ILMAN HIILIHAPOON MÄÄRÄÄMINEN

ZUR BESTIMMUNG DER KOHLENSÄURE IN DER LUFT

I. K. SAJANIEMI

HELSINKI 1936
Johdanto.

Kasvit siis käyttävät hyväkseen s.0. assimiloivat ilman hiilihappoa auringon valon vaikutuksesta, mutta hengittäessään ne myös kehittävät hiilihappoa. LUNDEGÅRDH esittää graafisesti (kuva 2) assimiloitumisen ja hengityksen, hiilihapon kulutuksen ja kehityksen nopeuksia eri lämpötiloissa. Käyrän väli osoittaa kasvin hiilivaraston kasvunopeutta.

Kasvien hiilivaraston lisäys saadaan siis ilmasta. Koska ilman hiilihappopitosuus on vain 0.03 %, niin voi ilmakehästä vain vähän hiilihappoa diffundoida kasveille. Pääasiallinen kasvien tarvitsema hiilihappo kehitteyyn maassa orgaanisten aineiden havaittavuus. Hiilihapon kehittymisnopeus riippuu taas maassa esiintyvän bakterioiminnan intensiteetistä, jos vain hiilipitoisia aineita on riittävästi. Niinpä LUNDEGÅRDH osoittaa (kuva 3), miten hiilihapon kehittymisnopeus maassa riippuu talliannostuksen voimakkuudesta.

Täähän suppeaa esitykseen viitaten, on ymmärrrettävä, että monet maanviljelykemistit pitävät hiilihappokysymyksen onnellista ratkaisua järkiperäisen maanviljelyksen edellytyksenä. Samoin pitää LUNDEGÅRDH hiilihapon kiertokulun seuraamista sekä tarkoituksenmukaisena että välittämättömänä.

Pienten hiilihappopitoisuksien määrääminen on käytännöllisistä syistä ollut vaikea. Nyt on kuitenkin KAUko2 esittänyt yksinkertaistetun, nopean ja tarkan hiilihapon määräämän, jolle CARLBERG’in3 tutkimukset ovat antaneet lujan kokeellisen pohjan. Tämä hiilihapon määräämistapa perustuu seuraavaan:

Hiilihappokaasuseoksella kyllästetystä bikarbonaattiliiuoksissa vallitsevat seuraavat tasapainot:

\[
\begin{align*}
\text{CO}_2 & \rightleftharpoons \text{CO}_2 \text{ liuennut} \\
\text{CO}_2 \text{ liuennut} + \text{H}_2\text{O} & \rightleftharpoons \text{H}_2\text{CO}_3 \\
\text{H}_2\text{CO}_3 & \rightleftharpoons \text{H}^+ + \text{HCO}_3^- \\
\text{HCO}_3^- & \rightleftharpoons \text{H}^+ + \text{CO}_3^{2-} \\
\text{NaHCO}_3 & \rightleftharpoons \text{Na}^+ + \text{HCO}_3^- \\
\text{H}_2\text{O} & \rightleftharpoons \text{H}^+ + \text{OH}^- \\
\end{align*}
\]

Sähköneutraalisuuden takia voimme lisäksi kirjoittaa

\[
\text{H}^+ + \text{Na}^+ = \text{OH}^- + \text{HCO}_3^- + 2 \text{CO}_3^{2-},
\]

jossa H⁺, Na⁺ j.n.e. merkitsevät vastaavia väkevyyksiä. Soveltamalla massavaikutuksen lokia näihin tasapainoihin saadaan kaikkiaan 7 yhtälöä, joissa on 9 muuttuja, joten kaksi niistä voidaan valita mielivaltaisesti (systeemissä on divariantti). Näistä yhtälöistä voidaan johtaa kaava

\[
\log P = -p_H + C,
\]

joska

\[
P = \text{kaasin hiilidioksidin osapaine} \\
p_H = -\log H^+
\]

C on käytännöllisesti katsoen vakio määrätylle bikarbonaattiliiuokselle, jos tämän väkevyyys \(\geq 10^{-3} \text{ mol./l.} \).

Mittausten suorittaminen.

Sopivan indikaattorin valinta riippuu tutkittavan kaasun hiilidioksidipitoisuudesta, mikä näkyy taulukosta 1. Kaksisäiliöllan hapan väriiliuos valmistetaan noin 0,1 n. etikahaposta ja emäksiä väriiliuos noin 0,1 n. natriumhydrosidista. Indikaatta- toriliuos valmistetaan siten, että 100 mg väriainetta jauhetaan lisenöksi huumarissa. Jauhunen keskus liisaan siihen taulukossa 1 (sakee 6) ilmoitetut määrä 0,1 n. natriumhydrosidia. Kun väriaine on melkein kokonaan liuennut, huuhdotaan seos kvantitativisesti mittapulloon, laimennetaan tis- latulla vedellä noin neljänneksi osaksi lopullisesta tilavuudestaan

Kuva 5.
Taulukko 1.

<table>
<thead>
<tr>
<th>Indikaattori</th>
<th>Hiihdioksidin osapaine (%)</th>
<th>(pH) —mitattu arvo</th>
<th>Värimuutos</th>
<th>Indikaattoriliuosto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metylipunainen</td>
<td>100—10</td>
<td>4.4—5.1</td>
<td>Punainen-keltainen</td>
<td>500 cm(^3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(60 % alkoh.)</td>
<td>3.7 cm(^3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.02 %</td>
<td>0.04 %</td>
</tr>
<tr>
<td>Bromkresolpurpurra</td>
<td>10—1</td>
<td>5.3—6.3</td>
<td>Keltainen-purpurra</td>
<td>250 cm(^3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.0 cm(^3)</td>
<td>0.04 %</td>
</tr>
<tr>
<td>Bromtymoisininen</td>
<td>1—0.8</td>
<td>6.5—7.7</td>
<td>Keltainen-sininen</td>
<td>230 cm(^3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.5 cm(^3)</td>
<td>0.04 %</td>
</tr>
<tr>
<td>Fenolipunainen</td>
<td>0.3—0.6</td>
<td>7.2—8.0</td>
<td>Keltainen-punainen</td>
<td>500 cm(^3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.2 cm(^3)</td>
<td>0.02 %</td>
</tr>
</tbody>
</table>

(Kts. taulukko 1, särke 5). Seosta lämmittetään vesihuoteella kunnes värimaine on liuennut täydellisesti, jonka jälkeen se laiminnetaan lopulliseen tilavuuteensa.

Kasiskoiskiian täyttämiseen menee noin 12 cm\(^3\) molemia väriiluoksi. Mitataan 25 cm\(^3\) sekä etikahappo- että natriumhydroksidiliuostoa (noin 0.1 n.) ja lisätään molempien liukoihin 1 cm\(^3\) indikaattoriliuostoa (tilavuudet mitataan tarkasti). Avataan kameri c kasiskoiskiilassa (kuva 6) ja huuhdotaan se ensin osalla hapinta indikaattoriliuostoa, jonka jälkeen se täytetään samalla liuokseella. Kameri c suljetaan ja kameri d täytetään samalla tavalla alkaavalla indikaattoriliuokseella. Kasiskoiskiin on nyt käyttökelpoinen.

Hiilihappoanalyyysi suoritetaan 0.001 n. bikarbonaattiliuoksen, johon on kolorimetrissä \(pH\)-määräyksessä esiintynyt, n.k. «suolavirheen poimattomaksi» lisätty niin paljon KCl, että liuoksen kokonaisväävyyys on 0.1 mol/l. Punmitataan 1.689 g puhdasta NaHCO\(_3\) ja liuotetaan 1 litraan tsi. vettä. Tästä liuoksesta (0.0 n.) mitataan 50 cm\(^3\) ja liuotetaan siihen 7.381 g KCl laimenamarallaka se samalla yhdessä litraksi (0.001 n. NaHCO\(_3\) + 0.009 n. KCl). Tätä saadusta liuoksesta mitataan 25 cm\(^3\) ja lisää

Kolorimetrin asteikko on jaettu 0—11. Bikarbonaattiliuoksen \(pH\) saadaan lukeman perusteella siten, että käytetyn indikaattorin mutospisteeseen (taulukko 2) liitään lukemaa vastaava korrektio, joka saadaan taulukosta 3.

Kolorimetrin mutospisteen \(pH\) määryys voidaan suorittaa 0.0 \(pH\)-n tarkkuudella, joka vastaa hiilihappomäärässä 6 \%:n tarkkuutta.

Taulukossa 4 on esitettävä avassa (I) esiintyvän vakion C arvot (selaisissa yksiköissä, että hiilihapon osapaine kaavassa (1) saadaan atmos-
Taulukko 3.

<table>
<thead>
<tr>
<th>Lukema</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.04</td>
<td>0.85</td>
<td>0.81</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.70</td>
<td>0.65</td>
<td>0.60</td>
<td>0.56</td>
<td>0.52</td>
</tr>
<tr>
<td>3</td>
<td>0.48</td>
<td>0.41</td>
<td>0.37</td>
<td>0.32</td>
<td>0.28</td>
</tr>
<tr>
<td>4</td>
<td>0.30</td>
<td>0.27</td>
<td>0.23</td>
<td>0.21</td>
<td>0.18</td>
</tr>
<tr>
<td>5</td>
<td>0.15</td>
<td>0.12</td>
<td>0.08</td>
<td>0.06</td>
<td>0.03</td>
</tr>
<tr>
<td>6</td>
<td>0.05</td>
<td>0.02</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>7</td>
<td>0.15</td>
<td>0.12</td>
<td>0.10</td>
<td>0.08</td>
<td>0.06</td>
</tr>
<tr>
<td>8</td>
<td>0.30</td>
<td>0.27</td>
<td>0.25</td>
<td>0.23</td>
<td>0.20</td>
</tr>
<tr>
<td>9</td>
<td>0.48</td>
<td>0.41</td>
<td>0.38</td>
<td>0.36</td>
<td>0.33</td>
</tr>
<tr>
<td>10</td>
<td>0.70</td>
<td>0.65</td>
<td>0.62</td>
<td>0.59</td>
<td>0.56</td>
</tr>
</tbody>
</table>

fääreissä) eri lämpötiloissa edellä olevalle bikarbonaatiliuokselle (0.001 n. NaHCO$_3$ + 0.009 n. KCL).

Taulukko 4.

<table>
<thead>
<tr>
<th>t°C</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0$^\circ$</td>
<td>4.20</td>
</tr>
<tr>
<td>10$^\circ$</td>
<td>4.45</td>
</tr>
<tr>
<td>15$^\circ$</td>
<td>4.47</td>
</tr>
<tr>
<td>18$^\circ$</td>
<td>4.49</td>
</tr>
<tr>
<td>20$^\circ$</td>
<td>4.50</td>
</tr>
<tr>
<td>22$^\circ$</td>
<td>4.73</td>
</tr>
<tr>
<td>25$^\circ$</td>
<td>4.73</td>
</tr>
</tbody>
</table>

$$\log P = -7.48 + 4.71 = -2.77 = 0.83 - 3.$$

$$P = 0.0001\text{ atm. Virhe } = 0.00013,$$

$$P = (0.21 \pm 0.00)\%.$$

Kirjallisuutta.

2. **Kauko, Yrjö.** Angew. Chem. 48, 539 (1935).

Referat.