm:n syvyyteen vajonneet — ja syntyvät alkeisaikaisi (saprofyttiselle elävän) infektoituuksia sitten tietyllä endofytytisellä sienellä (endotrofinen myrkoritsa), jonka jälkeen elämä jatkuu symboolistoa tämän kanssa. Noin 6—7, jopa vasta 12—15 v:n kuluttua liekokeskuksien alkeisaikaisia tulevat sukukypsisksi, ja edelmöitymisen jälkeen niihin muodostuu alkeita — joskus useampikin samanaikaisesti (2—3 kpl keltalieon). Alkeistaan työntymineen maanpinnaalle saattaa kestää monta vuotta, erilaisten esteiden usein hidastaa tunkeutumista yliopäin. Matkallaan taimet toisaan haroittuvat runsaasti. Maanpääällisen kasvin yhteys sen ravitsemiseen alkuisi osallistuvaa protalioon ja siensymbiontien katkeaa usein vasta vuosien kuluttua, ja tämän itsenäisyysen ja anti kventiivisten juuren muodostumisen jälkeen ei uutta infektituotosta enää tapahdu

LINKOLAN (1916, 29, 1921, ss. 142—143) tutkimusten näytteajoilla olevat liekkelaji (Lycopodium annotinum L.) tulleet esiin vasta 30—35 v:n ikäisissä kaskimetrikäissä, mutta koska ko. aineistossa ei ole eheätä puoston vuosiluokka-sarjaa esin. 10 v:sta 35 v:een saakka, ei tulosta voida tulkita siten, että 30—35 v. olisi todellinen alaraja liekkojen maanpääällisen esiintymisen Suomessa.
LINKOLA ei mainitse, miten suuria liekolaikut olivat, jotren arvioinnille esim. versojen keskimääräisen pituuskasvun avulla ei ole mahdollisuksia.

Valoisilla kasvupaikoilla keltalieko muodostaa usein vuodesta toiseen runsaasti itiitöitä (ks. myös SARVAS 1937, s. 18), jotka kevyentävä voiksi saatavat kulkeutua ilmavirtojen mukana pitkiä matkoja. Itiitöitä ei siis liene puuttettavat. Näiden itiitöyvedestä ei kuitenkaan ole tietoja, ja idäys onkin BRUCHMANNIN mukaan pulmallista, sillä itäinen tapahtuu vasta 3–5, jopa 6–8 v:n kuluttua (ks. myös esim. ROBERTS ja HERTY 1934, s. 688, EAMES 1936, s. 10, HARDER 1951, s. 393). BARROWS (1935, ks. SUGMAN ja HALVORSON 1966, s. 175) on todennut, että 95 %:n eturyylilohikoi virittää keltaliecon itiöön itämisvälimiksi.

KULJALA (1964, s. 24) toteaa keltaliecon olevan Suomessa jossakin määrin kontinentaalisen lajin. Sitä tavataan runsaaminen kuivilla heikkakankailla ja harjumalla, ja sen levinneisyysalue peittää koko Suomen. Miten yleistä tai harvinaista sen itiöllinen uudistuminen on maan eri osissa toisiinsa verrattuna, siihen eivät lähdekoetut ole tarjonneet vakuuttavaa selvennystä. Mikäli kasvin runsaudella ja uudistumisyleysdellä on suora riippuvuusuhde, tulisi itiöllisen uudistumisen ollut KULJALAN (op.c, s. 24 ja kartta 5) esittämien runsaus- suhteiden mukaan yleisintä Pohjois- ja Itä-Suomessa ja harvinaisinta länsi- eteläisessä osassa maatamme.

tarpeen pitää mielellä, kun ryhdytään tutkimaan yksinäisten laikkujen tai laikuskimerkien mittausohjelmia luonnossa.

Mikäli keltalioon itiöllistä uudistumista tapahtuu yleisemmän sellaisilla paikoilla, missä maata on käännetty tai muokattu, kasvia tai mäinä yksinäisiä pikkuulkaijuja tulisi löytyä erityisesti omajalkoon pelloilla, metsissä ja maanteiden sekä rautateiden varilla. Lahopuuta — erityisesti lahanneita puiden juuria — on tällaisten maavallien sisällä varsin yleisesti, joten niiden puuttuminen tai harvinaisuus ei voine olla rajoittavana tekijänä. Useita todella yksinäisiä laikkueja ovat esinöysissä löytyneet omajaloissa (etupäässä metsissä), tiilekkauksista, tuulenkaattojen pohjilta, sorakuoppien vierustoilta sekä kankaita, missä on kauan sitten nostettu kantoja tai tehty kookoepäisyyttä eettisesti sopiva sorakuoppain. Kaikissa tapauksissa ei ole kuitenkaan aina selvinyt, onko kasvi syntynyt kyseessä maakaasumassa tai kuopassa, vaikka on se ollut olemassa ojan tai tien kohdalla jo ennen kaivasta ja juurtunut sitten uudelleen siirron jälkeen. Tavallisesti on selkeyttävä yksinäiseltä näyttävän laikun läheisyydestä löytyy muita laikkueja, usein laajoja sikermiä. Varsinkin varikkoihallin kasvupaikoilla harvakeen esiintyvät ja pienikasvuiset ilmavesiot kättkeyttävät usein vaivoihin löydettäviksi ja johtavat tätä helposti harhakoitukseen, ennenkin havaitaan laikun yksinäisyydestä ja syntytevästä. Aineiston karttueessä voitiin kuitenkin todeta, että tällä lailla yleisemmän sidonnaisuus paloilleinen oikeutus oman voimakkaimman saattaa vaikutus keltalioen laikkojen säilymiseen, muotoon ja mittausohjelmia.

83.3 Keltalioen (Lycopodium complanatum L.) itiöllinen uudistuminen...

Fig. 2. Tracheid and way of growing of the ground shoots of ground pine excavated on the margin of a patch. The average elongation of straightened shoots was about 19 cm/year and that of the unstraightened ones about 10 % smaller. The lips of the ground shoots are 10—30 cm farther than the outermost aerial shoots. Scale: a twofolded 2 m measure on the ground in the direction of the tangent of the stand. Karjalohja, Härjänvasta, 1963.

Kasvuolosuhteissa. Erään nummikasvuston reunavyöhykkeestä (kuva 2) tut- kitut näytteisarjan mukaan saatiin kasvin keskimääräisarvoksi n. 19 cm/v., kun mutkaiset tai käyrät versot oksaistiin suoriksi ennen mitausta. Oikaisemattomien versojen mittaus tuotti n. 10 % pienemminen tulokset, mutta eräissä toisessa tarkastelussa jäl nädän pituus kerrassaan 43 % pienemmäksi kuin oiki- kaistetujen. Muutamisissa muissa tutkimuksissa keskimääräisluvut.osui 11—11 cm:n vaiheille, ja joissakin varjoisissa metsiköissä oli kasvu n. 5—6 cm/v.

Fig. 3. A map of ground pine specimen uncovered from under moss in a natural position. The age of the individual counted from the nodes was 20—3 years. The age of the rotten base was esti- mated at 4—6 years. The largest diameter of the patch was only 1,34 m. The individual had de- veloped under a dense pine-spruce stand and had grown very slow; it had mainly spread in one direction from one primary shoot (usually there are 2–3). All ground shoots were in the surface of the humus layer or above it, in moss. Therefore the fire resistance of patches in shady sites is very poor. Because of the angular and even widely curving way the shoot grows, the estimation of the age of the patches and stands by the average growth rate of the shoots is very unreliable. Here the site was an old field that had been left to forest after autumn plowing 30 years ago. Kar- jaloja, Härjänvasta.

Keltalieon laikkujen levämistapa on samankaltainen kuin riidenlieon (Lycopo- discom annulatum L.) ja katilieon (L. clavatum L.). Erotuutena on vain siinä, että jälkimmäisten versot ovat aina maaverojen kärjet (kuva 2) voivat kui- tenkin toisinaan nousta tilapäiseksi sammalikon tai maanpinnan päällä suiker- tavaksi, jolloin ne vähitellä, eivät tule levityväksi ja ovat siten hyvin samanlaisia
kuin em. sukulaislajeilla. Keltalieko ylittää tällä tavoin joskus kapeita,kovaksi tallattuja metsäpölkjuja, pintakiviä, maanpinnalle kohonneita suurten puiden tyvijuuria sekä vähäisiä vesikouruja sammallikon tai riskoon päällitse yrämiön. Tämän työn alku vaiheessa oletettini, että metsätieteen pellot tarjoaisivat erityisen sopivan lähtökohtaan keltaliveon laajuus-ka "kysymyksen selvittämi-
en. Valika asiastilta onkin toisin, tarkasteltako, mitä tuloksia erä tällail
en tutkimus tuotti. Kohteen olisi 36 v. aikaisemmin suoritetun syyskynnän
jälkeen metsittymänä jätetty pelto (Karjaloja, Harjänvatsa). Nykyisin VT:n-
MT:n mänty-kasu-sekametsäiä kasvavan pellon varsinsa alastetaan miattaa (1962) 17 kpl erilaisia keltaliekolakkuja, joiden laajuudet vaihtelevat tasaisten
liukuvuksiin 0,8-6,6 m:n välillä. Kaksi laikkuja olivat laajaudeltaan 8 ja 14 m (2 v.
myöhemin), mikä näistä laajuuksista vastasi pellon hylkäämisestä kulunutta aikaa, jää epäselväksi. Laajuuksien huomattavan suurin vaihtelu saattoi johtua
mm. seinarakenteen ympäristöä tai yli aikoina kokonaisuuden seinäkatso
kaikuisuutta, vaikka versorakenne näyttää olevan laikujen sisällä yhtäläinen.
2. osa laikuista on useamman kuin yhden klooin sekä-

kaikia, vaikka versorakenne näyttää olevan laikujen sisällä yhtäläinen.
2. osa laikuista on useamman kuin yhden klooin sekä-

kaikia, vaikka versorakenne näyttää olevan laikujen sisällä yhtäläinen.
2. osa laikuista on useamman kuin yhden klooin sekä-

kaikia, vaikka versorakenne näyttää olevan laikujen sisällä yhtäläinen.
2. osa laikuista on useamman kuin yhden klooin sekä-

kaikia, vaikka versorakenne näyttää olevan laikujen sisällä yhtäläinen.
2. osa laikuista on useamman kuin yhden klooin sekä-

kaikia, vaikka versorakenne näyttää olevan laikujen sisällä yhtäläinen.
2. osa laikuista on useamman kuin yhden klooin sekä-

kaikia, vaikka versorakenne näyttää olevan laikujen sisällä yhtäläinen.
2. osa laikuista on useamman kuin yhden klooin sekä-

kaikia, vaikka versorakenne näyttää olevan laikujen sisällä yhtäläinen.
2. osa laikuista on useamman kuin yhden klooin sekä-

kaikia, vaikka versorakenne näyttää olevan laikujen sisällä yhtäläinen.
2. osa laikuista on useamman kuin yhden klooin sekä-

kaikia, vaikka versorakenne näyttää olevan laikujen sisällä yhtäläinen.
2. osa laikuista on useamman kuin yhden klooin sekä-

kaikia, vaikka versorakenne näyttää olevan laikujen sisällä yhtäläinen.
2. osa laikuista on useamman kuin yhden klooin sekä-

kaikia, vaikka versorakenne näyttää olevan laikujen sisällä yhtäläinen.
2. osa laikuista on useamman kuin yhden klooin sekä-

kaikia, vaikka versorakenne näyttää olevan laikujen sisällä yhtäläinen.
2. osa laikuista on useamman kuin yhden klooin sekä-

kaikia, vaikka versorakenne näyttää olevan laikujen sisällä yhtäläinen.
2. osa laikuista on useamman kuin yhden klooin sekä-

kaikia, vaikka versorakenne näyttää olevan laikujen sisällä yhtäläinen.
2. osa laikuista on useamman kuin yhden klooin sekä-

kaikia, vaikka versorakenne näyttää olevan laikujen sisällä yhtäläinen.
2. osa laikuista on useamman kuin yhden klooin sekä-

kaikia, vaikka versorakenne näyttää olevan laikujen sisällä yhtäläinen.
2. osa laikuista on useamman kuin yhden klooin sekä-

kaikia, vaikka versorakenne näyttää olevan laikujen sisällä yhtäläinen.
2. osa laikuista on useamman kuin yhden klooin sekä-

kaikia, vaikka versorakenne näyttää olevan laikujen sisällä yhtäläinen.
2. osa laikuista on useamman kuin yhden klooin sekä-

kaikia, vaikka versorakenne näyttää olevan laikujen sisällä yhtäläinen.
2. osa laikuista on useamman kuin yhden klooin sekä-

kaikia, vaikka versorakenne näyttää olevan laikujen sisällä yhtäläinen.
2. osa laikuista on useamman kuin yhden klooin sekä-

kaikia, vaikka versorakenne näyttää olevan laikujen sisällä yhtäläinen.
2. osa laikuista on useamman kuin yhden klooin sekä-

kaikia, vaikka versorakenne näyttää olevan laikujen sisällä yhtäläinen.
2. osa laikuista on useamman kuin yhden klooin sekä-

kaikia, vaikka versorakenne näyttää olevan laikujen sisällä yhtäläinen.
2. osa laikuista on useamman kuin yhden klooin sekä-

kaikia, vaikka versorakenne näyttää olevan laikujen sisällä yhtäläinen.
2. osa laikuista on useamman kuin yhden klooin sekä-

kaikia, vaikka versorakenne näyttää olevan laikujen sisällä yhtäläinen.
ominaisuuksissa paljon, ja niiden pienoavaisuudet ovat vaikeasti kuvattavia kielellisin keinoin. Yksilöiden tunnistamiseen ei tällaisin kuvauksin voi päästää, voidaan vain osoittaa, mitä ominaisuuksia on syytä vertailta. Laji on tässä mielessä monin verroin vaikkeämpelokoin kuin sanajalka.

Itltähkä vaihtelee muodoltaan, kooltaan ja värittäin jossakin määrin yksi- lölleisesti, mutta saman yksilön tähkät ovat tosissaan erinä lisäksi erikois- koirista ja -muotoista, kuten on helppo todeta vertaamalla samoissa versoissa jäljellä oleviin edellisen vuoden tähkiin. Muoto ja koko eivät siis aina ole erityisen

4. Esintymien mitattaminen

Kaikki laajikujen ja sikermien mitattukset on suoritettu maapiinan myötä- sesti samaista syistä, jotka on selostettu alkaisemmin sanajalkakloonien mita- usten yhteydessä (Oinonen 1967 a, s. 21—23). Laikut mitattiin yleensä ristik- kaisesti, ensin suurin laajuus ja sitten tätä vastaan kohtisuorasti arvioidun kes- kustan kautta pienempi läpinäköt. Pienistä laikuisista oli tavallisesti jokseenkin helppoa arvioida, missä suunnassa ulottuvuus oli suurin. Suuremmista ympärä- mäistä kasvustoista mitattiin jouskus halkaisijan pituus useammassakin suun- nassa, ja varsinkin silloin kun erilaiset näkökseen ja maaston epätasaisisuudet vaikuttivat silmävaraisia arviointia.

On ymmärretävää, vieläpä korostettavaa, että esintymien ulkoraja-alue oli tutkittavaa laajalti ja erittäin huolellisesti, koska keltalio ei ole sanajalan
Laajojen kasvustosikemien muotoa ei voi nähdä maastossa kokonaisuutena, jonka vuoksi niiden mittaanminen perustuu kartoitukseen. Tässä työssä mene-
teltiin siten, että etsittiin ensin esitymän ulkorajan jokin osa ja lähdettiin sitä viitoittamaan. Kulkusuunnassa asetettiin kuninkin laajan ulkopuoliseen tangentti-
pisteeseen viitta, näiden välinen suutalukema otettiin bussoliilla ja välimatka mitattiin. Mittaluvut merkittiin silmä- ja käsivaraiseen kartalouumiseen. Tällä tavoin rajoitettu ja kartoitettu esitymän ulkopuoliseen alue tarkastettiin yleensä n. 50–100 m:n leveydeltä ja jotkut suurimmat esitymät viihtyivät laajemmalta. Joissakin tapauksissa saatiin esitymien ulkoraja nopeasti selvileen jälkeen kun oli löydetty 3–4 peräkkäistä ulontaa laikuasta. Kun näiden paikat olisi käsiteltävästi karttaan ja piirretty harppilla niiden kautta ympyrä-
viva löydetiin tämän piirroksen avulla toisinaan nopeasti joukkoon muita laik-
kuja, joskus hyväällä onellalla jopa siten, että kuljettiin ensimmäiseksi ympyrän keskustan kautta piirroksesta mitattua matkaa kehän vastakkaiselle puolelle. Vuokassa esityt sikerän pohjoisin laikuk lähdetti käytti tällä tavoin. Useissa ko-
kielissä koettiin myös pettymyksiä. Löydetiin vain pieneimmä osakaaria (kuva 4 ja 6), ja toisaalta sotkeututtuihin niin laajoihin ja sekaaviin esitymiin, että työ voisi liian epävarmaa heittettävän. Joskus laajat sikermä joutuivat kulttuurialueisiin tai maastoesteisiin — peltoihin, asuntoalueisiin, laajoihin sarakuoppoihin, soihin, kallioliin j.n.e. — jolloin laajuuksien aitoi jälkeen jalostamaan, usein myös vaihtelee määrinäisia vertailumahdollisuuksia lajiin kasvavalle. Omalla tavallaan nämä luku kutsut tuotuusestiset ovat kuitenkin olleet opettavia-
vaisia ja ohjeannet mittauskohteiden vaativaismen taikokointi. Työn nähissä vaiheissa ei ole ollut tarkoituksenmukaista pureutua hellittämättömästi vaikei-
isiin tapauksiin, vaan taloudellisinta on ollut etsiä selkeitä esitymiä.

Sama paikka kuin kuva 4a.

Kuva 6. Puoliymyrrämien sikermä Nummelan lentokentän (Vihl) vieraesta, nummen pengermäätä (1965). Alueetosa ei ole samanpaikkaisia vertailukohteita. Kuvassa 4–6 este-
tyt löydyt jotkut erityisesti ympyrämisen kaarevuutena vuoksia laajoihin esittimiin ja kartoitukiin, joista vain osa on ollut tulokeksilla. Fig. 6. Semicircular cluster in the neighbourhood of Nummela (Vihl) airport, on a heath ridge (1963). There were no comparable vegetation units on the same site. Particularly in because their circular form the stands in Figs. 4–6 led to wide searches and mappings, only part of which were successful.
Keltalieon laikkusikerminen kartoitusten tarkoituksena oli ensi vaiheessa tutkia sikermien muotoa, ts. ympyrämäisen muodon esiintymistä. Tämä muoto oli samalla tavoin kuin sanajalkaysiölöiden erotelussa tärkeää kriteerinä nimenomaan työn alkuvaiheissa, jolloin yleensäkemays lajien yksilöllisestä vaihteesta olleet, ja oletettujen yksilöllisusten pitävyyttä oli arvosteltava.

Mittauksissa ottettiin huomioon vain kasvustojen maanpäällisten osien ilmai- semaa ja aineistoa. Maavarsojen ulottumista huikan ilmavesojen esiintymisrajan ulkopuolelle (kuva 2) ei otettu lukuun.

Tutkimustulosien objektiivisuuden tarkastamiseksi menettiin siten, että apulaisena v. 1964 toimitun yliopp. Reijo Miettinen sai tehtäväkseen kerätä itseesi aineistoa yhteisen harjoittelun jälkeen.

5. Laajuus-ikä -tutkimuksen aineisto

Kuten edellä mainittiin, hyvin huomattava osa näistä esiintöistä ja mitauksista on tavallaan mennyt huokkaan, koska niiden avulla ei läheskään aina saatu paljastetut kokonaisuuksia, joita olisi voitu olettaa koloonki. Monissa tapauksissa on löydetty rinnakkaisuuksia vain muiden kasvilajien kuin sanal- jalan kanssa. Kaikkien tutkimusyritysten tehosteen tässä on siten äly- tontaa ja ennenkaikista. Em. kartoituksien on kenties tulevassa tilaisuudessa käytävä hyödyksi, edellyttäen, että yksilöönmuuttamiseen sopivat uusia mene- telyitä (esim. kromatograafisia) saadaan kehitettyks kenttäkäsköpsiksi.

On vielä mainitettava, että aineistoon sisältyy muutamia keltaliekolaiikkuja, joiden laajuutta on mitattu uudelleen 1–4 v:n kuluttua ensimmäisestä mittauksesta.

51. Esimerkkejä keltaliekoisilminen laajuuden suhteesta puiston ilmainemien ikä- ja paloalkalukuihin sekä rinnakkaisuuksista sanajalkakoonen mittasuhteit- ten kanssa

Ala olevaan luetelon on kerätty aineiston selkeimmät esiintymät (ks. myös kuva 30, s. 66). Näihin esimerkkeihin on sisällytetty myös joukko sellai-
83.3 Keltalieon (Lycopodium clavatum L.) itiöllinen uudistuminen

piirin kuuluneelta langasmaalta on löytynyt myös harvinainen joukkoeisintymä sanajalanan pikku-klooneja: 5.3, 5.5, 5.6, 6.3, 6.6, 6.7 ja 7.7 m.

5. Somerniemi, Saarjärvi.
Esintymän laajuus: 3.6 x 2.4 m (1966).
Puiston ikä: 63-v y.
Kasvupaikkana karu nummi, osaksi jälkeläkkeenä. Alueella on vieraillut kulu 31 v. sitten. Samalla kankaalla, n. 100 m:n etäisyydellä, on yksinäinen 10 m:n sanajalkalkku.

Esintymän laajuus: 4.4 m (1966).
Puiston ikä: 28 v. + kanttojen ja oksakkukruoiden mukaan.
Kasvupaikkana karu nummi, VT, rämeen laita. Rämeeltä kairaton yliopunen luostarissa selvä kasvujaksojen välinen raja ja tervastuma 31 v. sitten sattuneen kulon merkkinä. Rinnakkaisena keltaileelle on sitkauskuisen sanajalan 7.9 m:n laikuus jälkeläkkeenä.

7. Snappertuna, Helsinki—Tammisaari vastatieltä Raaseporin johtavan tien haarautuman maasto.
Esintymän laajuus: 4.4 m (1966).
Puiston ikä: 23-v. + oksakkukruoiden mukaan.

8. Somerniemi, Salakkajärvi.
Esintymän laajuus: 4.7 m (1966).
Puiston ikä: 87-v, 67-v ja 35 v.
Kasvupaikkana jälkeläkkangas. Yliopunen luostarissa on pikkoitumaa ja kasvujaksojen välinen raja 35 v. sitten. Nuorin mättypolvi on syntyntä tällöin sattuneen kulon jälkeen.

Esintymän laajuus: 4.7 x 4.4 m (1966).
Puiston ikä: 30-v. + oksakkukruoiden mukaan.
Kasvupaikkana jälkeläkkangas, palokuvio. Lähiympäristöstä kairattujen lustonjättiteiden mukaan on palon ajankohta 35 v. sitten.

Esintymän laajuus: 4.8 m (1965).
Puiston ikä: 41-v.

Esintymän laajuus: 5.1 m (1966).
Puiston ikä: 30-v. + oksakkukruoiden mukaan.
Kasvupaikkana nummimetikkö, VT. Samalla alueella on toisinto keltaileolle: 4.9 m, ja kakal sanajalkalkkoon: 10.3 ja 11.2 m. Suurudeltaan rinnakkaiskoiskot laikut ilmaisevat, että uudistumistekijänä on ollut äkillinen, puustolle ja molemmin kasvilajeille yhteinen. Tämä tekijä lienee ollut kulu, mutta varmuutta ei asiaasta saata. Tihetä toistuneet hakkuut sekoittavat tulinakin mahdollisuuksia. Sanajalkalkkoon litiittavat vahvasti paloon.

Puiston ikä: 69-v, 40-v ja 22—23 v. Kasvupaikkana VT:n kangas, kulolakku. Paikalla on laaja kehikkoisikermä, jonka pienin erillinen laikku on esimerkkinä 5.5-metrinen. Samalla paikalla on 7 m:n yksinäinen sanajalkalkku. Laajadet vastaavat toisinaan ja n. 22—23 v:n ikä, edellyttäen, että kehikkoisikka on sekundaarista alkuperä, pitemmältä paloruokalista levimmän. Samalla kankaalla on ollut kulu myös 37—35 v. sitten näytyvän luostarissa näkyvien jaksorajojen ja selven tervastumien mukaan. Tätä palovalhetta vastannevat keltailekokerimán 10.6, 9.8 x 9.7 ja 8.4 m:n laikut, jotka siis lienevät sekundaarisia. Yksilöllisiä rakenteita eroavuksia eri laikku-kujen versioissa ei havaittu silmämääräisessä tarkastuksessa, vaan laikat näyttivät olevan identtisiä. Tämänkin suuruusluokan laikkeille on vastineena: 11.5 m:n sanajalkalkku, yksinäinen laikku. Tämä vastaa myös em. 5.5 m:n kehikkoistä, mikäli laikku on primääriinen.

Esintymän laajuus: 6.9 x 6.9 m (1960).
Puiston ikä: 110-v, 67-v ja 35-v.
Kasvupaikkana tervahaudan reuna nummien rinteillä, VT. Kairausjättiteiden mukaan on alueella ollut kulu 40—41 v. sitten, jonka jälkeen on syntyntä nuorin puujakso. Kasvusto on erillinen täysymyrrä, ja siten erittäin todennäköisesti itiösyntyneen kloonin.

15. Karjalohja, Härjänvatsa.
Esintymän laajuus: 7.0 x 6.0 m (1966).
Puiston ikä: 72-v.
Kasvupaikkana tervahaudan vierus, VT. Viereisen rämeen useilla reunapuissa on vähäisiä palokoruja, jotka ovat 37 v:n takaisia.

16. Pusula, Mäkkylä.
Esintymän laajuus: 7.0 m (1965).
Puiston ikä: 35-v. + oksakkukruoiden mukaan.

17. Sammatti, Luukala.
Esintymän laajuus: 7.0 x 7.0 m (1965).
Puiston ikä: 109-v, 83-v, 73-v ja n. 30-v.

18. Tammela, Saaren kansanpuiston lähätiö.
Esintymän laajuus: 7.0 m (1964).
Puuston ikä: 68+ v. ja nuorempaa.

19. Räkkylä, Mululan tien hääraa Kiteen pitäjän rajalla.
Esintymän laajuus: 7.2 m (1966).
Puuston ikä: 71+ ja 52+ v.

20. Räkkylä, n. 1 km edellisestä Kiteelle pää.
Esintymän laajuus: 7.3 m (1966).
Puuston ikä: 71+, 50+ ja nuorempaa.
Kasvupaiikanka karu VT:n kangas, läheillä rämeen laitaa. Näytepuiden lustosarjoissa on ohutvastaisen kasvujaksen raja 41 v. sitten, todennäköisesti kulon aiheuttama. Laikku on yksinäinen laajalla alueella.

Esintymän laajuus: 7.3 m (1964).
Puuston ikä: 54+, 46+ ja 39+ ja nuorempaa.

22. Somerieni, Kaskisto, Iso Mulkkulammi.
Esintymän laajuus: 7.3 m (1965).
Puuston ikä: 90+ ja 38+ v.

23. Karjalohja, Härjänvatsa.
Esintymän laajuus: 7.3 m (1966).
Puuston ikä: 38+ v. oksakelehekuroiden mukaan.

83.3 Keltaiseen (Lycopodium clavatum L.) itiöllinen uudistuminen... 27

Esintymän laajuus: 7.5 m (1965).
Puuston ikä: 51+ v.
Kasvupaiikanka VT:n kangas. Mahdollisesti lievä kelo 39 v. sitten. Lustosarjoissa on äkillisiä ohutvastaisia jaksuja ja muutamissa kannoissa on lustojen välinen katkot kello jälkeen. Koska läheisyydessä on myös muita keltaiholiskerojain, on mahdollista, että kysymyksessä on vain katkemaa laajemmassa kokonaisuudessa.

25. Somerieni, Haposuo, Uudenmaan, Turun ja Porin sekä Hämeen läänien rajalla.
Esintymän laajuus: 7.7 m (1966).
Puuston ikä: 65+ ja 38 v. (kairaus jurenniskastaa).

Esintymän laajuus: 8.0 m (1966).
Puuston ikä: 74+ v.

27. Somerieni, Hossanjoulumäki, Nummenillanjoa.
Esintymän laajuus: 8.2 m (1966).
Puuston ikä: 123+, 99+ ja 35+ v.
Kasvupaiikanka VT:n kangas, metsikkörajaa. Nuori puusto lienee syntynyt kulon jälkeen 40 v. sitten. Lähistöllä, eri metsiköissä, on kaksi toisista 8.0 ja 8.3 m. Myös näiden olinpikoihilla on puolitusten yhteessä sama rajakohde. Molemman lait on niin ikään nuorimmat ja vanhemmat metsiköiden vaihtumisyöhykkeessä.

28. Liiukala, Korkianummi.
Esintymän laajuus: 8.7 × 7.4 m (1966).
Puuston ikä: 167+, 45+ v. ja nuorempaa.
Kasvupaiikanka minteen taive, soistuman reuni, VT. Alueella on esiintynyt kelo 48 v. sitten. Laikku on yksinäinen.

1) Suomusjärvi, Huhdanoja, Klikaalan ja Nummen pitäjien rajakulmauksessa.
Esintymän laajuus: 9.2 × 8.9 m (1967).
Puuston ikä: 62+ v.
Kasvupaiikanka VT:n—MT:n kangas. Samassa metsiköissä on 7.7-metrinen laikku ja yksinäinen 15.5 m:n sanajalkaklooni. Kairaunvätteen mukaan lienee alueella esiintynyt lievä kelo 44 v. sitten.

30. Liiukala, Hidäsennypä.
Esintymän laajuus: 10.0 m (1966).
Puuston ikä: 187+, 141+, 92+ ja 35—40 v.

32. Kilikala, Nummenharju.
Esilintymän laajuus: 10 x 9 m (1964).
Puiston ikä: 114+, 72+, 66+ ja nuorempaa.

33. Kesälahti, Kesälahti—Kerimäki maantienvarsii pitäjän rajan lähistössä.
Esilintymän laajuus: 10 x 8 m (1964).
Puiston ikä: 119 v. (+nuorempaa.
Kasvupaikankaan karu VT:n kangas. Palanut lievissä kuluissa 46 ja 59 v. sitten. Keltaalioille on mitattu eräänä toistututak 10, 8 ja 8 x 7 m. Vanhampaan puolalaisen mitattuineen 15 x 14 m:n laikku, jolle on rinnakkaisena 20-metrinen sanajalkakkoolu. Läheisyydessä on kuitenkin muita keltakealoiakkia laajaa sekämäntä, joten ko. laikku saattaa olla sekundaarin, viimeiseen kuloon liittyvä.

34. Vihti, Nummelan lentokentän lähistö.
Esilintymän laajuus: 10 m (1963).
Puiston ikä: 74+ v. ja nuorempaa.

Puiston ikä: 52+ v.
Kasvupaikankaan karu jälkimäinen. Läheisyydessä on 8,3 x 8,1 m:n erillinen laikku sekä laajakko iskermiä. Kairausnäytteiden mukaan on alueella ollut kalo 47 v. sitten. N. 200 m:n eläisyöläissä on 15,5 m:n yksilöillä sanajalkakkoolu.

36. Kerimäki, Mäkärä saari, Metsäntutkimuslaitoksen kokeilualue.
Esilintymän laajuus: 10,4 x 8,4 m (1966).
Kasvupaikankaan karu jälkikärkinen. Vireissä talvisodan 1939–1940 vaiheessa tehty koru ja suojahautoja. Laikun pieni korielpimittää vastaa muun aineiston mukaan kypystä, mikäli kasvusto on sekundaarin. Tällä alueella onkin laajaa, mutta hajaanaisen iskermän keltakealikko. Vieron punaisten laikun ulkokerhällä on poikkeuksellisen hyvää. Mitattu 37 cm:n vuosikausitavain. Vuoden 1963 mettilaanpoissa kasvuston laajudeksi on merkitty 8,3 m. Se on niiden luenton 70 cm:n, jos lumiasumopiso on ollut jatkuvasti yhtä suuri, on liemäisään kaikkiaan vain n. 15, t. iltoiloinen syntyminen kenttävarastotuleiden yhteydessä lie- nee mahdollinen, mutta alkuhehtiksen hitaille vaiheille, mukaan luetonta myös pintainen hidastus kasvaa, jää tällöin vain n. 10 v. Todennäköisemmin on kysymykseessä sekundaarialikku. Mainitakoon vielä, että saman laikun laajuus on v. 1964 olleet R. Miettisen mittauksaan mukaan 9,0 m.

37. Somerniemä, Liejärvi.
Esilintymän laajuus: 10,6 x 9,9 m (1905).
Puiston ikä: 156+ ja 46+ v. (valitseva).

38. Kikala, Iso-Kolaisi, Säräkoskenkoulu.
Esilintymän laajuus: 10,8 m (1967).
Puiston ikä: 147+, 68+ v. ja nuorempaa.
Kasvupaikankaan VT:n kankaan ja korven vaihtuvuusyöheyhe. Kairausnäytteeseen on jyrkkä kasvuväylän raja ja tervastuttavaa merkkä 60 v. sitten saattuneesta kukoista. Yliopiston työssä on painumia.

Esilintymän laajuus: 11 m (1964).
Puiston ikä: 46+ v. (+nuorempaa.
Kasvupaikankaan karu VT:n kangas. Puisto on syntyynut kulki jälkeen, jonka ajankohta on etäampaa ympäristöstä kairattujen näytteiden mukaan mahdollisesti 57 v. sitten. Saman metsän sisässä on mitattu myös 8,8 m:n yksilöillä laikku. Sen vireistä kairattia näyttepeunen tuotuina on tervasaara 41 v. sitten, mutta sen aiheuttaja jää epäselväksi.

40. Somerniemä, Salakkajärvi.
Esilintymän laajuus: 11,1 x 10,2 m (1966).
Puiston ikä: 87+, 67+ ja 35+ v.
Kasvupalikanka karu nummen rinne, osaksi jääkälistön. Viereistä vanhimman polven metsiköstä kaitarun näytteen mukaan on kulon ajankohtaa 59 v. sitten. Tätä aikaa vastaa ko. metsikössä 20.5 m:n sanajalkakoko. Kuloja on ollut myöhemminkin, ainakin 31 v. sit- ten, ja ne ovat voineet työstää keltalieholaihkaa.

Kasvupalikanka Hangon rautatielle varsiksi, VT:n kangas. Jättöpuusta kaitarun näytteen mukaan on kasvuvuosituotteet tapahtuneet äkkillinen muutos 50–51 v. sitten. Mahdollisesti on syytä ollut kuko. Toinen yksinäläiskuukausi on laajuudellaan 0,9 m. Sen levämillistä on haitan- nut tilan kasvuruha, jonka alla laikku on hajonnut katkelemiksi. Samalta kargasalalta, n. 0,5 km:n etäisyydeltä on ainoastaan 18,9 m:n tummaraivotunnut sanajalkakoko. Sen laajuus edelläpitää hiukan korkeampaa ikää, keskimäärin n. 55 v.

42. Somerniemi, Kaitalammi.
Kasvupalikanka muurahaiskeon (Fermica rufa) ympärsä karulla nummella. Alueella on esiintynyt koko 56 v. sitten. Laikku lienee primääriinen. Se on yksinälinen n. 50 m:n sattelualueella.

43. Somerniemi, Kaskisto, Kalaton-lampi.
Esinintymän laajuus: 11.6 m (1967). Puiston ikä: 95 + ja 54 + v. (kairaus juurenskastaa.)

44. Suomusjärvi, Lahnajärvi, leirialueen lähistö.
Kasvupalikanka VT:n kangas kallion juurella. Kasvusto on erillinen 40 m:n sattelualueella. Lähi- alueella on yksinälinen 18,6 m:n sanajalkakoko. Kulon ajankohtaa on kairaansäytteiden mukaan 54 v. sitten.

45. Rääkkylä, Mulijanan tienhaara Kiteen pitäjän rajaan läheisyydessä.

46. Kikala, Iso-Joutseno—Iso-Kolaisin.
Kasvupalikanka karu nummi, osaksi jääkälistön. Reunametsästä kairattujen näytteiden mukaan alueella lienee ollut koko 58 v. sitten, mutta kannossa ei näkynyt merkkejä siitä. Läheisyydessä on kuitenkin 21-metrinen sanajalkakoko, joka liittyy erinomaisesti tähän aikaa. Keltalieholaihku on yksinälinen laajalla alueella, jotken on aiheuttaa olettaa, että se on

83.3 Keltaliehko (Lycopodium complanatum L.) itiollinen uudistuminen...
52. Somerniemi, Liesjärvi.
Esintymän laajuus: 14 m (1964).
Puuston ikä: 159+ v.
Kasvupaikkaa VT:n kangas. N. 100—150 m:n etäisyydellä on toinen 14-metrinen yksinäislaakku. Samalla kankaalla on myös 23 m:n sanajalkakkoolin erillisessä ja erään 52-
metrinen kasvuston pienempi halkaisija on 22 m. Kairausten mukaan on alueella esiintynyt koko 66 v. sitten. Keltaliekolaikeat ovat nähtävää primäärisiä ja vastaavat laajuudellaan sanajalkakasvustoja ja palosta kulunutta aikaa.

Puuston ikä: 60+ v.

Puuston ikä: 102+ v.
Kasvupaikkaa tervahaudan vierus karsulla nummella, joka on osittain jääkäikköä. Laikun vieressä olevasta palokoristesä männystä kairattun mukaan on paikalla ollut palo 43 v. sitten. Laajuus edellyttää levämistä palorelikistä. Edellinen kulo on ollut 67 v. sitten, joten laikku voi yhtä hyvin olla primääriin.

Puuston ikä: 130+ v., 111+ v. ja 49+ v.

Puuston ikä: 30+ v.

Puuston ikä: 59+ v. ja 51+ v.
Kasvupaikka rämeen laita, VT. Puusto on syntynyt kulon jälkeen, joka lienee esiintynyt n. 70 v. sitten. Laikku on yksinäinen laajalla alueella. Riimakkaisuutena on 26 m:n sanajalkakkoolin.

58. Nummi, Nummensillan maasto Uudenmaan, Turun ja Porin sekä Hämeen läänien rajalla.
Esintymän laajuus: 15.0 m (1966).
Puuston ikä: 105+ v., 89+ v. (vallitseva) ja 63+ v.

83.3 Keltalie (Lycopodium complanatum L.) itäilisen uudistuminen .
Kasvupaikkaa nummien, VT. Keltalie on 14.5 m:n toistuma. Laikut liittyvät laajaan sikermään ja lienevät sekundaarila. Vierein 43+ v:n ikäinen metsikkö on syntynyt kuloalalle 50 v. sitten sattuneen palon jälkeen. Tämä kalo on yleistynyt lievästi myös ko. keltaliekolaikeja paikoille (näytepuiden lustosarjoista on selvä jaksoraja vastaavalta kohdalla). 43+ vuotta metsiköisiä sisällä on yksinäinen 17.0 m:n sanajalkakkoolin paralleelisessa palosta kuluneelle ajalle.

Puuston ikä: 85+ v. ja 77+ v.

60. Sammatti, Luskala. Esintymän laajuus: 15.3 m (1966).
Puuston ikä: 110+ v., 82+ v. ja nuorempana.
Kasvupaikkaa karu nummi, jääkäikkö. Paikalla lienee ollut palo 67 v. sitten eri puolittu ympäristöstä kairattujen näyttteiden mukaan. Laikku on yhtenäinen, yksinäinen n. 100 m:n sateellä ja otaksuttavasti primääriin kluoon. Lähellä on tervahautoja.

Puuston ikä: 62+ v.
Kasvupaikkaa harjun rinne, VT. Samalla kangasmaalla on 15.5 m:n toistuma. Esimerkiksi laikun kanssa jokseenkin samansuksessi on levinyt 23.7 m:n sanajalkakkoolin. Tällä on 23.6 m:n toistuma n. 150 m:n etäisyys. Kaikille yhteisen palon ajankohta on 68 v. sitten.

Puuston ikä: 79+ v.
Kasvupaikkaa VT:n nummi. Paikalla on ollut kalo 65 v. sitten. Samalta kankaalta n. 100 m:n etäisyydeltä on mitattu kolme riimakkaiskokoalat sanajalkakkoilta: 21 (2 kplp) ja 22 m.

Puuston ikä: 116+ v., 97+ v., 83+ v. ja nuorempana.

Puuston ikä: 60+ v.
Kasvupaikankaan VT:n kangas, joka on panut 68 v. sitten. Samalta kankaalta on aineis- tossa 24 m:n sanajalkakkoeloi, jonka läheisyydessä olevasta jäätelpuusta (145+ v.) kairaturi näyteen mukaan kulu on ylettynyt tännekin.

Puuston ikä: 87 + ja 60 + v.
Kasvupaikankaan mettityyneen sorakupan reuna. Alueella on ollut palo ennen vuoden 1964 metäsäpolven syntymistä, ja ajankohta on samanpaikkaisen kairausnäytteen mukaan 72 v. sitten. Kasvusto on yksinäinen laajalla alueella. Samalta kankaalta on mitattu mm. 24-netre- risiä sanajalkakkoelöitä.

Puuston ikä: 50 + v. ylimääräisvoimin arvion mukaan.
Kasvupaikankaan VT:n kangas. Kun rautatie on v.10a 1908, saattaa metsikön syntymä liittyä radan rakentamisen historiaan. Keltaliikoliikaisen laajaa vastaa suunniteltu tämän kulkutien ikää sillä edellytyksellä, että kysymyksessä on katkoelmasta levinnyt kasvusto. Täysin yksinäisenä sitä ei voidaaita pitää, vaan se liittyttää laajakhun, 98—100 m:n sikermän, jossa laikkua on kuitenkin verrattain harvassa ryhmityksessä. On kummallista, että ko. suuruudelle on läheisyydessä kaksi toistumaa (kuva 7 ja 8) ja lisäksi myös n. 0.5 km:n etäisyydellä, koti Finlandian edustalla (no. 132, kuva 15, s. 48) sekä Takaharjuulla pienen suopainanteen laidalla (kuva 9). Sanajalkakseen ja juoksun yhteydessä on vastaavasti 120—129 m:n suuruusluokka edustettuna 8 m:toistumon voimalla. Eräs näistä, 120 m, on samalla harjulla Kaarnalahden rannalla (R. Miettisen aineistosta, kuten kartotukisetkin). Sanajalan levämisnäkymän alkutaudun mukaan näiden ikä on n. 340—350 v., ja ne viittavat siten sodan 1614—1617 vaiheisiin. Mainittakoon, että yhtäläisen parin n. 100 ja 124 m, on kirjoittaja mitattu Mäkin saarelta (Hiekkalahdit) naapuripitäjä Kerimäeltä. Esitymät ovat samanpaikais- sia. Tältä saarelta on aineistossa myös kaksi muuta saman suuruusluokan sanajalkakkoelöitä: 118 ja 129 m (jälkimmäinen R. Miettisen mitama).

Puuston ikä: 64 + v. ja vanhemppa.

Kuva 7. Kaarimalainen 96 m:n sikermä Punkaharjun ns. Lomakykyinen ja rautatieeläkkauksen väliseltä harjulta. Täälä laajaudelle on lähialueella kaksi toistumaa (kuva 8) sekä etäämpänä kaksi (kuva 9 ja 21, s. 53). Rinnakkaisena on 120 m:n sanajalkakkoeloi Kaarnalahden rannalla. Kaikki 120-metrinen kalkoon on aineistossa myös Seppälämnänä lähistötä, n. 1.5 km:n etäisyydestä.

Fig. 7. Semicircular cluster 96 m in diameter from a ridge between Punkaharju's so called Lomakykylä and the railroad section. This size has two replicates on the same site (Fig. 8) and two others further away (Figs. 9 and 21, p. 53). As a parallel there is a 120 m bracken clone on the shore at Kaarralaiti. Two 120 m clones were also found in the neighbourhood of Sep- pälämnäkä, about 1.5 km away.
71. Sammatti, Luskala.
Esintymän laajuus: 18.9 m (1964).
Puiston ikä: 53+ v.
Kasvupaikkana VT:n kangas. Kasvusto on yksinäinen n. 50 m:n sätteellä. Tälle laikku-

72. Suumusjärvi, Lahmajärvi, Vähänurmi.
Esintymän laajuus: 19.6 m (1967).
Puiston ikä: 55+ v.
Kasvupaikkana VT:n kankaan ja korven vaihtumavyyhke. Samanpaikkaisena on erit-
linen 21.5 m:n sanajalkakkoolin. Laajaudet vastaavat toisaan ja puiston todennäköistä syn-
tymäaikaa (kulon ajankohta) sillä edellytyskäällä, että keltailekukasvusto on sekundaarinen
kokonaisuus. Se näyttää liittyvän laajaan sikermään, josta on mitattu myös 20.3 m:n erillis-
laikua.

73. Sammati, Lohilammen lähistö.
Esintymän laajuus: 20 m (1962).
Puiston ikä: 100+ t., 67+, 55+, 40+ j. 41+ v. sekä nuorempaa.
Kasvupaikkana VT:n kangas. Läheisydessä olevalla kalliolla tutkitten palokoroi-
isen määrin (205+ v.) lutosarjassa on jyrkkä kasvujaksojen raja ja tervastumaa 79—80 v.
Sätteellä on v. 1964 mitattu 28 x 27 m:n sanajalkakkoolin. Sen laajuus vastaa tar-
koin 80 v:n ikää ja on samalla rinnakkainen keltailekoalakoon läpimittan kanssa. Jälkimäi-
nen on yksinäinen n. 100 m:n sätteellä. Salamalta alueelta on v. 1965 mitattu 13-metrinen kel-
tailekolakku ja 15-metrinen sanajalkakkoolin, molemmat nuorinta polvea olevasta metsiköstä.
Keltaileko liittyy tässä tapauksessa laajuudeltaan sanajalkaa sillä edellytyskäällä, että laikku on
reikäistä levintä. Tihdeksi toistuneet hakkuut ovat tällä tehostein manennyyden tutkii-
semisen sade vaikeuksia.

74. Somerniem, Pikkuusko, Uudenmaan, Turun ja Porin sekä Hämeen läänen rajalla.
Esintymän laajuus: 20.1 m (1964).
Puiston ikä: 107+, 95+ ja 72+ v.
Kasvupaikkana karu nummi, VT. Kulon ajankohta on 68—69 v. sitten. Puiden lusto-
sarjoissa on tällä kohdalla jyrkkä kasvujaksojen raja ja tervastumaa ytimeen päin. Nuorim-
man jakson muuttamissa puissa on syvä, melkein ytimeen saakka yltävä huolo tyvellä sekä
joisakin puissa polvimainen mutka samalla korkeudella. Kasvusto liittyy harvalaulukseen
sikermään ja lienee sekundaarinen.

75. Kikakila, Silva, Oinasjärven tienhaaran maasto.
Esintymän laajuus: 20.2 x 19.5 m (1964).
Puiston ikä: 66+ v., 56+ ja 36+ v.
Kasvupaikkana VT:n kangas. Alueella on 149+ v:n ikäisestä ylispuusta kairatun näyt-
teen mukaan ollut kului 64 v. sitten, jonka jälkeen on syntynyt valitseva 56+ v:n ikäinen
metsäpalo. Samalla kankaalla on 23-metrinen sanajalkakkoolin. Keltailekolakkoolin laajuus
on tämän ja paloajan kanssa rinnakkain, edellyttäen, että keltaileko on sekundaarinen, piste-
mäisestä reilistä levintä. Metsikössä onkin sanen laaja sikermä, josta on mitattu seura-
at eriliset laikut: 22.9, 17.6, 16.5, 15.9 ja 14.1. Kaksi tai kolme viimeksi mainittua saatta-
vat olla primitiivisiä. Versorakenneeta ei ole vertailtua laikku laikulta.

83.3 Keltalieon (Lycopodium complanatum L.) itiöillinen uudistuminen ... 37

76. Sammati, Lohilampi.
Esintymän laajuus: 21 x 17 m (1962).
Puiston ikä: 80+ v., kannosta.
Kasvupaikkana VT:n kangas, kaskettu menneisyydessä. Laikku on yksinäinen laajalla
alueella. 20—30 v:n ikään kuuden nuorennon on auttanutan laikun keskustan ja osan reuna-
vyöhykkeestä. Kasvusto lienee primitaarin ja liittyyne puiston syntyvään.

77. Kerimäki, Kajinsaari.
Esintymän laajuus: 21 m (1964).
Puiston ikä: 111+ ja 69+ v. sekä nuorempaa.
Kasvupaikkana VT:n kangas. Alueelta on mitattu kaikki samansuuruista toistumaa, jotka
kuitenkin liittyvät laajaan sikermään ja saattavat olla sen kaikeltamia. Lisäksi on aineistossa
27 x 26 ja 26 x 24 m:n sanajalkakkoolin. sillä edellytyskäällä, että keltailekoalakuidat ovat itiö-
itiöitiä kooneja, niiden laajuus vastaa sanajalkakasvustojen laajuutta ja myös nuoremman
metsäpalojen ikää tai syntyvialajkohta, joka lienee n. 80 v. ajassa taaksepäin.

78. Suomusjärvi, Varesjärvi, Kakarlampi.
Esintymän laajuus: 21.0 x 20.6 m (1967).
Puiston ikä: 64+ v.
Kasvupaikkana itrorna peittämä kallion uoma. Kalliorinteellä on erillinen 22.9 m:n sanajalkakkoolin. Palon ajankohta on 68 v. sitten. Keltailekoalakku lienee sekundaarinen. Se liittyy laajakosan sikermään, jonka eräs toinen erillinen laikku on laajuselta 20.2 m.

79. Pohja, Ekerö.
Puiston ikä: 93, 191+ ja 52+ v.
Kasvupaikkana VT:n kangas. Laikku liittyy osakokonaisuuteen 47 m:n laajaiseen sikerm-
ään ja lienee sekundaarinen, 65 v. sitten sattuneen kulon jälkeen pienestä reilistä levin-
nyt. Kairastuen mukaan on alueella ollut kului 157—185 v. sitten eli Suomen sodan 1808—
1809 vaiheessa, ja suurempi kokonaisuus vastaa tätä aikaa, mikäli sekin on sekundaarinen.
Naapurimetäkistö on mitattu v. 1968 52-metrinen sanajalkakkoolin, joka on mahdollisesti
syntyyn saman kulon jälkeen ja tyypistynyt myöhemmällä kuluossa. Keltailekoiskermän
liittyy erilaisiin satelliittinaan 28 x 24 m:n laikuk. Samanpaikkaisen kairausen mukaan
piikalla ollut paljon 95 v. sitten, mikä vastaa tämänlaajuiseen sekundaarialaukon laajuntta.
Koko keltailekoisiennyteen suuruus on 85.4 m. Versorakenne on silmävaraisesti arvostellen
yhtäällinen laikassa laikussa. Merkkiävätoinen on mainittava, että n. 2 km:n etäisyydestä,
Snappertan pitäjän puolestah on mitattu 48.3- ja 85-metrin keltailekoisiennyteen, nekin
rakenteellisesti yhtä ainoasta yksilöllisyydestä (ks. no. 116, s. 45).

80. Kikakila, Korkiunnuri, Nummisuo.
Puiston ikä: 28+ v., kannosta ja oksahiekkuuroista.
Kasvupaikkana karu nummi, VT, rämeen laita. Samalla paikalla, osaksi jäkälöikillä, on
27.1 m:n sanajalkakkoolin. Rämeeltä kairatun vanhan männyn (166+ v.) lutosarjassa on
äällisesti erittäin heikkokasvuvuinen jakso, joka on aikanut 77 v. sitten. Suon vastakkaisella
puolella kangasnaalla kasvavassa ylispuussa on vastaavalla kohdalla aikanut levävastoinen
kasvuviime. Tämä kohta näkyy myös värirajana: vaalea ulos- ja tummaa, pihoittonutta
puuta sisäänpäin. Sanajalka ja keltaileko ovat kohtalaiseen hyviä paratelejä sekä toisinsa
ettäkyseiseen ajankohtaan nähden, edellyttäen, että jälkimäinen on levintyn palorelik-
tistä. Viimeinen kului, 31 v. sitten (ks. no. 6), on saattanut hiukan tipistää keltailekukasvus-
toa.
83.3 Keltalanen (Lycopodium complanatum L.) itiöllinen uudistuminen... sitten — joka jäljiltä on seuraava nuorempi metsäpolvi — saattaa vm. laajuutta olevien kasvustojen joukossa osa olla primärisiä.

87. Kerimäki, Ruokolasti.
Esintymän laajuus: 24 m (1964).
Puuston ikä: 105+ v. (tämä jaksok hakuottattu vastikään) ja nuorempaa.
Kasvupaikkana VT:n kangas, joka on palanut kannossa näkyvien jakarajojen ja lustojen välisen katkeamien mukaan 95 v. sitten. Laikku on erillinen, mutta ei yksinäinen. 24 m:n laajuus vastaa hyvin 95 v:n ikää, mikäli laikku on primärisinen.

88. Sammatti, Lohilampi—Oino tienvarsi, molempien paikkojen puolvilüssä.
Esintymän laajuus: 24 m (1962).
Puuston ikä: 82 v. ja nuorempaa.
Kasvupaikkana karu nummi, tervahaudan läheisyssä. Kasvusto on puolvyrämäinen, erillinen n. 50 m:n sätteellä. Kolon jaankohta on 94 v. sitten ympäröstä kerättyjen lustonäytteiden mukaan.

89. Vihhi, Nummelanharjun asuntoalue.
Esintymän laajuus: 25 × 22 m (1964).
Puuston ikä: 130+ v. yliopuut ja n. 70+ v. vallitseva jakso.

90. Somerniemä, Kaskisto, Kaaton-lampi.
Esintymän laajuus: 25 m (1967).
Puuston ikä: 58+ v.

91. Kilikala, Iso-Kolasin — Säräkoskensuo.
Esintymän laajuus: 26 m (1967).
Puuston ikä: 78+ v.
Kasvupaikkana karu nummi, VT. Palovomaisista puista kairattujen näyteiden mukaan on paikalla ollut palo mm. 107—108 v. sitten. Keltaliekokasvusto on yhtenäinen ja erillinen ainakin n. 50 m:n säteellä ja lienee primärää klooni.

Puuston ikä: 72+ v.
Kasvupaikkana VT:n kangas, jossa keltaliekoa on sikermittain ja erillisinä laikkuina. Samalta kankaalta on mitattu kaksi toistumaa, 26.1 ja 26.2 m. Eri puolilta lähiympäristöstä kairattujen lustonyttöiden mukaan kankaalta on ollut palo 105 v. sitten. Tähän aikaan liittyi samanpaikkainen 37 m:n sanajalkaklooni.

Kasvupaikkana VT:n kangas. Keltaleon 28 m:n laajuudelle on samalla kangasmaalla kaksi toistumaa ja rinnakkaisuutena niin ikään 38 m:n tummauotinen sanajalkaklooni. Erään laajaan sikermään liittyvän keltaliekokasvuston halkaisija on 33 m, mikä vastaa suunnilleen samanikäisen sekundaarilaikkuun laajuutta. Alueella on ollut laajempia 112 v. sitten.

Puuston ikä: 84−+ ja 54−+ v.
Kasvupaikkana VT:n kangas, joka lienee palanut 90−95 v. sitten. Samalta kangasmaalta on mitattu 31.7 m:n tummauotinen sanajalkaklooni. Keltaliekokasvusto liittyi 79 m:n sikermään ja lienee sekundaarainen. Sikermän laajuutta vastaa täsmälleen 98 m:n yksinäinen sanajalkaklooni läheisyydessä.

Puuston ikä: 302−, 117+, 85−+ v.
Kasvupaikkana jälkkälangas, tiheästi palanut. Mikäli keltaliekokasvusto on laajuudeltaan aito, paloissa tyypistämitän sekä samaa klonoa, se lienee levinnyt pistemäisestä relktistä 95−96 v. sitten sattuneen kulon jälkeen. Vallitseva puusto on lähiympäristössä 101−117+ v:n ikäluokkaa, mutta kasvuston kohdalla 85− vuotiaasta. Lähin löydetty keltaliekoesiintymä on n. 150 m:n etäisyydellä. Laikun laajuus on 7.5−7 m, mikä vastaa läheisyydestä mitattuja kahdella sanajalkakluukka: 12 ja 13 m. Kairauskia ei ole tästä paikalta.

Puuston ikä: 210+, 59+ ja 51−+ v.

Puuston ikä: 72+ v.

Kasvupaikkana VT:n kangas. Kasvusto kuuluu erilliseen laikukin laajaan sikermään. Samalta kankaalta on mitattu seuraavat sanajalkaklooinit: 30, 36 ja 37 m. Olettaen, että keltaliekoalukku on sekundärinen kokonaisuus havaitaan, että sen lyhyempi läpimitta on rinnakkainen pienimmän sanajalkakloonin ja nähättävä metsikön uudistumisajassa. Suurempi läpimitta on taas paralleelinen 36−37 m:n sanajalkakasvustolle, joiden ikä on n. 100−105 v:n vaiheilla. 139+: v:n ikäisestä lähiöön kalliominäkistä kairattujen näytteen mukaan on alueella esiintynyt kulo 87 v. sitten, mikä vastaa hyvin sanajan 30 m:n laajuutta. 36−37 m:n suuruulsukalle ei tuskastu eikä se mitäkin vastaetta.

Puuston ikä: 115+ ja 42− v. (vallitseva jakso).
Kasvupaikkana VT:n kangas. Kasvuston laajuus vastaa vanhaan puuston todennäköistä syntymää, n. 120−125 v. sitten. Samalta kankaalta, n. 2.5 km suoraan etelään (Vierumäki—Jaala maantievarsi, Hämeen ja Mikkelin läänien rajalla), on aineistossa 42 m:n sanajalkaklooni. On mahdollista, että alueella on esiintynyt laajahko kulo, joka on levinnut yli koko kangasmaan, mutta rinnakkaisuus voi myös olla sattuman kuluessa. Mainitakoon kuitenkin, että tämä sanajalkaklooni on ainoan pienempi esintymä tallalta alueelta mitatusta ja muut ovat yli 100-metrisiä.

Puuston ikä: 165−171 v ja nuorempaa.

Puuston ikä: 111+, 67+ v. ja nuorempaa.
Kasvupaikkana VT:n nummi. Kasvuston laajuus vastaa suunnilleen vanhimmasta puuston todennäköistä syntyvää, edellätymö, että esintymä on sekundaarinen. Alueella on ollut palo 83 v. sitten. Kasvusto pienempi läpimittä ja paikalla oleva 30-metrinen sanajalkaklooni vastasivat likimäärin tästä aikaa. Etäampää samalta kankaalta on mitattu kolme muuta keltaliekoskermän, joilta laajuudet ovat 34.5, 36 ja 37.5 m. Nämä saatavat olla
samaa ikäluokkaa kuin ensiksi mainittu kasvusto. Lähimmät kairaukset vanhemmista puus-
toista ovat yli kilometrin etäisyydeltä, joten vertaaminen ei ole tältä pohjalta mahdollista.
Rinnakkaisia sanajalkakasvustoja ei aineistossa myöskään ole. Alueella on harjoitettu ter-
vanpoltoa, ja kukoja on ollut tiheästi ja vaihteleviä kuvioin. Sirkermistä on kaksi tervehauto-
jen tuntumassa.

103. Suomusjärvi, Lahnavarren leirialueen lähistö.
Esintymän laajuus: 35 m (1967).
Puuston ikä: 231 + (jättöpuu), 59+, 50+ v. ja nuorempaa.
Kasvupaikan Vu:n kantas, jossa ruumiasti vanhoja kaiuvaanjäkkiä. Kasvusto on puoli-
pyrämäinen. Vieressä on yksinäinen 40.5 × 33 m:n sanajalkakokoon. Kairaussäätteen
mukaan lienee alueella esiintynyt iku 137 v. sitten. Näyte ei ole samanpaikainen.

104. Nurmijärvi, Rajamäki.
Esintymän laajuus: 36 m (1965).
Puuston ikä: 130+ ja 49+ v.
Kasvupaikan kuru nummi, paikoin jääkäikköön. Keltaliekokasvustot ovat tällä kanka-
aalla yleisiä ja sena sekaavia. Kyseinen sirkermä on kuitenkin erillinen. Sen laajuus liittyy
hyvin vanhimmien puuston ikään tai uudistumisvaiheeseen ja etäämpä samalta kanga-
maalta mitaton 49-metrisen sanajalkakokoon liuotuuteen.

105. Kikkala, Pikkuuson lähistö Uudenmaan, Turun ja Porin sekä Hämeen läänien rajalla.
Esintymän laajuus: 36 m (1966).
Puuston ikä: 94-112+ v.
Kasvupaikan kuru nummi, osaksi jääkäikköön. Keltaliekokasvusto on yhtenäinen ko-
kaisuus, selvästi muista kasvustoista erillään mutta ei kuitenkaan yksinäinen. Palon ajan-
kohta on eri puolet ympäröidystä keräytyessä kairaussäätteen mukaan 128-129 v. sitten.
Kasvusto lienee sekundaarinen.

106. Kesälaiti, yleinen leirialue Puruveden pohjoisramanla.
Esintymän laajuus: 36 × 30 m (1964).
Puuston ikä: 57-69+ v.
Kasvupaikan kuru nummi, VT. Läheisyödessä on vielä laajempia keltaliekosker-
mia, mutta ne ovat selvästi erillään ko. kasvustosta. Samalla kankaalla, n. 300 m:n etäisyys-
dellä on yksinäinen 50 × 37 m:n sanajalkakokoon. Kasvustojen mittasuhteet vastaavat hyvin
toliaan, edellyttäen, että keltaliekoesiintymä on itiöisyntynen kloon.

107. Suomusjärvi, Sitooinjärvi.
Esintymän laajuus: 37 m (1967).
Puuston ikä: n. 60+ v.
Kasvupaikka: Vu:n kantas. Kasvusto on puoli.pyrämäinen ja yksinäinen yli 50 m:n
settiellä. Läheisyödessä on 50-metrinen sanajalkakokoon.

108. Suomusjärvi, Lahnavarri, Vähänuummi.
Esintymän laajuus: 38.6 m (1967).
Puuston ikä: n. 60-70 v.
Kasvupaikka: VT:n kankaan ja korven vaihtumavöhyke. Kasvusto on yksinäinen
laajalla alueella ja lienee primääriin kloon. Vieressä on 51-metrinen sanajalan yksinäiskloon
tällä on tarkoin samanurainen toistuma n. 200 m:n etäisyyydellä. Samalla kankaarama-
alueella on lisäksi kaksi muuta 50–51 m:n sanajalkakokoon, joista edellisen läheisyödessä

Esintymän laajuus: 39 × 38 m (1964).
Puuston ikä: 114-123+ v.
Kasvupaikka: kuru nummi, VT. Keltaliekoesiintymä koostuu katkeleista. Läheisy-
dessä tervehautoja. Vierellestä rämeeltä kairattujen lustonäytteiden mukaan palkoilla on
esiintynyt kulu 125-126 v. sitten. Tätä aikaa vastaavat varsin hyvin 42 ja 44 m:n sanaj-
kakloion ja erään laajamman kasvuston lyhyempi halkaisija, 45 m. Mikäli keltaliekoesiin-
tymä on yksilökokonaisuus, se vastaa vertailukohtea tarpeen silä eholla, etäksi
yksynäkkyessä on sekundaarinen, relkitisytynen kasvusto.

110. Somerniemi, Saarijärven—Salakkajärven välin kannas.
Esintymän laajuus: 42 m (1966).
Puuston ikä: 51-63+ v. sekä 30 v:n ikästä nuoremmasta.
Kasvupaikka: rinteet talve, VT. Kasvusto on puoli.pyrämäinen sirkermä. Läheisyy-
dässä on yksinäinen 56 m:n sanajalkakloon. Kasvustojen paralleleisuus on erittäin hyvä.
Laajuudet edellyttävät syntymää Suomen sado 1808-1809 tunnussa. Lähialueen rämenän-
nyöstä kairattujen näytteiden mukaan alueella onkin esiintynyt kulu 157-158 v. sitten.
Palo on ollut varsin laaja-alainen. Tähän viitattavat lähistöltä, Kaltiannaan rannalla mitattu
42.9 m:n keltaliekoesiintymä ja etäämpää, Pikkuuson läheistä löydetty 57.5 m:n sanajal-
klojon, Herakas-järven rannalta 54-metristä ja Herakkaaantuhteella 58-metristä. Em. Pik-
kuuson maastosta on lisäksi 49 m:n keltaliekoskerimä, joka lienee sekundaarinen ja liittyy
laajempaan, versollaan homogeniseen kokonaisuuteen.

Ensimmäisestä keltaliekoskerimerästä selvästi erillään on saman lajin 9.1 × 8.5 m:n laikko.
Paikalta kariaattu männyn lunastetyössä on 31 v:n kohdalla kuoresta ytimeen päin poik-
keuksellisen ohut lusto (kesäpuita hyvin niukasti) ja erästä kuoresta otetuessa lasta alas
laho 32 v:n kohdalla sisäänpäin. Merkit viitattavat kuoon. Myös 42-metrisen keltalieko-
skerin on erään erillisen laikun halkaisajan pituudeksi mitattiin 9.8 m, mikä vastaa samoja 31 v:n
ikää. On siis mahdollista, että esim. 9.1 × 8.5 m:n laikko on yksinäisyydestään huomattava
sekundaarinen, pienestä relkitiivistä levinyt.

111. Kikkala, Korkkumaa.
Esintymän laajuus: 44.2 m (1964).
Puuston ikä: 156-166+ v. ja nuorempaa.
Kasvupaikka: Vu:n kantas, tervehaudan vierus. Vanha puusto on todennäköisesti
syntynyt laaja-alaisen kulon jälkeen, päätellen ylöspäin taiolaisesyystä. Rinnakkaisina
keltaleilloe ovat 57 ja 61 m:n (mahd. katkeama) sanajalkakloion, joiden mukaan palon ajan-
kohta lienee 170-175 v. sitten. Erään laajemman keltaliekoskerin erillinen osakokonai-
suus on laajuedeltään 40.4 m:n. Mikäli tämä on sekundaarista alkuuperä, on sekin em. uukuist
paralleleinen. Läheisyydessä on toinen sirkermä, laajuedeltaan 41.5 m. Se saattaa olla myö-
hemmässä kuluissa typistynyt.

112. Kikkala, Korkkumaa, Kulmala.
Esintymän laajuus: 46.4 × 40.6 m (1966).
Puuston ikä: 85+ v. ja nuorempaa.
Kasvupaikka: VT:n kantas. Samalla paikalla on 50 × 41 m:n sanajalkakloon, ja lä-
heisyydessä kaksi muuta, 45 ja 59 m. Keltaliekokasvusto saattaa olla katkeina laajemmassa

Kaskupulkkana karu nummi, osittain jääkkäikkön. Alueella on ollut tilateistu kulloja. Läheisyydessä on toinen saman suuruusluokan keltalieokesiintymä (kuva 14). Molemat liittyvät

Saman suuruusluokan keltalieokesiintymä on saatu kartotuksiin esin mm. Punkaharjun Hyminnäsareaella ja Takaharjulta, mikä viittaa suunnilleen Kustaa III:n sodan aikoihin (1785–1790). Em. saatiin on tunnetusti (HUKkamine 1827) olleet venäläisten satavuoinen hautausmaa-alueena, ja Punkaharju on ollut tärkeä sotilasaske. Vertailuaktaa näiden esiintymien kytkemiseksi aikana ei löytynyt Hyminnsaareilta, mutta lähialueelta Takahar-julta mitattu 53 × 47-metrinen ehy kasvusto liitty hyvin vanhanman metsäpolven ikään, joka on viiden kairauksen mukaan tasaisesti 165–173 v. + Paikalla on ollut kulut puiston elinaikana, mm. 158 v. sitten. 47 m:n laajuus vastaa tätä aikaa. Kasvusto kuului osana 177metriseen kokonaisuuteen (kuva 15) ja lienee sekundäristä alkuperä (R. Miettisen aineis-

Fig. 15. A map of the margins of a ground pine cluster from Takaharju, Punkaharju. A solitary 224 m bracket clone in the vicinity is a good replicate for this cluster. The largest diameter of the head of the human-shaped figure is 53 m. This path is practically coherent. In general, stands of this size are fragmentary. Other clusters of this size were also recorded from the Takaharju area and they also seem to belong to larger entities.

122. Lohja, siunaukkapelin—raviradan työpisteen välinen kangasmaa.

Esintymän laajuus: 56 × 38 m (1965).

Puuston ika: 178 - + v., jättöpuusto.

y Ison vihan aikaan (1713–1721). Jälkimäisen keltaliekoiskuvoston pienempi halkaisija viittaa puolestaan Suomen sadan aikoihin (1808–1809), jotka aikaan vastaavia jättöpuuta ja sanajalkaesintymäkkinä on löytynyt.

Fig. 16. Example no. 125.

123. Punkaharju, Laukansaari, Karjalankallion lähiöstö, Metsäntutkimuslaitoksen ko-
kellusalue.

Esintymän laajuus: 68 × 50 m (1964).

Puuston ika: 123 - + v., jättöpuut Karjalankalliolla.

124. Sammatti, Luskala.

Esintymän laajuus: 69 m (1963).

Puuston ika: 40–50 - + v., arvon mukaan.

Kasvupaikkaan VT:n kantas. Läheisyydestä on mitattu toisinta keltaliekoiskermälle: 68-metrinen laikkujono. Rinnakkaisuutena ovat samanpalkkaiset 91 ja 94 m:n sanajalkakloonit. Lähialueelta on aineistossa lisäksi joukko muita saman suuruusluokan esintymiä: 82 (onkka jonkin verran epäkoto rajoitettuaan maantiehen), 85, 86 (2 kpl), 91, 93 ja 94 m. Laajuedet liittyvät Suureen Pohjan sodan ja Ison vihan aikoihin (1700–1721). Luskalanummu-
men arvellaan olleen sotaväen kokoomis- ja harjoitusalueen menneinä aikoina (SILVANTO 1930, s. 100). Keltaliekoiskuvosten läheisyydessä on tervahautoja.

125. Suomusjärvi, Lahnavärjen leirialueen lähiöstö.

Esintymän laajuus: 69 m (1967), potentiaalisesti.

Puuston ika: 231 - + (jättöpuu), 59 - + v. ja nuorempaa.

Kasvupaikkaan kjru VT:n kantas, korpipainanteen reuna. Esintymän on puoliimpypärä-
mäinen (kuva 16) ja yksinäinen n. 50 m:n sateell. Samalla kangaansaalla, n. 0,5 km:n etä-
sydellä, on 86,5 m:n sanajalkakloon. Laajuedet vastaavat vanhimman jättöpuuston to-
dennäköistä syntymäaikaa, n. 250 v. sitten (Kaaraannätte n. 1 m:n korkeudella).
24.5 × 12 m:n laikku, joka saattaa olla katkelma suuremmasta kokonaisuudesta. Vastineena tälle laikkukokoeloon on vanhimman puuston todennäköinen syntymäaika. Vanhemmasta nappurimestiköstä kairattujen lustonäyteiden mukaan on alueella ollut kolo 83 v. sitten. 24.5 m:n laajuus vastaa tätä aikaa, mikäli kasvusto on sekundaarinen. Tiheä kuusiryhmä on leikkunut laikun puoliylpyrämaaleksi.

127. Susomajärvi, Varesjärvi, Kakarlampi.
 Esintymän laajuus: 79 × 77 m (1967).
 Puuston ikä: 40—50 v.
 Kasvupaikkana irtomaan peittämä kalliorinne. Samanpaikkaisena on 94-metrinen sanajalkakloon, ja kallion ympäriliitä on lisäksi mitattu tälle suuruusluokalle kolme toistumaa: 93, 94 ja 95 m. Esintymien rinnakkaisuus on täsmällinen erityisesti sillä edellytyksellä, että keltaliekoisikernä on sekundaarinen kokonaisuus.

 Esintymän laajuus: 80 m (1963).
 Puuston ikä: 70—v.
 Kasvupaikkana nummen tasanne, VT. Ympyrän muotoinen sikermä kuuluu n. 155-metriseen kokonaisuuteen (kuva 17), jossa versorakenne on laikka laikulta yhtäläinen kuivattu-

Fig. 17. A ground pine stand from Härjänvatsa, Karjalohja.

Kuva 18. Kartta keltaliekoisintymistä Oriveden Metsäaramäetä. Yksinäinen 99 m:n sanajalkakloon samalla kankaalla on täsmällinen vastine eriliselle 80-metriseelle keltaliekoisikermälle kuivan yläosaassa. Suurempi sikermä on huomattavassa määrässä ympyrämäinen. Fig. 18. Map of the ground pine stands in Metsäaramäki, Orivesi. A solitary 99 m bracken clone on the same health is an exact replicate for a detached 80 m ground pine cluster shown in the upper part of the picture. The larger cluster is distinctly circular.

129. Orivesi, Metsäaramäki.
 Esintymän laajuus: 80 m (1964).
Puiston ikä: 40+ v.
Kasvupaikanna karu nummi, VT:n kulon polttama viimeksi 48 v. sitten. Esintymän on muodoltaan puolypyrä (kuva 19), jonka keskipiste on n. 20 m:n etäisyydellä kadosta ter- vahaudasta. Rajakaari on jakoisenkin yhtenäinen, mutta tervahautojen kohdalla on katkeama (väli a—b) ja osaksi painuma sisäänpäin. Levinnäinen tervahaudan ja sen reunaukoppien yli on ollut ymmärrettyä estettäessä. Päävastaisella suunnalla sirkemä rajoittuu korkean ja kuusikkojen, joka on ollut ennen viimeistä hakkua verrattn tai dilemma. Esintymän rajalauluk yhtyvät ympäri pääreitin ympyrän kaareen seitsemäs pisteestä ylöspäin. Kasvusto on tällä kankaalla yksinäinen. Lähialueella, Nummensiltojen maastosta, joka on n. 1 km:n etäisyydellä, on kartoitettu toinen samansuuruinen sirkemä, joka ei kuitenkaan ole muodoltaan yhtä täydellinen kuin laajakaali. Puisto on ollut tällä kankaalla tähdestä. Molemmat kasvustot lieventävät syntyneet yhteisen kulon jälkeen, ja tervapolttoon, josta on harjottettu myös Nummensiltojen kankaalla, on ehkä käytetty juuri tänän palon viitoittamaa puuostoa.

Rinnakkaisena kertalakokoeintymillä on yksinäinen 97-metriinen sanajalkakkoon rämeen reunalla Kaitalammen läheisyydessä, esimerkiksi kaksavuotiaasta n. 2 km:n etäisyydellä. Täällä saadutsa kaireta uusilta sillä on 278 v. sitten alkanut åkillisuudet ohutlustoineen kasvujako, Tämä alka vastaa jokseenkin hyvin ko. kasviesintymien laajuuksia.

Kuva 19. — Fig. 19.

Kuva 20. — Fig. 20.

Kuva 19. Esimerkki no. 130.
Fig. 19. Example no. 130.

Kuva 20. Esimerkki no. 130, toistuma edelliselle (kuva 19).
Fig. 20. Example no. 130, a replicate for the cluster in figure 19.

Puiston ikä: 64+ v.

Puiston ikä: 98+ v.
Kasvupaikanna VT:n kantas. Sirkemä on kaarirainen ja yksinäinen n. 100 m:n säteillä. Lähialueella on 109 ja n. 110 m:n sanajalkakkoon. Rinnakkaisuus kertalakokkerännäksen kanssa on täsmällinen sillä ehdoilla, että tämä on sekundaarinen kokonaisuus.

Puiston ikä: 117—134+ v., vanhin jaka.
Kasvupaikankaan puistonmuotoisessa, VT. Kertalakoskimän rajalakkujen kautta piirreitin ympyrän halkaisijaa on 98 m (kuva 21). Erillinen laajuus 70 m:n etäisyydellä ei kuuluneen tähhän kokonaisuuteen. Lähisyydessä on 124 m:n sanajalkakkoon jokseenkin täsmällisenä vastineena kertalakokasvuston laajueelle. Esintymät ovat R. Miitissinen kerranmästä aineistosta.

Kuva 21. — Fig. 21.

Kuva 22. — Fig. 22.
134. Kerimäki, Mäkärä saari, Metsätuntoismisluotojen kokkialuaje.
Esintymän laajuus: 111 m, potentiaalisesti (1903).
Puiston ikä: 130—145 v. v. vanhin jaksio.
Kasvupaikkana VT:n kangas (Sepänlahden pohjoisranta). Keltalleon laikkukaaren (kuva 22) ääripisteiden kautta pirlrettyn ympyrän halkaisija, 111 m, on jokseenkin tarkoin rinnakkaisten samanpalaisialueen 140 × 110-metriseen sanajalkakoonille (R. Miettisen keräilämästä aiemista v. 60/v. 804). Vieressä on toinen saman suuruusluokan sanajalkakoonilta 140 × 98 m. Kuuden metrin eroavuus sanajalkakoonilta mitoita edellyttää n. 16—18 v:n ikäeroa, mikäli levämisen on tapahtunut häiriöltä. On varsin mahdollista, että kloonit ovat peräisin kaske- miskierrosta peräkkäisiä vaiheista (ks. esim. HEIKINHEIMO 1915, s. 98).

135. Sammatti, Luskala.
Esintymän laajuus: 120 m (1903).
Puiston ikä: 97+ v. ja nuorempaa.
Kasvupaikkana VT:n kangas, osaksi jääkälikönä. Esintymiä (kuva 23) koostuu useista

Kuva 23. Esimerkki no. 135.
Fig. 23, Example no. 135.

laikuita, jotka ympäröivät tervahautaryhmää. Läheisyydessä on 160 m:n sanajalkakooni ja n. 0.5 km:n etäisyydellä toinen tiiltä samansuurunen: 150 m. Vm. saattaa olla jonkin verran epäiltyä päättyessään mettisyyteenä pelollaa. Keltalleon 120 ja sanajan 150 m:n laajuudet ovat varsin hyvin todellista paralleleita. N. 150 m:n etäisydellä on esimerkiksi 119 kuvalta 117 m:n laajuinen keltalakeliskermä ja n. 0.5 km:n etäisydällä samalla nummella on 132-metrinen puolilympyrämäinen sankerma. Sen laajuus vastaa n. 160 m:n laajjuutta sanajalla.

Puiston ikä: HEIKINHEIMO (1958, liite) mukaan metsikkö on syntynyt luonnon
siemenyksestä 1830-luvulla, sis n. 130 v. sitten.

Sikerämän A kaukaisimmat sisäpisteet ovat 24 m:n etäisyydellä ympyrän kaareesta, mikä vastaa likimainen 80 v:n ikää. Tämän kasvuston vieressä oleva kohde C 25 on HEIKINHEIMO (1958, liite) mukaan perustettu v. 1881 eli 82 v. sitten. Selostuksesta ei käy ilmi, mitä paikalla on tapahtunut ennen metsikön istutamista, mutta tässä vaiheessa on useda muita maastokuvioita kaskettu (op.c.). On siis mahdollista, että ko. metsikkö on niin ikään perustettu kaskepellelle. Keltalleon kasvustoheken leveys (24 m:n) vastaa siis omissa, että tänään kaukeisen metsikön ikää.

137. Suomusjärvi, Varesjärvi, Pöytäkangas.

Esintymän laajuus: 132 m (1967).

Puiston ikä: 64–7 v.

Puiston ikä: 100–1 v.

Herakkalaanlähteensä esintymätä n. 800–900 m Ittään (Heposuo—Pikkusuo välinen kanas) kartoitettiin erään laajan keltaleoosesiintymän ulkoraja. Kun mitaustuloksil oli siirretty karttaan havaittiin, että ko. rajavyö hyödyntäisi varsinsä säännöllistä kaartavaa. Kaaren a — a (kuva 26) rajapistieden kautta pirreettyn ympyrän (A) halkaisijan pituudeksi mitattiin kartoilla 240 m. Samaa sietettä kotelot viereiseen, myös kaarimaiseen, kasvustrajoon, ja todettiin, että ympyräviiva sattuu omittuina tarkkoja senkin uloimpiin pisteisiin. Kaarten ulkopuolista aluetta tutkittiin n. 100 m:n leveydeltä, mutta sieltä ei löytynyt keltalekoa. Verrattaessa keltaleoon 240 m:n laajuutta em. 292–302-metrisiä sanajalkaesintoja käy ilmi, että ne ovat jokseenkin tarkoin toistensa paraleeljeita. Samaa 249-metrisen ympyrän säädetä kotelot kyseisen kartoitusalueen kahteen muu
Fig. 26. The marginal patches revealed in mapping a large ground pine stand converge at seven measuring sites with the circular line $a_{1} - a_{2}$. The radius of the same circle (A) seems to also fit the neighbouring cluster (B). Somerniemi, a heath between Heposuo and Pikkusuo.

Fig. 27. A fourth stand from the same heath as in figure 26. Part of the outer margin curves similarly and with the same radius as the former ones. In the direction of the circle diameter there is spruce stand and a moist depression with no ground pine. The whole longish stand is on a pine heath at the edge of a spruce stand, which has been heavily cut during recent years.
6. Tulkot
61. Yhdistelmä samanpaikkaisten keltalieko- ja sanajalkasvustojen laajuuksien rinnakkaisuksista

Kuten aikaisemmin on selostettu, samanpaikkaisia sanajalka- ja keltalieko-esiintymiä ryhdyttiin mittamaan palojen ajankohtien määrittämisen vaikkeisuksien vuoksi. Mikäli rinnakkaisuudet kasvustojen laajuuksissa osoittautuisivat johdonmukaisesti toistuviksi, ja josmp kumpi laji tulisi ratkaistuksi laajuus-ikä-
kyvyymisen osalta, oletettiin toisenkin lajin tulevan samalla ratkaistuksi.

Edellä olevaan esimerkkieluletelon sisältyy noin 95 mainittuaaku rinnak-
kaistapausta. Kun nämä asetetaan koordinaatistooneen (kuva 28, x = sanajalka, y = keltalieko) havaitaan, että pisteet hajovat tasaisen nauhanaisen asen-
toon. Täällä suoraviivaista ja nauhanaisista vastaavuutta tuskoin esinä, ellei
vät kasvusto ole samankäisäidä koenteja, keltalieko puolella osaksi primärisäidä osaksi sekundaarisia.
Eino Oinonen

Keltalieon (Lycopodium complanatum L.) itiöllinen uudistuminen

edustavat erinomaisesti keskimääräistä leviäminenopeutta siitä syystä, että epä-
asaisuksia aiheuttavat ympäristön eri osien pienvaihtelut ovat ehitteen tulla
toisaan tasaaviksi.

Suuret rinnakkaisesintymät ovat etupäässä nummimailta, missä molempien
lajien maaveros ovat yleisesti kivennäisina sisällä. Siellä ne ovat hyvin suo-
jattuja kuloilta, ja nummimailta on toisaalta palavaa ainaista yleensä vähemmän
kun kosteammilla ja viljavammilla kasvupaikoilla. Köyhyysjuhlassa isumur-
mailla ja varsinkin varjoisissa metsissä molempein kasvilajien maanalaisten var-
ret ovat ensimmäiseen humuskerroksessa, joten ne tulevat silloin kun akle
palaa karia myöten. Nämä on ymynnä toimia, että sällyvyys on parhainta num-
mimailta, missä kilpailullinen tekijä on tavallisesti vähäisempi kuin kasvui-
sammilla metsämaalilla.

Kuusettumiseen liittää mailla kuusimetsä voi yksinään, ilman kuloja,
tukahduttaa molemmat kasvilajit alustasta. Arkkoja ovat erityisesti monet
pikkukaloit, kun taas suurista kasvustoista jotkin osat saattavat sältää aukko-
kohdissa. Keltalieko on sanajalka huomattavasti heikompi kestävään met-
sikkoöheityksen tiheimpää vaiheita. Sen laajat yksilökasvot ovat melkein
aina repelisia tai hajanaisia laikkuseisimia, ja pienemmätäkin laikut ovat usein
katkelmiesta koostuvia. Tästä hajanaisuudesta johtuen, että sikiemä ei voida
niuonta koskatessa nähä koko-/humanisiissa. Nämä tulevat esiin vain
kartoituksen avulla. Katkelmiksi pirstoutumisen taipumus tai alttu aiheuttaa
helposti sen, että keltalieko uudistuu itiöllisesti usein ja vaikeuksittain
— laikukun ja sen on usein vieri viereksi hehtaahtimaan. Kun siirryttää sikiemen
ulkopuolelle voidaan todeta, että ympäröivä tasalaatun kaanga on tosinaan
sotoja meteja leveällä vyöhykkeellä vailla keltaliekolaikukua. Kun niitä sitten
täyttämänä jälleen ilmaantuu näkyviin, ovat ne taas tavallisesti sikiemakkoko-
elsaisuuksista illyttäviä.

YSINÄiset laikut, joiden ympärys on "tyhjä" yli sadan metrin vyöhy-
keellä, ovat verrattain harvinaisia. Aineistoissa sisältyy näitä huomattava joukko,
ja juuri näitä on käytetty hyväksi verrattessa sanajalkaan ja paloaloiksi.
Vaikka kulojen ajanjukojen määritävissä kentissä sattuu olemaan virheellis-
kyky keinojen vajavaisuuksia ja tulkintavaikutuksia vuoksi, niin yksinäisten
kasvilajikujen mitkänooseen näitä tuskin mahtuu oleellisessa määrässä. Kun lai-
tut tai kasvatot ovat yksinäisiä, niiden rinnakkaisuus ja limiöitoisuus on
merkitsevyyttä riippumattomia siitä, onko esintymät itsekin kielteet yksilöimään vai eivät.
Jokun näistä rinnakkaispaitauksista on sellainen, joissa palon ajanjohtaa ei
ole voitu tarkoja määrittää. Ne ovat siten riippumattomia aikaisemmassa tuki-
imuksessa (OINONEN 1967 a) esitetystä sanajalan leviäminen aikataulusta. On
silis aiheutta verrata, miten tulokset sopivat yhteen.

selin n. 5 m:n kohdalla. Tämä merkitsee sitä, että samaan aikaan keltalieon
kanssa syntynyttä sanajalkayksilöä on ehtinyt levitä 5 m:n laajuudella sen
laaja, ennenkään keltalieo on sivuuttanut tilamis- ja alkeisvärirkuvauksessa ja manifes-
toitunut maanpäälliseksi kasvaksi. Sanajalan leviäminen aikataulun mukaan
(OINONEN 1967 a) 15 m:n laajuus edellyttää tällä kasvilailla n. 14—15 v:n ikään.
Tulos on sopusoimussa BRUCHMANNIN (1998) esittämiä lukujen kanssa, jotka
koskevat keltalieon taimen manfestointimissa.

Kun asettaan viivatiettä reuna regressiosuoran suuntaisesti äärimäisemiä
oikealla olevien pistiden kohdalle voidaan todeta, että tämän suoraan ja x-akse-
lin leikkauspiste sattuu n. 85 m:n kohdalle. Tämä laajuus vastaa sanajalalla
22-26 v:n ikään. Hitaaimmin kohdennetut keltaliekoksimet ovat siis mahdolli-
sesti alkanneet varsinaisen leviämisensä vasta tällöin. Poikkeamien synyä voivat
luonnollisesti olla myös molempien kasvilajien leviäminenopeudessa esiintyvät
vaihtelut. Tulos sopii joka tapauksessa hyvin yhteen niiden tietojen kanssa,
 jotka BRUCHMANN on antanut manifestointimisen marginaalina välittyvöstä.

Toisaalta on myös syysyt ottaa huomioon, että normaali leviäminen alkaa taimien
lämmöristyksen mukaan vasta n. 4—6 v:n ja jälkeen kun alekeitaimi on puhta-
suut maanpinnan. Täten voidaan päätellä, että tämä ajanjajista on 8—20 v ja
keskimäärin 10 v. Nähtävästi myös sanajalan leviäminen alkuvaihe on
muutaman vuoden ajan normaalia hintaampaa, joten keltalieko keskimääräinen
manifestointimaiska lienee muutumattomaksi jonkin verran yli kun alle 20 v.

Pistemäisläiset erittäneitä levineiden keltaliekokasvustoja ja samanikäisten
sanajalkakloonien laajuuisen suhdettua kuvaa regressiosuoran suuntainen
do en origon kautta piirretty suora. Osassa rinnakkaispaitauksia on siitä, päätellen
pisteneden asettumisesta tälle suoralle, keltaliekoparkki sekunderäinen. Esi-
merkkien yhteydessä on esitetty lisäselvennyksiä tälle seikalle.

Kun verrataan tässä rinnastukseessa saatuja keskimääräisiä vaikeuksien
avulla muodostettuja molempien lajien leviäminen aika-aikatauluun (kuva 30, s. 66)
havaitaan, että tulokset poikkeavat tästä hiukan, mutta eivät olellessi. Eroa-
vuoden synynä on luonnollisuus regressiosuoran laskemiseen valituun pistejoukon
liian suureksi painottunut x-arvo, ts. minius-poikkeamin keskiarvosta on tul-
lut mukaan liian vähän.

Keltalieko ja sanajalka uudistuvat aineiston mukaan usein samanaikaiseksi
yhteisellä kasvuapikailla. Uudistumiselle suotuisat olosuhteet ovat ilman-
tunteen esimerkkikokoelman mukaan etupäässä kulojen vaikutuksesta. Aikaväli,
jonka sisällä itiöllistä uudistumista yleisimmin tapahtuu, on todennäköisesti
varsin lyhyt. Tässä kohdassa ovat tulokset yhdenmukaiset BRUCHMANNIN
havaistojen kanssa. Ellei näin olisi, eikä säännönmukaista rinnakkaisuutta voisi
esiintyä kasvustojen laajuuksissa. Parallelesintymät ja näiden toistumat il-
maisevat, että kasvullinen leviäminen on molemmilla lajeilla sango tasaista
— siiroimmissa rinnakkaispaitauksissa tasaisuus on suorastaan hämäystetty-
vää. Nähtävästi on niin, että homogeennistä kasvupaikojen suurit esiintymät
62. Yhdistelmä keltaliekokasvustojen laajuuksien sekä puiston ilmiasemien aikamääräisten rinnakkaisuksista

Kun merkitsään koordinaatistoon ne tapauset, joissa keltaliekokasvustojen laajuutta on voitu verrata puiston ilmiasemiin paloaloihin (n. 100 kpl ilman toistumia, kuva 29, x = keltalisko, y = paloaika), pisteet ryhmittävät jälleen nauhaamaisesti. Tästä joukosta valittiin varmimmatt jakautuja, 73 kpl, joissa x-arvo on suhteellisesti pienin. Pistejoukkolle lasketti regressiosuora (y = 16.88 + 3.26x) kuvaa nyt nopeimmin levinneiden itäsnyytysten keltaliekokokoonlaisen keskimääräistä ikää. Levimäinen alkaa tämän laskelman mukaan normaaliina nopeudella n. 17 v:n ikää, ja manifestoitumisen ajankohda on siis 4–6 v. ennen sitä, eli 11–13 v. palon jälkeen. Suhteellisesti kaikkien pienimmän x-arvon omaavien pisteiden kautta regressiosuoran suuntaisesti asetetun viivoittimen reuna leikkaa y-akselin n. 24 v:n kohdalla. Tulos on siis tältäkin osalta sama kuin edellässä vertailussa. Origon kautta piirretty, edellisten kanssa yhdensuuntainen suora kuvaa sekundaaristen laikujen ikää.

Kuvu 29. Keltaliekokasvustojen laajuuden suhde paloista kuluneeseen aikaan. Regressiosuora y = 16.88 + 3.26x kuvaa primäärikasvustoja, ja origon kautta piirretty yhden suuntainen suora s sekundaariskasvustoja.

Fig. 29. The ratio of the size of ground pine stands and the time elapsed since fire. The regression line y = 16.88 + 3.26x (pr) represents primary stands and the parallel line (s) drawn through the intersection of the co-ordinates secondary growths.

83.3 Keltalieen (Lycopodium complanatum L.) itiöllinen uudistuminen ...

83.3 Keltalieko- ja sanajalkokloonien leviämisen rinnakkaisaikataulu

Aineistossa on 68 tapausta, joissa sanajalkokloonien laajuutta on voitu verrata puiston avulla selvitettyihin paloaloihin. Regressiosuoran (kuva 30) yhtälö on y = 2.90 + 2.80 x, mikä näyttää ilmaisevan, että sanajan normaalilla leviämisen alkaa n. 2–3 v. palon tai yleensä syntyvän jälkeen. Kun samaa koordinaatistoon siirretään aikaisemmassa tutkimuksessa (Oinonen 1967 a) esitetty keskimääräistä laajuus-ikä-suhdetta kuvavaa suora nähään, että nykyis- sen aineiston pohjalta laskettu kuvaa yhtyy siihen mitalle täydellisesti.

Siirtämällä samaa koordinaatistoon keltalieen laajuus-ikä -suhdetta kuvavaa regressiosuora (kuva 29) saadaan muodostetuksi rinnakkaisaikataulu molemmien kasvien esiksiä keskimääräiselle levimiselle. Havainnollisen kuvan saamaan, ettei ainoista esimerkkejä asetettuna aikatauluun, tähän on sijoitettu joukko kiintisempiä tapausia. Aikaisemmin esitetyn mallin (kuva 1, s. 7) mukaisesti rinnakkaisuudefit kytkeyty toisinsa vaakausuorensa viivoiksi. Pisteiden numerointi vastaa esimerkkikokoelmaa numerointia.

Voinan havaita, että kytkentä on johdonmukainen ja luja. On ilmeistä, että kummallakin lajjilla on vaihtelua levimäospeudeessa, mutta nimenomaan keltalieon osalta on vaihtelurajojen esittäminen vaikeata. Kymmenen vuoden marginaalista manifestoitumisajasta aiheuttaa jo yksinnäin n. 3 v:n laajuuseron hitaammin ja nopeimmin kehittyneiden yksilöiden välille. Millainen vaikutus Bruchmann (1896) toteamalla pitkäaikaisella itälevoilla ja muilla alkuhautta lisäävällä tekijöillä on luonnossa esiintyyvän kokonaisvaihteluun, sitä ei tämä tutkimus ole voinut paljaasta. Muutaman a = 0.5 m:n esiintyminä on lyötyyn n. 30–35 vuoden ikäisistä metsiköistä, ja mikäli näiden syntyä on kytkeytynyt molemmille yhteiseen uudistumistekijään, saattaa laikujen pienikokoisuus selittyä alkuhaustekijöillä. Kun aineiston rinnakkaisataupaseet asettuvat keskimääräisarvojen vaiheille niin hyvin kuin piirroksesta ilmenee, ei vaihtelulla liene tuloksiin oikeelliseksi hajottavaa vaikutusta.

Keltaliekokasvustojen keskimääräinen levimäospeus on n. 30.2 cm/y. eli rinnan suuntaa 15.7 cm/y. Samankaltaisten primääri- ja sekundaarilaikokujen tai -kasvustojen laajuuksien ero on 3–6 m ja keskimäärän n. 5 m silloin kun jälkimäiset ovat levenneet pitemäisistä reilkeistä. Miisas määriä kasvupäätöksien viljaviestuksilla on vaikutusta levimäospeuteen, sitä ei aineiston yksipuolisuuden vuoksi voi saada tästä esin. Tulokset edustavat keskeisimmän valoisa, niin ehdottomasti, että V:n mittayksikköä.

Palattakoon vielä ulostavissa tutkimuksissa tarkastellun metsityyneen pellon (s. 16) keltaliekokalkkuihin. Leviämisen aikataulan mukaisesti 36 v:n ikää vastaavat parhaan 4–7 m:n laajuiset primääraikiat. Tähän suuruusluokkaan kuuluu 6 kpl alle 7 m:n suuruisista laikuista, joita oli mitattu yhteensä 17 kpl. Alle 4-metriset laikut lienevät joko jälkisyntyisiä tai normaalia hitaammin.
levinneitä sekä suurempien kokonaisuuksien katkelmia. Ojan kohdalla levinnyt suurin laikku, 14 m x 12 m, liittyi jokseenkin tarkoin pellon raivaamisesta kuluessa sen aikaan (64 v.). Kun ojan leveys on n. 1 m, on laikku levinnyt kynnettylle peltoasoiille 11 m, mikä aikatauluun mukaan vastaa n. 36 v:n vegetatiivistä leväämissää. Tämänkin osututkimuksen tulokset ovat siten muun aineiston mukaiset.

Sanajalan ja keltalioen samanlaisen yksilökasvutojen laajuudekseen voidaan luonnollisesti kuvata myös kertoimien avulla: keltalio = n. 0.85 x sanajalka (m) tai sanajalka = n. 1.17 x keltalio. Keltalio on tällöin sekundaarinen, joten tulosta on korjattava ± 5 m:lla, kun kysymyksessä on primäärivastu.

64. Kasvustojen levääminen muutaman jälleenmittausten mukaan

Kasvilaiakkujen levääminen on luonnollisesti saadaan yksinkertaistimmin ja varmisteen tietoa mitataan samoja kasvustoja uudelleen. Edellytetään, että mittaukset valitulla aikana on riittävän pitkä. Versojen pituuskaavahän on keltalioilla suuresti vaihtelua, joten vain muutaman vuoden mittausaikaa antaa tulokset ovat kasvysympäristön hiukan muuttumisen ja ehto(myös olosuhteiden periodisuuden vuoksi liikaa syntyvyysen painottamia. Jotta tuloksilla olisi yleisempäät kantavuutta tulisi aineiston myös olla monimuotoisen.

Tämän tutkimuksen puitteissa on jälleenmittauksia suoritettu vain pistokokeen luontoisesti ja liian lyhyenä aikana, joten tulokset ovat varsin hajaanaisia. Kuten aiemmassa on jo mainittu, kerätty aineisto on vastausaikuina hyvänä perijohdolla tarkistukselle. Se seikka, että tämäankaltaista tutkimista ei ole yleisemmin kokeiltu, on sinänsä hämmästystävää. Alimuokkaisia mitta.uksia eri kasvilajien laikuista on suoritettu paljonkin, mutta uusintamittaukset ovat jääneet tekemättä.

Jälleenmittausten tulokset ilmenevät oheisesta asettelusta.

7. Tarkasteilma

Keltalieon valitsemisen sanajalan puuttuvien toistumien ja paloalkojen vastineeksi on osoittautunut tulokselliseksi ensikokeiluksi. Sanajalan laajuus-ikä -suhte saatetti kuitenkin selvitetystä ihmän tämän lisätutkimuksen apua, joten sanajalka voitiin päinvastoin käyttää hyväksi keltalieon laajuus-ikä -kysymyksen ratkaisussa. Olettamus, jonka mukaan tainen näistä rinnakkaislajeista ratkeaisi kohda kun toinen tulisi kiinnitykseksi aikatauluun, on siis ollut osuva. Sidoksien kertyminen tutkittujen tapausten kokonaismäärään nähden varsin huomattavana sarjana kahtalle — sanajalka ja paloalkoihin — sekä erilisesti että samanaikaisesti ja joskus toistumien antamin varmistuksin, on kiinteästi kytkemään varsin vakaaksi.

Sanajalan laajuus-ikä -sidos on aikaisemmin julkaistun (Oinonen 1967 a ja b) laajahon aineiston avulla tullut varsin lujaksi. Tässä esitetty aineisto liittyy sanajalan osalta täysin yhtäpitävästi siihen. Kun rinnakkaismittaukset keltalieon kanssa ovat antaneet kiinteän johdonmukaisia tuloksia, on aikaan kytkentää myös tämän kasvajalin kohdalla pidettävän lujia.

teilkoon sopiva tapaus. Samasta syystä voi tässä esitettyjen rinnakkaitapanus-
joukon mahtua jokunen vertailupari, joissa rinnakkaisuus on sattuman ai-
heuttamana. Nämä tarkastelut tuottivat sen johtopäätöksen, että "aitakatu ta to-
teutu vain yhdellä aitovala tavalla, niinittäin oikeilla arvoilla. Rakennelma on
silis hyvän lukon kaltainen: siihen sopii vain yksi täsmällisesti lovettu avainmalli.

Essintymien ulkorajan kartoituksissa on paljastunut joukko ympyräämäistä
rajaviivoja. Näiden tulkitseminen sattuman, kasvupaikan tai maaperän aiheut-
tamiksi kummallisuuskisiksi on erittäin vaikeata, semminkin kun niillä on san-
manpaikkaisia tai samalta yhtenäiseltä alueelta mitattuja rinnakkaisuuksia sa-
najalan kasvustolaajuksista sekä toistumista. Maastokuviot eivät ole lähess-
äänä aina olleet samanlaiset — mikäli samanlaisuutta yleensä löytyykin suomu-
salaisilta k Pangasalaita — vaan usein varsin vaihtelevat. Kartoituksien ja san-
jalakloonien mittaukset ovat monissa tapauksissa eri aikoina suoritettuja ja
ettämättä lainkaan, mihin tuloksissa on täyttymätön. Osa aineistosta on aput-
aisen etsimää ja keräämää (v. 1964) ilman että hän on voinut olla tietoinen
niiden kahden kasvilaajan levämisnopeudesta. Rinnakkaisalkataulu on koottu
vasta nyt, koko aineistoa vertailemalla, mihin sisältyy myös osaksi karttalau-
nosten puhtaaksi piirtämisen aste- ja mittalujujen perusteella sekä mittaukset
näistä kartoista. Voidaan ajatella, että ympyrämuotojen löytyminen on syy-
yhteydessä työhypotesiin ja että tämä olisi johtanut tahattomaan valintaan,
ts. ulkorajojen riittämättömän tarkistamiseen senjälkeen kun ympyrämuoto
oli saatu esiin. Tämä ei ole mahdollista, koska niin laajoja ympyröitä kuin mistä
tässä on kysymys, ei voi maastossa tarkastella arvioida liikkanemakaan täsmällis-
esti. Karttalauonnoksiksi merkitään vain aste- ja mittalujuus, eikä näitä asetettu
maastossa mittauksin paperille, joten muodon seuraaminen niistä ei ollut eräitä
alkukokoneluja lukuvuotennatta mahdollista. Kun mittakaavaa on niin kuvi
esimerkeistä ilmenee, on ehkä satunnaisesti jokunen laikku jäänyt huomaam-
atta ulkopuolisten alueiden "haravoinnissa. Tällaiset satunnaisvirheet eivät
kuitenkaan voi aiheuttaa muodon tiivistymistä ympyräksi monien toistumien
voimalla. Kysymys virhemahdollisuuksesta tällä sektorilla on ollut usein esillä,
ta se on aiheuttanut monilta jälktekittymiä. Tuloksissa niillä ei ole ollut oele-
listaa vaikutusta, vaikka ovatkin joskus aiheuttaneet jostakin korjauksia — myös
ympyrämuotojen entistä täydellisempää täsmentymistä.

Aineistossa on myös joukko hajakiermiä, joiden ulkoraja ei ole ympyrä-
mäinen. Osa näistä on sellaisia, joiden suurimmalla laajuudelle on toistumia ja
osalle paralleleleja sanajalan kasvustoissa. Osa kartoituksista on johtanut vain
ympyrän osakaarien löytymiseen, ja muutamassa hyvin laaja-alaisissa karto-
tuksissa on vain esintymän ulkorajan jokin osa ympyränkaaren yhteyty. Tälla-
sille eriasteiselle storselise — niiden potentiaalisoille laajuukselle — on todettu
olevan sananpalakkaisia toistumia ja rinnakkaisuuksia sanajalaikuesitymien jou-
kossa, senjälkeen kun rajalakkojen kemppiyten ympyrän halkaisijat olivat
mitattu. Erilliset laajan kokonaisuudet ovat ymmärrettävästi yleisemmin rik-

ekutuneet kulossa ja erilaisissa metsikkövalheissa, ja samoin sekoittuneet toisten
surukavastojen sekä myhemhipsintyisten pienempien yksilökasvustojen kanssa.
Suuret yksinäiset täysympyrät ovat nähtävää varsin harvinaista em. syistä.

Kartoitetujen essintymien sisäiseen rakenteeseen ja yksilöllisten piirteiden
vertailuun liittyneet huomiot on tutkimuksen syynä. Tällöin kerätään
monista kokonaisuuksista varsillaan joka kerta. Tämä työtä suuresti
hidastava ja todistusarvotaan heikko tarkistus jätettiin myöhemmän pois ja
sytyydyttävä vertailuaineen pääsässä vain rajalakkojen versoi. Silmävaraisesti
havaittavia eroavuusia ei todettu näin tutkimuissa ympyräesiintymissä.

Sangen erikoisista ovat eräät laajat kasvustot tai sirkerrät, joista kartoituks-
en ovat paljon tehty ympyrän osakaaria, mutta jotka siitä huolimatta ovat verso-

Kuva 31. Keltakeikoesiintymän rajakartta Vierumäeltä (Jaaalan johtavan maantien varsi
Hämeen ja Mikkelin läänien rajalla). Ympyrämäinen kokonaisuus näyttää sisätilan kaksi
yhtä suurta osakaonainussesta. Nämä saattavat olla sekundaaristia, menneys- ja
satanemisen kulon jälkeen palorikkeitistä levinnät.

Fig. 31. A map of the margins of a ground pine cluster from Vierumäki (on the side of the high-
way to Jaaalan, on the border of the provinces of Häme and Mikkel). The circular entity apara-
tently consists of two large partial entities. These can be secondary, spread from relics left by
ancient fires.

Tutkimuksen tulokset ilmiselvet, että keltalielein tililleinen uudistuminen on verrattain harvinaista. Se on jonkin verran yleisempi kuin sanajalan, ja sen riippuvuus kulosta on pieneni. Uudistumismarginaali on yleensä lyhyt, ja maanpaallisen kasvin manifestoimisen ajankohta on n. 8–20 v. ja nopeimmin heikkenneenä niin. 11–13 v. iötöitten kyllästyvät maajälkeen. On siis päädytetty yhtäältä tuskin Bruchmannille (1968) kanssa, niin erilaisiin ja tasain on lähestymistä ollutkin. Kasvin laakkiainen levimäisnpeus on keskimäärin n. 30.2 cm²/v. (rintaman suuntaan 15.1 cm²/v.) Nopea vaihtelee eri laakkiainen kasvutilanteissa suuresti, laakkiainen kokonaisuuksessa n. 10–70 cm²/v. Olosuhteiden ajallinen ja pienraikainen vaihtelun tasaantuvat kasvustojen suuretessa, kasvua hidastavien ja edistävien tekijöiden tullessa yhä enemmän toisin tasaavaksi. Suuret kasvit edustavat siten parhaiten keskimääräistä levimäisnpeutta, mikäli eivät ole kaulojen tyypistä tai tiheän metsän pirstomia. Säännöllisimmän levinnät ovat nummimaiden kasvustot.

Rinnakkaislaajuudet samanpaikaisten sananjalkakloonien kanssa osoittavat molempien lajin uudistumiskohteiden, levimisen ja pysyvyyden yhtäläisykyksi sekä varoittavat keltalakokosienäitä tällöin vahvalla todennäköisyydellä kloonikeinoa. Saman varmuuden on antavat myös toistotumus. Molempien laji- kasvustojen laajuuksia voidaan siis alkuperätaustan mukaisesti käyttää hyväksi tietyt varaukset paloaikojen selvityksissä. Niillä on samoin keskimääräistä sisäisyyttä niissä tapauksissa, jolloin jotain kumpi laji on vallannut saman laajakaikia toistumia.

Vitekirjallisuus — References

BOWER, F. O. 1923. The ferns (Filicales) I. Cambridge.

1927. Punkaharju, Helsinki.

OINONEN, EINO. 1967 a. Sporal regeneration of bracken (Pteridium aquilinum (L.) KUHN.) in Finland in the light of the dimensions and the age of its clones. Acta forest. fenn. 83.1.

1967 b. The correlation between the size of Finnish bracken (Pteridium aquilinum (L.) KUHN.) clones and certain periods of site history. Acta forest. fenn. 83.2.

1955. Studies of the development of woodland conditions under different trees. J. Ecol. 43.

1951. Estimation of the ages of forest stands in the prairieforest border region. Ecol. 32.
SUMMARY:
SPORAL REGENERATION OF GROUND PINE (LYCOPODIUM COMPLANATUM L.) IN SOUTHERN FINLAND IN THE LIGHT OF THE SIZE AND THE AGE OF ITS CLONES

Introduction

In an investigation on the size and the age of bracken (Pteridium aquilinum (L.) Kuhn.) clones the dimensions of the stands were compared to fire dates and age as revealed by borings of the tree stand of the same site (Oinonen 1967 a). Yet such comparisons were not possible in all areas investigated, where clear stands of bracken occurred. Therefore other ways of comparison were taken into consideration, so that these cases, elucidating in other respects, would not remain loose, unrelated to time and useless.

It was assumed that bracken is not unique among our forest plants in the rarity of sporal regeneration, in regeneration connected with forest fires, and in the permanence and continuous spreading of its stands. If this hypothesis is true, we should find parallel stands to bracken among other plant species growing in the sites investigated — with due respect to the spreading rate of each species. Their dimensions could be employed as substitutes for the lacking age-dates and for the replicates of the same dimensions and as controls for the authenticity of the vegetation unit dimensions.

Other common forest plant species were included in this investigation from the very beginning, when the size-age problem of bracken was not yet solved. Thus the collection of the material became rather free, in other words it could be gathered almost anywhere, where obviously parallel units occurred. It is to be considered an advantage that the material was collected randomly like this and partly independently of bracken.

In preliminary experiments it was found that different forests offer varying possibilities for delimiting individual stands of different plant species and for comparing fire dates. Yet the presence of all the experimental members is not necessary. In one case it may be possible to measure the dimensions of the species A, B, C, D, H, and I, in a second case the species B, D, H, in a third case the species A, C, D, G, and so on, usually, however, two or more species at a time, while their combination varies. On each site investigated there always is a species common with some other sample sites. Thus, even though a part of the sites investigated do not have a common species, the whole series can nevertheless be connected with the aid of connecting links (substitutes). If the parallelism turns out to be the rule among some species, the size-age problem of all parallel members of the series can be solved, immediately after the solution has been reached for one member (see Fig. 1, p. 7).

Basic information on the biology of ground pine

In preliminary investigations it had been found that sporal regeneration of ground pine is rare (see also Bruchmann 1898). Sporelings were actually only found at a site of an old camp fire. Bruchmann had found plenty of prothallii and young sporelings in 10-20 year old planted forests, but never in old forests. He concluded that turning the soil had provided conditions that enabled regeneration and that the decayed wood and bark were an exceptionally suitable medium for germination. He assumed that in each planted forest stand, there was only one age class of ground pine and that each of them was directly related to the time of planting. The regeneration marginal would thus be short, contributing to the replication of the same stand size on the sites and areas historically equal, if the vegetative spreading rate of each individual is about the same.

The frequency of sporal regeneration of ground pine in Finland in connection with forest planting was investigated by some random samples inspecting 15-to-35-year-old plantations row by row. But neither young plants nor small patches were found.

In light sites, ground pine generally produces plenty of spores (see also Sarvas 1937, p. 18), which due to their small weight can fly very far with air currents. There is no exact information on their viability, and their germination is very slow, taking 3-5 or even 6-8 years (Bruchmann 1898). Germination takes place within the soil, into which the spores are either washed by rain in light soils or moved by microfauna. They can also gradually get buried under litter and in this way get into conditions favorable for germination. The prothallium lives saprophytically in the soil after getting infected with endophytic fungi (endothrophic mycorrhiza). The prothallium becomes sexually mature in 6-7 years and sometimes in 12-15 years. It can take years for the sporeling to emerge on the surface of the soil because of all sorts of obstacles. The connection to the prothallium and the symbiotic fungus can continue for
some years. After gaining its independence, the young plant will not become infected by a fungus. Thus the early stages of development are complicated and variably slow, and as a result the margin of the manifestation becomes wide even for the same spore shedding.

Ground pine belongs to our most fire-resistant forest plants (see also KUJALA 1926, SARVAS 1937). In this respect it closely resembles the bracken. The ground shoots of the plant grow partly in the mineral soil, particularly in light-textured sandy heaths with a shallow forest floor, and are therefore well protected against heat even when the site is scorched bare. At places the ground pine is a very common sight, especially on sandy heaths and ridges (see also KUJALA 1964, p. 24). It is unknown whether the prevalence of the species is due to the commonness of its regeneration or to the fact that its stands survive well on such sites and consist of few, but wide clones fragmented into patch-like aggregates. It can also be asked, where the clones born centuries and thousands of years ago have disappeared, if the permanence is excellent. However, when inspecting its stands on the heath, it is strange to notice that young plants and solitary small patches do not occur everywhere, if this environment really is the most suitable for this species. Hectares of large patches and stands can, on the other hand, occur side by side. If part of the stands were bound to be dying and replaced by new ones, there would also be small remnant patches everywhere, even among the solitary patches. But as mentioned above such small patches are, nevertheless, rare. And it is even more curious that the stands are characterized by clustering and that in wide areas between the clusters, not a single ground pine patch can be found, even though the heath soil is widely similar and the clusters can cover the whole scale of heath variation, the level sites, depressions, ridges, slopes, forest stands with varying tree species compositions. A single cluster can sometimes be the only ground pine even on a wide heath.

It can be assumed that the clusters as well as the patchformed growths are caused by edaphic factors and that the plant has reached the limits of its migration possibilities (KUJALA pp. 15—16) though these facts can not be seen by superficial inspection. The value of this hypothesis was investigated by excavating at the margins of ground pine stands (Fig. 2) and by measuring the elongation of the shoots. In all investigations on heathland outward growth was observed to be the rule. Recession of the stand margins, indicated by dead aerial shoots, was observed to have sometimes occurred in dense forest stands, particularly spruce stands, and in patches growing among lush vegetation. This also occurs in heath stands — aerial shoots do not grow endlessly —, but primarily inside the patches, not on the margins. Sometimes the centers of the patches have died completely, and the form of the stand is that of a fairy rings.

Circular ground pine patches some meters in diameter can often be found. When the patches or stands grow larger, this property is not seen as easily, since the aerial shoots get hidden in other vegetation. Because sporal regeneration is rare, and because the circular form can hardly be caused by edaphic factors, it can be considered highly probable that the individual circular patches growing detached from the clusters are clones. If their size is directly related to time from the fire, and replicates of the same size and parallel bracken clones of corresponding dimensions are found, on a heath burned over by a single forest fire, the ground pine stands are, most probably, clones. The common factor of regeneration is the fire. On the same basis even large circular clusters, in spite of their fragmentariness, can be clones. In preliminary searches, measurements and mappings it was observed that the outer edges of cluster entities sometimes followed the edge of a circle, but usually only arches of different-sized circles. Thus it was sensible to search for replicates of the same size and parallel bracken stands on common sites either in their actual or potential size calculated by their curvature.

If the clone concept is extended to clusters, their marginal patches have to meet the requirement of structural identity. Within the large clusters, later-born patches can naturally occur, but for the whole these bear no significance.

Structural characteristics

Distinct structural differences indicate different clones, but homogeneity as such does not prove that cluster does not consist of several clones. Thus it can be concluded that visually or even microscopically determined identity alone is far from conclusive evidence. For solving the problems in question even the best purely taxonomical methods may not be applicable or sufficient. Chromatographic and serological methods are of value in controlling the results obtained.

In this investigation the determination of homogeneity and heterogeneity was rather primitive, mostly visual. Otherwise it would not have been possible to collect sufficient material. Thus the solution of the main problems is essentially based on other than the common, taxonomical methods.

It was attempted to obtain an idea of the whole scale of individual variation on excursions in different parts of southern Finland by collecting and comparing samples. In extreme cases the differences are considerable, but in general identification is much more difficult than that of e.g. bracken. It was established that individual patches are mostly homogeneous, and that homogeneous neighbouring patches are sometimes clearly different from each other. The same was often observed in detached clusters. When samples had been collected from each patch and compared the samples for the clusters were homogeneous, but the clusters differed from each other.
An experiment was also made, in which each sample bunch was numbered invisibly according to the cluster, the samples from various bunches were mixed, and they were all regrouped according to their structural characteristics. This was sometimes carried out perfectly successfully, but when the samples collected from different clusters happened to be almost similar, confusions also occurred. These tests indicate that in favourable circumstances visual inspection is sufficient, particularly when exceptional forms are concerned. Clusters of these were also successfully delimited in the field in larger and occasionally very heterogeneous clusters. These cases were checked by numbering the patches on the map and the shoot samples taken were numbered with corresponding hidden numbers. After drying, the samples were mixed and the corresponding entity was separated.

In preliminary investigations it was observed that ground pine stands with similar individual characteristics occur in different regions, and also close to each other in one continuous area. This led us to the conclusion that our investigation should be concentrated to circular detached patches of the exceptional forms, and their authenticity should be confirmed with possible replicates and parallels of other plants on the same site, as well as with fire dates. To save time, this ideal was not met in all cases. Only cumbersome mapping can give an idea of the large stands. It is impossible to foretell the results, and it is difficult to discard work already done. Therefore the material discussed here is rather heterogeneous in quality and we tried to select the best of it.

Ground pine varies in the structure of its aerial shoots, in branching, the shape of the branches, tropism, position and grouping. Forking sometimes produces a dense plant resembling a thin broom, sometimes a broad, and layered one. The branches can sometimes grow twisted or they may fork directly outward from the shoots. In extreme cases the shoots are slender, or broad and flat. They can be vertical or, as a contrast, limp, having a tendency to grow along the ground. The shoot seems smooth, when the leaves grow in the direction of the stem, but it appears rough and prickly when they protrude. Drying in the natural form (not in a press), often brings these characteristics and also the other structural characteristics better out. It also diminishes the often misleading differences between the lush and poorly grown shoots of the same individual, as compared with fresh shoot samples.

Structural differences also occur in the sporangium and the sporangiothecium. The shape and size of the sporangium vary, and so do the length and diameter of the sporangiothecium. Variation also occurs within the individuals, so that these characteristics alone are not too reliable. The color of the sporangia, which already have shed their spores probably is one of their most distinct characteristics. But since sporangia do not occur everywhere, their use is limited. Comparison yields best results when large bunches of samples are available.

The differences become more distinct when they can be compared with large masses of homogeneous material.

The color of the aerial shoots covered with leaves varies from greyish and bluish yellow to yellowish and brownish green. Differences in darkness and shade were abundant, but they were disturbed by environmental differences. Drying often fades the colors and destroys the characteristic shades visible in the field. These are best visible in half-shady sites.

Methods of stand measurement

The dimensions were measured along the surface of the ground. Large stands were usually mapped, but sometimes even they were measured directly in the field after marking the borders and the outside area had been inspected. The importance of this inspection must be emphasized; it must be carried out carefully, particularly when clusters are concerned. It is best to check a 50-100 m zone, depending on the dimensions of the stand. Mapping was performed with the aid of a small surveying compass and a tape or a measuring pole. As the aim was to study the shape and the size of the stands, only the margins were marked in the field and the interior was usually left unmapped.

The maps were mostly drawn indoors with the aid of measurements made in the field and according to hand-drawn sketches. The final measurement of the dimensions was thus usually carried out from the maps. In the interpretation of the border line, the rule of elementary geometry was remembered: through three points (not in a straight line) a circle, and only one, can always be drawn. Before the joining circular line has any significance, at least 4—5 common points must be found. Cases of three points are of significance only when replicates of the same size or parallels are found.

Material

The material was collected in southern Finland, south of the 63. parallel. In different phases of the work, a total of 450—500 detached patches, stands or clusters were measured, with dimensions from Δ to 500 m. For the determination of the shape, grouping and dimensions, 47 additional stands or areas were mapped. Only part of them were suitable for this project.

Some patches were measured repeatedly after 1—4 years from the first measurement. The present material offers possibilities for subsequent, more comprehensive checking, since the stands are quite permanent.

Part of the material was collected by my research assistant Reijo Miettinen independently after working some time together. This experiment shows that the results obtained are consistent, independent of the person and thus conclusive. All the original papers are still available. — The authenticity of the material justifies the conclusions that have been presented on the results of the investigation.
In solving the size-age problem the clearest part of the material was used, the one presented as a sample collection (pp. 23—60). A number of alternative cases have been included in this, for they serve to elucidate the problems so often encountered in this kind of an investigation. There were 138 numbered samples. This number represents approximately one fourth of the whole material. For part of the material there were no comparing possibilities to fire dates or to bracken clones on the same site, but instead to stands of other plant species. Part of the material had no links at all. Therefore their description would be either too early or unmotivated. Site history is complicated and long, and the natural conditions highly variable, so that constructing a logical and convincing synchronical series and setting out all inaccuracies and mistakes requires a relatively large amount of material. In this respect the material with all its replicates and parallels was considered large enough. The relation between size and age was tested, particularly in the beginning of the work, when the material was still restricted, with many alternative values. When they are applied to the present material we can see the logical parallelisms disappear and be replaced by heterogeneity. The conclusion is that a parallel time table for the spreading rates of ground pine and bracken can only be constructed by the correct values.

Results

Parallelism of ground pine and bracken stands on the same site

The sample list includes about 95 parallel stands of ground pine and bracken. In the co-ordinate graph (Fig. 28, x = bracken, y = ground pine) these arrange themselves in a straight line, a narrow zone, which may result from the fact that the ground pine stands are partly primary and partly secondary, spreading from relics. When the secondary ones are excluded as completely as possible, and only detached and clearly individual parallel stands with the greatest x-value are considered, the regression line of the remaining part (58 cases) is expressed by the equation \(y = -4.34 + 0.85 x \). The line intersects the x-axis at approximately 5 m, which means that a bracken individual that regenerated about at the same time as the ground pine individual, has grown into a 5 m wide patch, before the ground pine is manifested on the surface of the ground. According to the spreading time table of bracken (OINONEN 1967 a) a diameter of 5 m corresponds to an age of about 14—15 years. This result agrees with the data presented by BRUCHMANN (1898) on the manifestation of ground pine. According to this investigation, ground pine stands that develop more slowly have not started to spread outwards before the age of 22—26 years. Because according to the observations made in connection with the searches, young plants of ground pine start to develop at a normal rate about 4—6 years after they have penetrated the soil surface, manifestation occurs after about 8—20 years or probably most commonly slightly after ten years after the spores were sown.

The relation between the dimensions of ground pine stands spread from dot-like relics and of bracken clones is illustrated by a line drawn through the intersection of the co-ordinates parallel to the regression line. Parallel stands reveal that both species regenerate by spores in conditions created by fires and that the margin of regeneration is short. Large parallel stands show that the rate of spreading at least in homogeneous environments is extremely even. The disturbance and variability of microsites had time to compensate each other, and thus very large parallel pairs represent the average spreading rate well.

Even if there were some minor mistakes in the determination of fire dates because of interpretation difficulties, they could not occur in the measurements of solitary patches or stands. Thus the parallel series of bracken and ground pine is unambiguous and reliable. It is also independent of the spreading time table of bracken presented in an earlier investigation (OINONEN 1967 a). Let us now discuss how these results agree with it.

Parallel time table of ground pine and bracken clones

When the cases (about 100 + replicates) in which the size of the ground pine stands could be compared to the fire dates as revealed by the tree stand are marked in a co-ordinate graph (Fig. 29, x = ground pine, y = fire date), the points arrange themselves in a narrow tape. When the most reliable stands with the smallest x-value are chosen (73 cases), the regression line is represented by the equation \(y = 16.88 + 3.26 x \). This line represents the age of the ground pine clones regenerated by spores. Normal spreading starts, according to this, at about 17 years and manifestation occurs 4—6 years earlier, in other words 11—13 years after the fire. A parallel line, drawn through the intersection of the co-ordinates illustrates the age of secondary stands.

The material consists of 68 cases, where the size of the bracken clones could be compared to fire dates revealed by tree stands. The equation for the regression line (Fig. 30, p. 66) is \(y = 2.90 + 2.80 x \). It shows that the normal spreading of the bracken starts at 2—3 years after regeneration. When the line for the average size-age relation of bracken, published in a previous paper (OINONEN 1967 a), is drawn in the same co-ordinate graph, it is seen that the delineator calculated on the basis of the present material agrees very well with these. When the regression lines (from Fig. 29, p. 64) for the size-age relation of ground pine are drawn in the same co-ordinate graph, we can see that they are in good accordance with the bracken and the fire dates. Thus a parallel time table has been constructed for the spreading of the two plant species.
The average spreading rate of ground pine stands is about 30.2 cm/year, in other words 15.1 cm/year at the margins. The results of repeated measurements gave approximately the same values, but because of their small number they are inconclusive. The difference in size between primary and secondary patches or stands of the same age is about 3—6 m and as an average 5 m, when the latter have spread from dot-like relics. The results primarily represent light heaths, mostly Vaccinium vitis-idaea-type pine heaths.

The parallel time table described above permits foretelling and the estimation of fire dates, particularly when both plant species occur on the same site, and particularly when one or both of them have replicates.

The size of bracken and ground pine clones can also be described by coefficients: ground pine = approximately 0.85 × bracken (m) or bracken = about 1.17 × ground pine. Here the ground pine is secondary, so that the result has to be corrected by ± 5 m for primary stands.

Conclusions

The choice of ground pine as a substitute for the lacking bracken replicates and also for the fire dates that remained undetermined has turned out to be suitable. When the size-age problem of bracken was solved, parallel measurements of ground pine stands on the same site led to the solution of the size-age problem of this plant also, and to the solution of the problem of spiral regeneration. The linkage is also valid when the size of the ground pine stands is compared to fire dates obtained by tree borings.

Particularly on heaths the ground pine stands are very permanent. It is true that they will be fragmented more easily than bracken by various environmental factors and fires, and thus they form very large patch clusters with time. Also their total size often corresponds to the time elapsed since the fire as well as to the bracken clones on the same site. In mapping the outer edges of the stands, numerous circular margins have been discovered in which at least 4—5 border patches follow the circular line drawn through them. Mostly these are only partial circles, kinds storsoss that have either been cut by fire or that get mixed with other stands on the same site. Exact circular curves scarcely occur because of edaphic factors, thus the stands mentioned above are probably clones. This conclusion is supported in some cases by replicates of the same size and parallel bracken clones. Large individual stands reveal the rarity of spiral regeneration of the ground pine. The parallelisms with bracken clones indicate a common factor of regeneration, fire, and a very even spreading rate.

Though considerable variation of the color and structure of ground pine has been observed, these circular stands were identical patch by patch. Because structural variation is very common, such homogeneous large stands are strange unless they are clones.

The largest circular stands in our material with parallels among bracken clones were about 250 m in diameter. There are at least preliminary indications of about double sizes. Checking them, however, must wait for improved methods of identification or larger comparative amounts of material.

The results obtained are of more general significance for some plant sociological and geographic principles. Particularly they affect the methods applied to the determination of the density and frequency of vegetatively spreading plants, and they also indicate an urgent need to revise these. The basic unit used should be the clonal entity.
Publications of the Society of Forestry in Finland:

ACTA FORESTALIA FENNICA. Contains scientific treatises mainly dealing with Finnish forestry and its foundations. The volumes, which appear at irregular intervals, generally contain several treatises.

SILVA FENNICA. Contains essays and short investigations mainly on Finnish forestry and its foundations. Published four times annually.

Die Veröffentlichungsreihen der Forstwissenschaftlichen Gesellschaft in Finnland:

ACTA FORESTALIA FENNICA. Enthält wissenschaftliche Untersuchungen vorwiegend über die finnische Waldwirtschaft und ihre Grundlagen. Erscheint in unregelmäßigen Abständen in Bänden, von denen jeder im allgemeinen mehrere Untersuchungen enthält.

SILVA FENNICA. Enthält Aufsätze und kleinere Untersuchungen vorwiegend zur Waldwirtschaft Finnlands und ihren Grundlagen. Erscheint viermal jährlich.

Publications de la Société forestière de Finlande:

ACTA FORESTALIA FENNICA. Contient des études scientifiques principalement sur l'économie forestière en Finlande et sur ses bases. Parait à intervalles irréguliers en volumes dont chacun contient en général plusieurs études.

SILVA FENNICA. Périodique trimestriel. Contient des articles et de petites études principalement sur l'économie forestière de Finlande et sur ses bases.

Helsinki 17, Unioninkatu 40. B.