Search for top quark decays via Higgs-boson-mediated flavor-changing neutral currents in pp collisions at root s=8 TeV

Khatchatryan, V.

2017-02-15

http://hdl.handle.net/10138/182813
https://doi.org/10.1007/JHEP02(2017)079

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.
Please cite the original version.
Search for top quark decays via Higgs-boson-mediated flavor-changing neutral currents in pp collisions at $\sqrt{s} = 8$ TeV

The CMS collaboration

E-mail: cms-publication-committee-chair@cern.ch

ABSTRACT: A search is performed for Higgs-boson-mediated flavor-changing neutral currents in the decays of top quarks. The search is based on proton-proton collision data corresponding to an integrated luminosity of 19.7 fb$^{-1}$ at a center-of-mass energy of 8 TeV collected with the CMS detector at the LHC. Events in which a top quark pair is produced with one top quark decaying into a charm or up quark and a Higgs boson (H), and the other top quark decaying into a bottom quark and a W boson are selected. The Higgs boson in these events is assumed to subsequently decay into either dibosons or difermions. No significant excess is observed above the expected standard model background, and an upper limit at the 95% confidence level is set on the branching fraction $B(t \rightarrow H c)$ of 0.40% and $B(t \rightarrow H u)$ of 0.55%, where the expected upper limits are 0.43% and 0.40%, respectively. These results correspond to upper limits on the square of the flavor-changing Higgs boson Yukawa couplings $|\lambda_{tc}^H|^2 < 6.9 \times 10^{-3}$ and $|\lambda_{tu}^H|^2 < 9.8 \times 10^{-3}$.

KEYWORDS: Flavour Changing Neutral Currents, Hadron-Hadron scattering (experiments), Top physics, Higgs physics

ArXiv ePrint: 1610.04857
1 Introduction

With the discovery of the Higgs boson (H) [1–3] it is possible to probe new physics by measuring its coupling to other particles. Of particular interest is the flavor-changing neutral current (FCNC) decay of the top quark to the Higgs boson. The investigation of this process at the CERN LHC is motivated by the large $t\bar{t}$ production cross section and the variety of possible decay modes of the Higgs boson.

The next-to-next-to-leading-order $t\bar{t}$ production cross section at a center-of-mass energy of 8 TeV and with a top quark mass (m_t) of 173.5 GeV [4] is 252 pb [5]. The standard model (SM) predicts that the top quark decays with a branching fraction of nearly 100% into a bottom quark and a Wboson ($t \rightarrow Wb$).

In the SM, FCNC decays are absent at leading-order and occur only via loop-level processes that are additionally suppressed by the Glashow-Iliopoulos-Maiani mechanism [6, 7]. Because the leading-order decay rate of $t \rightarrow Wb$ is also quite large, the SM branching fraction $B(t \rightarrow Hq)$, where q is an up or charm quark, is predicted to be of $\mathcal{O}(10^{-15})$ [6–8], far below the experimental sensitivity at the LHC. However, some extensions of the SM predict an enhanced $t \rightarrow Hq$ decay rate. Thus, observation of a large branching fraction would be clear evidence for new physics. The largest enhancement in $B(t \rightarrow Hq)$ is predicted in models that incorporate a two-Higgs doublet, where the branching fraction can be of $\mathcal{O}(10^{-3})$ [8].
Decay channels	Leptons	Photons	Jets	b jets	Category
\(H \to WW, ZZ, \tau \tau \to \ell \nu\) | e, e\(\nu\), \(e\mu\), \(\mu\mu\) | — | \(\geq 2\) | — | trilepton
\(H \to WW, ZZ, \tau \tau \to \ell \nu\) | e\(\pm\), \(\mu\pm\) | \(\geq 2\) | \(\geq 2\) | =1 | diphoton + lepton
\(H \to \gamma \gamma \& W \to \ell \nu\) | — | \(\geq 2\) | \(\geq 4\) | =1 | diphoton + hadron
\(H \to b\bar{b} \& W \to \ell \nu\) | e\(\pm\), \(\mu\pm\) | — | \(\geq 4\) | \(\geq 3\) | b jet + lepton

Table 1. Summary of the requirements for the \(pp \to t\bar{t} \to Hq + Wb\) channels used in this analysis.

Previous searches for FCNC in top quark decays mediated by a Higgs boson have been performed at the LHC by ATLAS [9, 10] and CMS [11]. The CMS search considered both multilepton and diphoton final states and the observed upper limit of \(B(t \to Hc)\) at the 95% confidence level (CL) was determined to be 0.56%. The recent ATLAS result included final states where the Higgs boson decays to b quark pairs, and measured the observed upper limits of \(B(t \to Hc)\) and \(B(t \to Hu)\) at the 95% CL to be 0.46% and 0.45%, respectively.

The analysis presented here uses a data sample recorded with the CMS detector and corresponding to an integrated luminosity of 19.7 fb\(^{-1}\) of pp collisions at \(\sqrt{s} = 8\) TeV. The data were recorded in 2012 with instantaneous luminosities of \(5 \times 10^{33}\) cm\(^{-2}\)s\(^{-1}\) and an average of 21 interactions per bunch crossing. The inelastic collisions that occur in addition to the hard-scattering process in the same beam crossing produce mainly low-\(p_T\) particles that form the so-called “pileup” background.

In this paper, the FCNC decays \(t \to Hc\) and \(t \to Hu\) are searched for through the processes \(t\bar{t} \to Hc + Wb\) or \(Hu + Wb\). Three independent analyses are performed and their results are then combined. The multilepton analysis considers events with two same-sign (SS) leptons or three charged leptons (electrons or muons). This channel is sensitive to the Higgs boson decaying into WW, ZZ, or \(\tau \tau\) which have branching fractions of 21.5%, 2.6%, and 6.3%, respectively [12]. The diphoton analysis considers events with two photons, a bottom quark, and a W boson that decays either hadronically or leptonically. The two photons in this channel are used to reconstruct the Higgs boson which decays to diphotons with \(B(\gamma \gamma) = 0.23\%\) [12]. Finally, events with at least four jets, three of which result from the hadronization of bottom quarks (b jets), and a leptonically decaying W boson are considered. The b jet + lepton channel takes advantage of the large Higgs boson branching fraction into \(b\bar{b}\) pairs, \(B(H \to b\bar{b}) = 57\%\) [13]. A summary of the enumerated final states is shown in table 1.

The CMS detector and trigger are described in section 2, and the event selection and reconstruction in section 3. Section 4 then discusses the Monte Carlo (MC) simulation samples. The signal selection and background estimations for each of the three analyses are given in section 5, and the systematic uncertainties in section 6. Finally, the individual and combined results from the analyses are presented in section 7.

2 The CMS detector and trigger

A detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in ref. [14]. The central
feature of the CMS apparatus is a superconducting solenoid, 13 m in length and 6 m in diameter, which provides an axial magnetic field of 3.8 T. Within the field volume there are several particle detection systems. Charged particle trajectories are measured by silicon pixel and strip trackers, covering $0 \leq \phi \leq 2\pi$ in azimuth and $|\eta| < 2.5$ in pseudorapidity. A lead tungstate crystal electromagnetic calorimeter (ECAL) surrounds the tracking volume. It is comprised of a barrel region $|\eta| < 1.48$ and two endcaps that extend up to $|\eta| = 3$. A brass and scintillator hadron calorimeter (HCAL) surrounds the ECAL and also covers the region $|\eta| < 3$. The forward hadron calorimeter (HF) uses steel as the absorber and quartz fibers as the sensitive material. The HF extends the calorimeter coverage to the range $3.0 < |\eta| < 5.2$. A lead and silicon-strip preshower detector is located in front of the ECAL endcaps. Muons are identified and measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. The detector is nearly hermetic, allowing momentum balance measurements in the plane transverse to the beam direction.

Depending on the final state under consideration, events are selected at the trigger level by either requiring at least two leptons, $(e\mu, \mu\mu$ or $e\mu$), at least two photons, or a single lepton (e or μ) to be within the detector acceptance and to pass loose identification and kinematic requirements.

The dilepton triggers used in the multilepton selection require one lepton with $p_T > 17$ GeV and one lepton with $p_T > 8$ GeV. At the trigger level and during the offline selection, electrons are required to be within $|\eta| < 2.5$, and muons are required to be within $|\eta| < 2.4$. All leptons must be isolated, as described in section 3, and have $p_T > 20$ GeV for the highest-p_T lepton, and $p_T > 10$ GeV for all subsequent leptons in the event. For events satisfying the full multilepton selection, the dimuon, dielectron, and electron-muon trigger efficiencies are measured to be 98%, 91%, and 94%, respectively, for the SS dilepton selection, and 100% for the trilepton selection.

The diphoton trigger requires the presence of one photon with $p_T > 36$ GeV and a second photon with $p_T > 22$ GeV. Loose isolation and shower shape requirements are applied to both photons [15]. The average diphoton trigger efficiency is measured to be 99.4% after applying the full event selection for photons within $|\eta| < 2.5$, excluding the barrel-endcap transition region $1.44 < |\eta| < 1.57$.

The b jet + lepton selection uses the single-lepton triggers. The single-muon trigger requires at least one isolated muon with $p_T > 24$ GeV and $|\eta| < 2.1$ to be reconstructed online. The single-electron trigger requires at least one isolated electron with $p_T > 27$ GeV and $|\eta| < 2.5$. The offline selection further requires that electrons have $p_T > 30$ GeV and muons have $p_T > 26$ GeV. This results in an average trigger efficiency of 84% for the single-electron triggers and 92% for the single-muon trigger after the b jet + lepton selection.

3 Event selection and reconstruction

Events are required to have a primary vertex with a reconstructed longitudinal position within 24 cm of the geometric center of the detector and a transverse position within 2 cm from the nominal interaction point. To distinguish the hard-scattering vertex from vertices arising from pileup interactions, the reconstructed vertex with the highest scalar sum of
the \(p_T^2 \) of its associated tracks is chosen as the primary vertex. To ensure that leptons originate from the same primary vertex, a loose requirement is applied to their longitudinal and transverse impact parameters with respect to the primary vertex.

The particle-flow event algorithm [16, 17] is used to reconstruct and identify individual particles using an optimized combination of information from the elements of the detector. Prompt electrons and muons arising from W and Z decays are typically more isolated than nonprompt leptons arising from the decay of hadrons within jets. In order to distinguish between prompt and nonprompt lepton candidates, a relative isolation parameter is defined for each lepton candidate. This is calculated by summing the \(p_T \) of all charged and neutral particles reconstructed using the particle-flow algorithm within a cone of angular radius
\[
\Delta R = \sqrt{\Delta \eta^2 + (\Delta \phi)^2} = 0.4
\]
around the lepton candidate momentum, where \(\Delta \eta \) and \(\Delta \phi \) are the pseudorapidity and azimuthal angle (in radians) differences, respectively, between the directions of the lepton and the other particle [18, 19]. This cone excludes the lepton candidate and the charged particles associated with the pileup vertices. The resulting quantity is corrected for additional underlying-event activity owing to neutral particles [3], and then divided by the lepton candidate’s \(p_T \). The relative isolation parameter is required to be less than 0.15 for electrons and 0.12 for muons.

The electron selection criteria are optimized using a multivariate approach that combined information from both the tracks and ECAL clusters, and have a combined identification and isolation efficiency of approximately 60% at low \(p_T \) (10 GeV) and 90% at high \(p_T \) (50 GeV) for electrons from W or Z boson decays [20]. The training of the multivariate electron reconstruction is performed using simulated events, while the performance is validated using data.

Muon candidates are reconstructed with a global trajectory fit using hits in the tracker and the muon system. The efficiency for muons to pass both the identification and isolation criteria is measured from data to be larger than 95% [3, 21].

For events in which there is an overlap between a muon and an electron, i.e., an electron within \(\Delta R < 0.1 \) of a muon, precedence is given to the muon by vetoing the electron. In the multilepton selection, events in which there are more than three isolated leptons (electron or muon) with \(p_T > 10 \text{GeV} \) are rejected to reduce diboson contamination. The invariant mass of dilepton pairs in the SS channel is required to be greater than 30 GeV in order to reject low-mass resonances and reduce poorly modeled backgrounds (e.g., QCD). In the b jet + lepton selection, events in which there are additional isolated electrons with \(p_T > 20 \text{GeV} \) and \(|\eta| < 2.5 \) or isolated muons with \(p_T > 10 \text{GeV} \) and \(|\eta| < 2.4 \) are rejected.

The photon energy is reconstructed from the sum of signals in the ECAL crystals [15]. The ECAL signals are calibrated [22], and a multivariate regression, developed for a previous \(H \rightarrow \gamma \gamma \) analysis [23], is used to estimate the energy of the photon. Clusters are formed from the neighboring ECAL crystals seeded around local maxima of energy deposits, and the collection of clusters that contain the energy of a photon or an electron is called a supercluster. Identification criteria are applied to distinguish photons from jets and electrons. The observables used in the photon identification criteria are the isolation variables, the ratio of the energy in the HCAL towers behind the supercluster to the electromagnetic energy in the supercluster, the transverse width in \(\eta \) of the electromagnetic shower, and
the number of charged tracks matched to the supercluster. The photon efficiency identification is measured using $Z \rightarrow e^+e^-$ events in data by reconstructing the electron showers as photons [24], taking into account the shower shape and whether the electron probe is located in the barrel or endcap. The two highest p_T photons must exceed 33 and 25 GeV, respectively.

Jets are reconstructed from the candidates produced by the particle-flow algorithm. An anti-k_T clustering algorithm [25] with a distance parameter of 0.5 is used for jet reconstruction. Jets with a significant fraction of energy coming from pileup interactions or not associated with the primary vertex are rejected. Remaining pileup energy in jets is subtracted using a technique that relies on information about the jet area [26–28]. Reconstructed jets are calibrated to take into account differences in detector response [29]. The jets in the multilepton and b jet + lepton selections are required to have $p_T > 30$ GeV, $|\eta| < 2.5$, and to be separated from leptons such that $\Delta R(\text{lepton}, \text{jet}) > 0.3$. The selection of jets in the diphoton events differs by requiring the jet $E_T > 20$ GeV and the jets be separated from both photons such that $\Delta R(\text{photon}, \text{jet}) > 0.3$.

To characterize the amount of hadronic activity in an event, the scalar sum of the transverse energy of jets passing all of these requirements (H_T) is calculated. The missing transverse energy (E_T^{miss}) is calculated as the magnitude of the vector sum of the transverse momenta of all reconstructed particle-flow candidates in the event.

Jets originating from the hadronization of b quarks are identified by the combined secondary vertex (CSV) b tagging algorithm [30]. The selection criteria that are used have an identification efficiency of 66%, and a misidentification rate of 18% for charm quarks and 1% for light-quark and gluon jets. The diphoton and b jet + lepton selections require b-tagged jets. Although the identification of b jets is not used to select signal events in the multilepton selection, it is used for the purpose of defining control samples to check the normalization of simulated background processes. No additional tagging is used to discriminate between jets originating from c quarks.

The inclusion of b jets in the diphoton and b jet + lepton selections results in a difference in the sensitivity to the $t \rightarrow H u$ and $t \rightarrow H c$ decay modes. This is caused by the larger likelihood of b tagging a jet originating from a charm quark than from an up quark. The multilepton analyses do not include b tagging to enhance the signal sensitivity so the two FCNC top quark decay modes are indistinguishable.

4 Simulated samples

The determination of the expected signal and background yields relies on simulated events, as well as an estimation based on control samples in data, as discussed in later sections. Samples of Drell-Yan, $t\bar{t}$, W + jets, $W + b\bar{b}$, diboson, $t\bar{t} + Z$, $t\bar{t} + W$, and triboson events are generated using the MadGraph event generator (v5.1.5.11) [31]. The samples of ZZ to four charged leptons and single top quark events are generated using Powheg (v1.0 r1380) [32–34]. In all cases, hadronization and showering are done through Pythia (v6.426) [35], and τ decays are simulated using Tauola (v2.75) [36]. Three additional production processes are considered for the nonresonant diphoton backgrounds, where the dominant one coming
from $\gamma\gamma + \text{jets}$ is simulated with SHERPA (v1.4.2) [37]. Top quark pairs with one additional photon are simulated with MadGraph, while those with two additional photons are simulated using the WHIZARD (v2.1.1) [38] generator interfaced with PYTHIA. The Z2 tune [39] of PYTHIA is used to model the underlying event.

Events that arise from the SM Higgs boson production are treated as a background. The gluon-fusion ($gg\text{H}$) and vector-boson-fusion (VBF) Higgs boson production processes are generated with POWHEG at next-to-leading order (NLO) in QCD, interfaced with PYTHIA. The associated $W/Z\text{H}$ production and $t\bar{t}\text{H}$ processes are simulated with PYTHIA at leading order. The cross sections and branching fractions of the SM Higgs boson processes are set to the values recommended by the LHC Higgs cross section working group [12].

The set of parton distribution functions (PDF) used is CTEQ6L [40] in all cases, except for $H \rightarrow bb$, where CT10 [41] is used.

The CMS detector response is simulated using a GEANT4-based (v9.4) [42] model, and the events are reconstructed and analyzed using the same software used to process collision data. The effect of pileup is included in the simulation process by superimposing simulated events on the process of interest. The simulated signal events are weighted to account for the differences between data and simulation of the trigger, reconstruction, and isolation efficiencies, and the distributions of the reconstructed vertices coming from pileup. Additional corrections are applied to account for the energy scale and lepton p_T resolution. The observed jet energy resolution and scale [29], top quark p_T distribution [43], and b tagging efficiency and discriminator distribution [44] in data are used to correct the simulated events. Corrections accounting for the differences in lepton selection efficiencies are derived using the tag-and-probe technique [45].

5 Signal selection and background estimation

The sensitivity of the search is enhanced by combining the twelve exclusive channels, shown in table 1, defined according to the expected decay modes of the Higgs and W bosons.

5.1 Multilepton channels

The multilepton analysis is conducted with the goal of enhancing the signal sensitivity in the trilepton channel: $t\bar{t} \rightarrow Hq + Wb \rightarrow \ell \nu \ell \nu q + \ell \nu b$, and the SS dilepton channel: $t\bar{t} \rightarrow Hq + Wb \rightarrow \ell \nu q \bar{q} + \ell \nu b$, where ℓ represents either a muon or electron. The main target of optimization is final states resulting from $H \rightarrow WW$ decays.

In the case of the trilepton channel, rejection of events containing dileptons originating from resonant Z boson production is necessary to remove backgrounds from WZ production, asymmetric internal conversions (AIC, the process in which final-state radiation in a Drell-Yan event converts to dileptons where one of the leptons carries most of the photon momentum) [46] or final-state radiation where the photon is misidentified as an electron. A
Figure 1. Trilepton invariant mass versus opposite-sign dilepton invariant mass in the trilepton channel after the event selection described in section 3 for simulated signal, estimated background, and data, from left to right.

Comparison of the two-dimensional distribution of the trilepton mass versus the opposite-sign dilepton mass is shown in figure 1 for the estimated signal and background processes, and data. Events satisfying any of the following criteria are vetoed to reduce the contribution from resonant Z production: (1) the invariant mass of an opposite-sign, same-flavor (OSSF) lepton pair is within 15 GeV of the Z boson mass [4]; (2) the invariant mass of an OSSF lepton pair is greater than 30 GeV and the trilepton invariant mass is within 10 GeV of the Z boson mass. For the SS dielectron channel, electron pairs with an invariant mass within 15 GeV of the Z boson mass are rejected to reduce the background arising from misidentification of the electron charge. No invariant mass requirement is applied to the $\mu^+\mu^-$ and $\mu^+\mu^\pm$ final states since there is a negligible contamination from resonant Z boson production.

The jet multiplicity after rejecting events containing a Z boson is shown in figure 2. To improve the sensitivity of the search, we require at least two jets in the final state. Figure 3 shows the E_T^{miss} and H_T distributions for trilepton and SS dilepton events after applying the Z veto and jet requirement. A candidate event in the trilepton channel has no additional requirements on E_T^{miss} or H_T. The SS events are required to pass an E_T^{miss}-dependent H_T requirement (shown in table 2) and have E_T^{miss} greater than 30 GeV. The E_T^{miss} and H_T requirements are obtained by maximizing the estimated signal significance, defined as the number of signal events over the square root of the number of background events.

The main sources of background can be divided into two categories according to the origin of the identified leptons and the E_T^{miss}. These include (1) irreducible background processes: events with leptons originating from the decay of SM bosons and having large E_T^{miss} arising from neutrinos; (2) reducible background processes: events with misidentified leptons produced either by nonprompt leptons from hadron decays (e.g., semileptonic decays of B mesons), by misidentified hadrons, or by mismeasurement of the lepton charge.

Given that at least two isolated leptons and two jets are required in the final state, the main sources of irreducible backgrounds are $t\bar{t}$ associated with vector boson production,
Figure 2. Jet multiplicity in the samples featuring three identified leptons (left) and two SS leptons (right) after rejecting events with Z bosons. The data are represented by the points with vertical bars, and the unfilled histogram shows the expected signal. A value of $B(t \rightarrow Hc) = 3\%$ is used for the sake of improved visualization. The dominant backgrounds are represented with filled histograms and the background (BG) uncertainty is shown as shaded bands.

Table 2. Two-dimensional selection requirements on E_{miss} and H_T applied in the SS dilepton channel. An event is selected if it satisfies one of the three listed sets.

<table>
<thead>
<tr>
<th>Selection set</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{miss}</td>
<td><70 GeV</td>
<td>$70-90$ GeV</td>
<td>>90 GeV</td>
</tr>
<tr>
<td>H_T</td>
<td>>140 GeV</td>
<td>>100 GeV</td>
<td>>60 GeV</td>
</tr>
</tbody>
</table>

WZ $\rightarrow 3\ell\nu$, ZZ $\rightarrow 4\ell$, Z $\rightarrow 4\ell$, and, to a lesser extent, triboson and $W^\pm W^\pm$ production. The contribution from all of these processes except $Z \rightarrow 4\ell$ production are estimated from simulated samples. The WZ cross section used in the simulation is cross-checked against a control sample from data that is enriched in WZ events by requiring that there be three leptons, with two of them forming a dilepton pair whose invariant mass is consistent with a Z boson. No correction to the WZ normalization is needed. This sample is also used to assess the systematic uncertainty in the simulation of the background.

For the presentation of the results, several of the backgrounds are grouped into a single category referred to as the rare backgrounds. The rare background contribution is estimated mainly from simulation (see the following paragraph), and the processes include ZZ $\rightarrow 4\ell$, t\bar{t}+Z, t\bar{t}+W, triboson, W$^\pm$W$^\pm$, and t\bar{t}+H. The WZ $\rightarrow 3\ell\nu$ background contribution is presented separately.

The residual contribution in the trilepton channel from asymmetric internal conversions (AIC) arising from Drell-Yan events is estimated using a data-driven technique \cite{46} that uses Z $\rightarrow \ell^+\ell^- + \gamma$ events in data to model Z $\rightarrow \ell^+\ell^- + e/\mu$ events. This is because the process that gives rise to the two final states is the same (final-state radiation in Drell-Yan events), and the third lepton that is detected in the AIC event carries most of the photon momentum. The $\ell^+\ell^- + \gamma$ events are scaled based on photon p_T-dependent weights coming
Figure 3. The $E_{\text{T}}^{\text{miss}}$ (top) and H_T (bottom) distributions in the trilepton (left) and SS dilepton (right) channels in data (points with bars) and predicted by the SM background simulations (filled histograms) after rejecting events containing Z bosons, requiring at least two jets, and the event selection described in section 3. The overall background uncertainty is shown in shaded black. The expected signal assuming a $B(t \to Hc)$ of 3% is shown by the unfilled histogram.

from a control sample defined as having a three-body invariant mass within 15 GeV of the Z boson mass. The average conversion probabilities for photons in dimuon and dielectron events are $(0.57 \pm 0.07)\%$ and $(0.7 \pm 0.1)\%$, respectively.

There are two major types of reducible backgrounds coming from $b\bar{b}$, Drell-Yan, W+jets, and $t\bar{t}$ processes. One source comes from events with either nonprompt leptons produced during the hadronization process of the outgoing quarks (e.g., semileptonic decays of B mesons) or hadrons misidentified as prompt leptons. The other source originates from the charge misidentification of a lepton in the more frequent production of opposite-sign dileptons. This background mostly contaminates the SS dielectron final states. Data-driven methods are used to estimate these two types of reducible backgrounds.

Mismeasuring the charge of a lepton can be a significant source of background in SS dilepton final states when there are one or more electrons. Even though the probability
for mismeasuring the charge of an electron is relatively low (≈0.1%), the production rate of opposite-sign dileptons is very high in comparison to processes that result in genuine SS dileptons. The probability of mismeasuring the charge of a muon is negligible (<10^{-6}) and is therefore not considered here. In order to estimate the probability of misidentifying the charge of an electron from data, a control sample is selected consisting of events containing a dielectron pair with an invariant mass within 15 GeV of the Z boson mass. The rate of charge misidentification is then determined from the ratio of the number of SS events to opposite-sign events as a function of p_T and η. The measured charge misidentification for electrons with $|\eta| < 1.48$ is less than 0.2% for $p_T < 100$ GeV, while for $|\eta| > 1.48$ it is 0.1% at 10 GeV and increases with p_T to 2.5% at 125 GeV. These measurements are in agreement with those obtained from simulated Drell-Yan events.

Two control samples are used to estimate the misidentification rate of prompt leptons [47–49]: one region is enriched in $b\bar{b}$ events; the other is enriched in $Z + \text{jet}$ production. Both samples are used to estimate the probability of misidentifying nonprompt electrons and muons as a function of p_T and η. The measured misidentification rate for electrons ranges from 2% to 8% and for muons ranges from 1% to 6%. Simulated events are used to correct for the contamination arising from prompt leptons in the nonprompt misidentification rate measurement (e.g., WZ production in the $Z+\text{jet}$ control region). The rates are then applied to events where one or more of the lepton candidates fail the tight lepton identification requirements. The differences between the nonprompt misidentification rates in the two measurement regions and the signal region are then used to estimate the systematic uncertainty of this background. To further assess the systematic uncertainty, the misidentification rates are also measured in simulated events that reproduce the background composition of events in the signal region and compared to the rates measured from data.

The predicted numbers of background and signal events for the trilepton and SS dileptons are given in table 3. The backgrounds are separated into nonprompt lepton, charge misidentification, $WZ \to 3\ell\nu$, and the rare backgrounds. The predicted number of signal events assumes $B(t \to Hq) = 1\%$. The total number of observed events, also given in table 3, is consistent with the predicted number of background events.

5.2 Diphoton channel

The diphoton analysis is performed using both leptonic and hadronic W boson decays: $t\bar{t} \to Hq + Wb \to \gamma\gamma q + \ell\nu b$, and $t\bar{t} \to Hq + Wb \to \gamma\gamma q + q\bar{q}b$. The mass of the diphoton system $m_{\gamma\gamma}$ is the primary variable used to search for the Higgs boson decay. The contribution of the nonresonant backgrounds is estimated by fitting the $m_{\gamma\gamma}$ distribution from data in the mass range $100 < m_{\gamma\gamma} < 180$ GeV, whereas the contribution of resonant backgrounds is taken from the simulation.

The two highest-p_T photons must have $p_T > m_{\gamma\gamma}/3$ and $p_T > m_{\gamma\gamma}/4$, respectively. The use of p_T thresholds scaled by $m_{\gamma\gamma}$ prevents a distortion of the low end of the $m_{\gamma\gamma}$ spectrum that would result from a fixed threshold [50]. In the rare case of multiple diphoton candidates in an event, the one with the highest p_T sum is selected.
Table 3. The predicted and observed inclusive event yields after the full event selection for the trilepton and SS dilepton categories assuming $\mathcal{B}(t \rightarrow Hq) = 1\%$. The quoted uncertainties include both statistical and systematic uncertainties added in quadrature. The total number of observed events is given in the last row.

<table>
<thead>
<tr>
<th>Process</th>
<th>Trilepton</th>
<th>SS dilepton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonprompt</td>
<td>49.4 ± 9.0</td>
<td>409 ± 72</td>
</tr>
<tr>
<td>Charge misidentification</td>
<td>—</td>
<td>32.1 ± 6.4</td>
</tr>
<tr>
<td>WZ → 3ℓν</td>
<td>15.8 ± 1.1</td>
<td>83.9 ± 5.4</td>
</tr>
<tr>
<td>Rare backgrounds</td>
<td>19.6 ± 1.4</td>
<td>128.1 ± 6.4</td>
</tr>
<tr>
<td>Total background</td>
<td>86.2 ± 9.3</td>
<td>654 ± 73</td>
</tr>
<tr>
<td>Signal</td>
<td>t→Hu</td>
<td>t→Hc</td>
</tr>
<tr>
<td>H→ WW</td>
<td>12.4 ± 1.4</td>
<td>14.4 ± 1.1</td>
</tr>
<tr>
<td>H→ ττ</td>
<td>4.1 ± 0.4</td>
<td>4.4 ± 0.3</td>
</tr>
<tr>
<td>H→ ZZ</td>
<td>0.4 ± 0.1</td>
<td>0.4 ± 0.1</td>
</tr>
<tr>
<td>Total signal</td>
<td>16.9 ± 1.5</td>
<td>19.2 ± 1.1</td>
</tr>
<tr>
<td>Observed</td>
<td>79</td>
<td>631</td>
</tr>
</tbody>
</table>

The hadronic analysis uses events with at least four jets and exactly one b jet. The b jet and the three jets with the highest p_T are used to reconstruct the invariant mass of the two top quarks, m_{jj} and m_{bjj}. There are three possible (m_{jj}, m_{bjj}) pairs per event. The combination of jets with the minimum value of $|m_{bjj}/m_{bjj} - 1| + |m_{bjj}/m_{jj} - 1|$ is selected. The allowed ranges for m_{jj}, m_{bjj}, and the W boson mass m_W associated with m_{bjj} are obtained by maximizing the signal significance S/\sqrt{B} in the simulation, where S is the number of signal events and B is number of the background events. The background events are assumed to come from $+\text{jets}$ and are taken from simulation. The highest signal significance is found to be 16% obtained for $142 \leq m_{bjj} \leq 222$ GeV, $158 \leq m_{jj} \leq 202$ GeV, and $44 \leq m_W \leq 140$ GeV.

The leptonic analysis uses events with at least three jets, exactly one b jet, and at least one lepton. The reconstructed top mass m_{bjl} is found from the b jet, the lepton, and E_T^{miss}. The longitudinal momentum of the neutrino is estimated by using the W boson mass as a constraint, which leads to a quadratic equation. If the equation has a complex solution, the real part of the solution is used. If the equation has two real solutions, the one with the smaller value of $|m_{bjj}/m_{bjl} - 1| + |m_{bjl}/m_{jj} - 1|$ is chosen. The mass windows for m_{bjj}, m_{jj}, and m_W are the same as in the hadronic channel.

The signal region is defined using the experimental width of the Higgs boson, 1.4 GeV, around the nominal mass peak position. As in the analysis of the inclusive SM Higgs boson decaying into diphotons [50], the signal shape of the diphoton invariant mass distribution is described by the sum of three Gaussian functions. Although the contribution from the SM Higgs boson background, dominated by the t̄H process, is relatively small in comparison to the contribution of the nonresonant diphoton background, the resonant diphoton background cannot be ignored because it has a very similar $m_{\gamma\gamma}$ distribution as the signal.
Figure 4. The $m_{\gamma\gamma}$ distribution and the fit result of the hadronic (left) and leptonic (right) channels. The dashed line represents the component of the nonresonant diphoton background, while the solid line represents the total background plus signal. The shaded bands represent one and two standard deviation uncertainties of the fit.

To determine the shape of the nonresonant diphoton background, a function consisting of a test model and the resonant diphoton background is fitted to the data under the background-only hypothesis. The model of the resonant diphoton background is the same as the signal function. The background function is used to generate 1000 pseudo-experiment samples that are fitted with the background plus signal probability density function.

A pull is then defined as $(N_{\text{fit}} - N_{\text{gen}})/\sigma_{N_{\text{fit}}}$, where N_{fit} is the fitted number of signal events in the pseudo-experiments, N_{gen} is the number of generated signal events, and $\sigma_{N_{\text{fit}}}$ is the corresponding uncertainty. In the case under consideration, $N_{\text{gen}} = 0$. The procedure is verified by injecting signal in the pseudo-experiments. Several models are tried, and the chosen function for nonresonant diphoton background is the one whose bias (offset of the pull distribution) is less than 0.15 and with the minimum number of degrees of freedom for the entire set of tested models. A third-order Bernstein polynomial is selected as the functional form of the background for both the hadronic and leptonic channels. After determining the function to describe the nonresonant diphoton background, a function given by the sum of probability density functions of the resonant and nonresonant diphoton backgrounds and signal is fitted to the data. The normalization of the resonant diphoton background is allowed to vary within its uncertainties, while the normalization of the nonresonant component is unconstrained. Table 4 gives a summary of the observed and expected event yields for the two diphoton channels and figure 4 shows the fit result overlaid with the data.

5.3 b jet + lepton channel

The basic event selection requirements for the b jet + lepton channel are a single-lepton trigger, one isolated lepton, a minimum E_T^{miss} of 30 GeV, and at least four jets, with at least three of them tagged as b jets. The background is dominated by $t\bar{t} \rightarrow b\bar{b}W^+W^-$
Table 4

<table>
<thead>
<tr>
<th>Process</th>
<th>Hadronic channel</th>
<th>Leptonic channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonresonant background</td>
<td>28.9 ± 5.4</td>
<td>8.0 ± 2.8</td>
</tr>
<tr>
<td>Resonant background</td>
<td>0.15 ± 0.02</td>
<td>0.04 ± 0.01</td>
</tr>
<tr>
<td>$t \rightarrow Hc$</td>
<td>6.26 ± 0.07</td>
<td>1.91 ± 0.04</td>
</tr>
<tr>
<td>$t \rightarrow Hu$</td>
<td>7.09 ± 0.08</td>
<td>2.02 ± 0.04</td>
</tr>
<tr>
<td>Observed</td>
<td>29</td>
<td>8</td>
</tr>
</tbody>
</table>

The observed event yield and the expected numbers of background and signal events for the diphoton selection in the hadronic and leptonic channels in the $100 < m_{\gamma\gamma} < 180$ GeV mass range. The signal yields assume $\mathcal{B}(t \rightarrow Hq) = 1\%$. The uncertainties are statistical only.

Figure 5

Comparison between data and simulated events after the basic selection for b jet + lepton events has been applied: the E_T^{miss} distribution (left) and the reconstructed transverse mass of the W boson candidate (right). A value of $\mathcal{B}(t \rightarrow Hc) = 3\%$ is used for the sake of improved visualization.

Production. Figure 5 shows the distributions of E_T^{miss} and the W boson transverse mass (M_T) for data and simulation after the basic event selection criteria are applied. The transverse mass is defined as

$$M_T = \sqrt{2p_T^L E_T^{\text{miss}}[1 - \cos(\Delta\phi(\ell, \nu))]},$$

where p_T^L is the p_T of the lepton, E_T^{miss} is used in place of the p_T of the neutrino, and $\Delta\phi(\ell, \nu)$ is the azimuthal angular difference between the directions of the lepton and neutrino.

For both top quark decays $t \rightarrow Hq \rightarrow b\bar{b}j$ and $t \rightarrow Wb \rightarrow b\ell\nu$, a full reconstruction of the top quark invariant mass m_{Hq} or m_{Wb} is possible. However, combinatorial background arises since there is no unambiguous way to match multiple light-quark and b quark jets with the final-state quarks. Therefore, all possible combinations are examined and a multivariate analysis (MVA) technique [51] is used to select the best candidate for each event. Several variables based on event kinematics and event topology are examined. Considering
their signal-to-background separation power, the following variables are used to form a
boosted decision tree (BDT) classifier [51]:

- the invariant masses m_{Hq} and m_{Hb} of the reconstructed top quarks,
- the energy of the u or c jet from the $t \rightarrow qH$ in the rest frame of its parent top quark,
- the azimuthal angle between the reconstructed top quarks directions,
- the azimuthal angle between the reconstructed W boson and the associated b jet
directions,
- the azimuthal angle between the directions of the b jets resulting from the Higgs
boson decay.

The BDT classifier is trained with the correct and wrong combinations of simulated
FCNC events determined from the generator-level parton matching. Because only event
kinematics and topological variables are used, the H_u and H_c channels share the same
BDT classifier. The jet-parton assignment in each event is determined by choosing the
combination with the largest BDT classifier score, resulting in the correct assignment in
54% of events, as determined from simulation. The signal is determined using a template
fit of the output of an artificial neural network (ANN) [51]. The ANN takes its inputs from
the invariant mass of the reconstructed Higgs boson candidate and the CSV discriminator
variables of the three b jets from the hadronic top quark and Higgs boson daughters. The
training of the ANN is done separately for the $t \rightarrow H_u$ and $t \rightarrow H_c$ channels. A control
sample dominated by $t\bar{t}$ is selected to validate the simulation used in the training. The
sample is constructed by requiring one lepton and four jets, of which exactly two are b jets.

Figure 6 show the results of the fit performed with the 6840 observed events. The
observed number of events and the expected yields of the signal and the main backgrounds
estimated from simulation are shown in table 5. The estimated background and signal based
on the fit of the ANN discriminator output is shown in table 6. The number of signal and
background events from the fit result for the H_c channel are 74 ± 109 (stat) ± 24 (syst) and
6770 ± 130 (stat) ± 950 (syst), respectively. The corresponding yields for the H_u channel
are 197 ± 87 (stat) ± 59 (syst) and 6640 ± 120 (stat) ± 800 (syst), respectively.

6 Systematic uncertainties

In the fit to the data, systematic uncertainties are treated as nuisance parameters. Each
of them is assigned a log-normal or Gaussian pdf, which is included into the likelihood
in a frequentist manner by interpreting it as signal arising from pseudo-measurement
distributions. Nuisance parameters can affect either the signal yield, the shape of kinematic
variable distributions, or both. If a specific source of uncertainty is not included for a
given channel, it indicates that the uncertainty is either not applicable to that channel or
is found to have negligible impact on the result.
Figure 6. The output distributions from the ANN discriminator for data (points) and simulated background (lines) where the ANN was trained to discriminate the backgrounds from either $t \rightarrow H_c$ (left) or $t \rightarrow H_u$ (right) decays. The solid line shows the result of the fit of the signal and background templates to data. The dotted line gives the predicted signal distribution from simulation for $B(t \rightarrow H_c) = 3\%$ and the filled histogram shows the proportion of signal estimated from the fit.

<table>
<thead>
<tr>
<th>Process</th>
<th>Predicted number of events</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t\bar{t}$</td>
<td>7100 ± 1500</td>
</tr>
<tr>
<td>$t\bar{t}$ H</td>
<td>55 ± 11</td>
</tr>
<tr>
<td>$Wb\bar{b}$</td>
<td>71 ± 14</td>
</tr>
<tr>
<td>Total background</td>
<td>7226 ± 1500</td>
</tr>
<tr>
<td>$t \rightarrow H_c$</td>
<td>272 ± 90</td>
</tr>
<tr>
<td>$t \rightarrow H_u$</td>
<td>215 ± 65</td>
</tr>
<tr>
<td>Observed</td>
<td>6840</td>
</tr>
</tbody>
</table>

Table 5. The expected number of background and signal events for the b jet + lepton selection from simulation. The signal yields from the simulation of the signal assume $B(t \rightarrow H_q) = 1\%$. Uncertainties combine both statistical and systematic components in quadrature.

<table>
<thead>
<tr>
<th>Process</th>
<th>$t \rightarrow H_c$</th>
<th>$t \rightarrow H_u$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background</td>
<td>6770 ± 130 ± 950</td>
<td>6640 ± 120 ± 800</td>
</tr>
<tr>
<td>Signal</td>
<td>74 ± 109 ± 24</td>
<td>197 ± 87 ± 59</td>
</tr>
<tr>
<td>Observed</td>
<td>6840</td>
<td></td>
</tr>
</tbody>
</table>

Table 6. The measured number of background and signal events for the b jet + lepton selection from fitting the ANN output trained on $t \rightarrow H_c$ and $t \rightarrow H_u$ final states. Uncertainties are statistical and systematic values, respectively. The observed number of events is shown in the last row.
The sources of uncertainties common to all analysis channels are: the uncertainty in the total integrated luminosity (2.6%) \cite{52}; the effects of the event pileup modeling for the signal samples (0.2–3%), which is particularly important for the b jet + lepton channel; the uncertainty in the Higgs boson branching fractions (5%) \cite{13}; the uncertainty in the $t\bar{t}$ cross section (7.5%) \cite{53}; the uncertainty in the jet energy scale (1–15%) \cite{29} and resolution (0.4–8%), where the larger uncertainty is for the b jet + lepton selection; the uncertainty in the PDF used in the event generators (<9%) \cite{54}; the assumed top quark p_T distribution (1–4%) \cite{43}; the E_T^{miss} resolution (0.2–4%) \cite{29}; the uncertainty in the trigger efficiency (<2%); and the corrections applied to the simulation to account for the differences in lepton identification and isolation efficiencies in data and simulation (0.01–6%), where the larger uncertainty is for the selection of events with a three-electron final state.

The uncertainties specific to the signal description and background estimation for the multilepton analysis come from the 11–13% uncertainty in the $t\bar{t}W$ and $t\bar{t}Z$ theoretical cross sections \cite{55}; the 15% uncertainty in the WZ normalization (determined from a control region); the uncertainty in the lepton misidentification rate (40% for electrons, 30% for muons); and the 20% uncertainty in the electron charge mismeasurement probability. The uncertainties specific to the signal description and background estimation for the diphoton channels are the corrections applied to the simulation to account for differences of the photon identification efficiency in data and simulation (0.1–5%); and the uncertainty in the jet and b jet identification efficiency (2–3.5%) \cite{30}. The resonant background from the SM Higgs boson production has an uncertainty of 8.1% from the PDF uncertainty and 9.3% from the QCD scale \cite{56}.

The uncertainties specific to the signal description and background estimation for the b jet + lepton channel are dominated by the b jet identification. The uncertainty in the b tagging correction has two components: one is from the sample purity (4%) \cite{30} and the other from the sample statistical uncertainty (24%). The uncertainty in the $t\bar{t}$+jets cross section, determined using a leading-order event generator, is 1%. The uncertainty in the modeling of the heavy-flavor daughters of the W decay in the $t\bar{t}$ simulated sample is estimated to be 3%. Additional uncertainties arise from the event generator parameters such as the renormalization and factorization scales (5%) \cite{41}, the parton-jet matching threshold (1–9%), and the top quark mass (4%).

The uncertainties owing to the integrated luminosity, jet energy scale and resolution, pileup, reconstruction of physics objects, signal PDFs, and top quark related uncertainties are assumed to be fully correlated, while all others are treated as uncorrelated.

The systematic uncertainties are summarized in table 7.

7 Results

The expected number of events from the SM background processes and the expected number of signal events in data assuming a branching fraction $B(t \to Hq) = 1\%$ are shown in tables 3, 4, and 6 for the multilepton, diphoton, and b jet + lepton selections, respectively. The final results are based on the combination of 12 channels: three SS dilepton, four trilepton, one diphoton + hadrons, two diphoton + lepton, and two b jet + lepton. The
<table>
<thead>
<tr>
<th>Channel</th>
<th>SS dilepton</th>
<th>Trilepton</th>
<th>$\gamma\gamma$ hadronic</th>
<th>$\gamma\gamma$ leptonic</th>
<th>b jet + lepton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated luminosity</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>Pileup</td>
<td>1.0</td>
<td>1.0</td>
<td>0.3</td>
<td>0.8</td>
<td>0.2-3.0</td>
</tr>
<tr>
<td>Higgs boson branching fraction</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>tt cross section</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>0.5</td>
<td>0.6</td>
<td>1.2</td>
<td>1.0</td>
<td>5.2-15</td>
</tr>
<tr>
<td>Jet energy resolution</td>
<td>0.8</td>
<td>2.2</td>
<td>2.7</td>
<td>0.4</td>
<td>2.2-7.8</td>
</tr>
<tr>
<td>Signal PDF</td>
<td>6.0</td>
<td>6.0</td>
<td>5.9</td>
<td>5.2</td>
<td><1-9.0</td>
</tr>
<tr>
<td>Top quark p_T correction</td>
<td>—</td>
<td>—</td>
<td>1.4</td>
<td>3.2</td>
<td>0.8-4.3</td>
</tr>
<tr>
<td>E_T^{miss}</td>
<td>4.0</td>
<td>4.0</td>
<td>—</td>
<td>—</td>
<td>0.2-2.5</td>
</tr>
<tr>
<td>Trigger efficiency</td>
<td>1.0-2.0</td>
<td>—</td>
<td>1.0</td>
<td>1.0</td>
<td><0.1-0.4</td>
</tr>
<tr>
<td>Identification and isolation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- muon</td>
<td>1.0-2.0</td>
<td>1.0-3.0</td>
<td>—</td>
<td>0.3</td>
<td>0.01-0.04</td>
</tr>
<tr>
<td>- electron</td>
<td>2.0-4.0</td>
<td>2.0-6.0</td>
<td>—</td>
<td>0.3</td>
<td><0.1-0.2</td>
</tr>
<tr>
<td>ttW normalization</td>
<td>11.0</td>
<td>11.0</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ttZ normalization</td>
<td>13.0</td>
<td>13.0</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>WZ normalization</td>
<td>15.0</td>
<td>15.0</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Lepton misidentification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- electron</td>
<td>40.0</td>
<td>40.0</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>- muon</td>
<td>30.0</td>
<td>30.0</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Charge misidentification</td>
<td>20.0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Photon identification efficiency</td>
<td>—</td>
<td>—</td>
<td>5.2</td>
<td>5.2</td>
<td>—</td>
</tr>
<tr>
<td>Corrections per photon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- energy scale</td>
<td>—</td>
<td>—</td>
<td>0.1</td>
<td>0.1</td>
<td>—</td>
</tr>
<tr>
<td>- energy resolution</td>
<td>—</td>
<td>—</td>
<td>0.1</td>
<td>0.1</td>
<td>—</td>
</tr>
<tr>
<td>- material mismodeling</td>
<td>—</td>
<td>—</td>
<td>0.3</td>
<td>0.3</td>
<td>—</td>
</tr>
<tr>
<td>- nonlinearity</td>
<td>—</td>
<td>—</td>
<td>0.1</td>
<td>0.1</td>
<td>—</td>
</tr>
<tr>
<td>Jet identification efficiency</td>
<td>—</td>
<td>—</td>
<td>2.0</td>
<td>2.0</td>
<td>—</td>
</tr>
<tr>
<td>b jet identification efficiency</td>
<td>—</td>
<td>—</td>
<td>2.9</td>
<td>3.5</td>
<td>—</td>
</tr>
<tr>
<td>Higgs boson background</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- cross section scale factors</td>
<td>—</td>
<td>—</td>
<td>9.3</td>
<td>9.3</td>
<td>—</td>
</tr>
<tr>
<td>- PDF</td>
<td>—</td>
<td>—</td>
<td>8.1</td>
<td>8.1</td>
<td>—</td>
</tr>
<tr>
<td>b jet CSV distribution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- purity</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1.0-3.4</td>
</tr>
<tr>
<td>- statistical precision</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1.0-24</td>
</tr>
<tr>
<td>$t\bar{t}$ + heavy flavor jets</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.3-1.0</td>
</tr>
<tr>
<td>Modeling W decay daughters</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1.6-2.7</td>
</tr>
<tr>
<td>Generator parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- QCD scale</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1.0-4.9</td>
</tr>
<tr>
<td>- matching parton-jet threshold</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1.3-9.4</td>
</tr>
<tr>
<td>- top quark mass</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.8-4.1</td>
</tr>
</tbody>
</table>

Table 7. Systematic uncertainties for the $tt \rightarrow Hq + Wb$ ($q = u, c$) channels in percent. Ranges are quoted to indicate values that vary across the different analyses.

Combination requires the simultaneous fit of the data selected by all the individual analyses, accounting for all statistical and systematic uncertainties, and their correlations. As $B(t \rightarrow Hq)$ is expected to be small, the possibility of both top quarks decaying via FCNC is not considered.
No excess beyond the expected SM background is observed and upper limits at the 95% CL on the branching fractions of $t \to H_c$ and $t \to H_u$ are determined using the modified frequentist approach (asymptotic CLs method [57–59]). The observed 95% CL upper limits on the branching fractions $B(t \to H_c)$ and $B(t \to H_u)$ are 0.40% and 0.55%, respectively, obtained from the combined multilepton, diphoton, and b jet + lepton channels. A summary of the observed and expected limits is presented in table 8. The diphoton channels are significantly more sensitive than the other channels, largely because of the lower uncertainty in the background model. The multilepton and b jet + lepton channels provide a 15% (37%) improvement on the observed (expected) upper limit when combined with the diphoton channel. A previous search for FCNC mediated by Higgs boson interactions via the $t \to H_c$ decay at the LHC made use of trilepton and diphoton final states [11]. The inclusion of new channels (SS dilepton, diphoton, and b jet + lepton final states) in addition to refinements in the trilepton and diphoton channels results in an improvement of 30% (34%) in the observed (expected) upper limit on $B(t \to H_c)$.

The partial width of the $t \to H_q$ process is related to the square of the Yukawa coupling λ_{tq} by the formula [60, 61]:

$$\Gamma_{t \to H_q} = \frac{m_t}{16\pi} |\lambda_{tq}|^2 \left[(y_q + 1)^2 - y^2 \right] \sqrt{1 - (y - y_q)^2} \sqrt{1 - (y + y_q)^2},$$

where $y = m_H/m_t$ and $y_q = m_q/m_t$. (Note that a convention where the parity of the coupling is ignored is adopted here: this introduces a factor of two when comparing to the ATLAS result.) Assuming the $t \to Wb$ partial width to be dominant, the upper limit on the $t \to H_q$ branching fractions can be translated into an upper limit on the square of the couplings using the relations:

$$B(t \to H_c) = \frac{\Gamma_{t \to H_c}}{\Gamma_{\text{Total}}} = (0.58 \pm 0.01) \left| \lambda_{tc}^H \right|^2,$$

$$B(t \to H_u) = \frac{\Gamma_{t \to H_u}}{\Gamma_{\text{Total}}} = (0.56 \pm 0.01) \left| \lambda_{tu}^H \right|^2,$$

where the CKM matrix element $|V_{tb}|$ is assumed to be equal to unity in the NLO order calculation [62] of $\Gamma_{\text{Total}} \approx \Gamma_{t \to Wb} = 1.372$ GeV, and uncertainties arise from uncertainties on the mass values. The Particle Data Group [4] values of $m_H = 125$ GeV, $m_t = 173.5$ GeV, $m_c = 1.29$ GeV, and $m_u = 2.3$ MeV are used.

Based on the analysis results, the observed (expected) 95% CL upper limits on the squares of the top-Higgs Yukawa couplings are:

$$|\lambda_{tc}^H|^2 < 6.9 (7.4^{+3.6}_{-2.2}) \times 10^{-3},$$

$$|\lambda_{tu}^H|^2 < 9.8 (7.1^{+3.2}_{-2.3}) \times 10^{-3}.$$
Table 8. The observed and expected upper limits at the 95% CL on the branching fraction (in %) of $t \rightarrow Hq$ ($q = u, c$) for: trilepton, SS dilepton, and combined multilepton channels; diphoton; b jet + lepton; and the combination of all channels. For the expected upper limit, the limit plus and minus a standard deviation are also shown.

<table>
<thead>
<tr>
<th>Channel</th>
<th>$B_{\text{obs}}(t \rightarrow Hc)$</th>
<th>$B_{\text{exp}}(t \rightarrow Hc)$</th>
<th>$B_{\text{exp}+\sigma}$</th>
<th>$B_{\text{exp}-\sigma}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trilepton</td>
<td>1.26</td>
<td>1.33</td>
<td>1.87</td>
<td>0.95</td>
</tr>
<tr>
<td>Same-sign dilepton</td>
<td>0.99</td>
<td>0.93</td>
<td>1.26</td>
<td>0.68</td>
</tr>
<tr>
<td>Multilepton combined</td>
<td>0.93</td>
<td>0.89</td>
<td>1.22</td>
<td>0.65</td>
</tr>
<tr>
<td>Diphoton hadronic</td>
<td>1.26</td>
<td>1.33</td>
<td>1.87</td>
<td>0.95</td>
</tr>
<tr>
<td>Diphoton leptonic</td>
<td>0.99</td>
<td>0.93</td>
<td>1.26</td>
<td>0.68</td>
</tr>
<tr>
<td>Diphoton combined</td>
<td>0.47</td>
<td>0.67</td>
<td>1.06</td>
<td>0.44</td>
</tr>
<tr>
<td>b jet + lepton</td>
<td>1.16</td>
<td>0.89</td>
<td>1.37</td>
<td>0.60</td>
</tr>
<tr>
<td>Full combination</td>
<td>0.40</td>
<td>0.43</td>
<td>0.64</td>
<td>0.30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Channel</th>
<th>$B_{\text{obs}}(t \rightarrow Hu)$</th>
<th>$B_{\text{exp}}(t \rightarrow Hu)$</th>
<th>$B_{\text{exp}+\sigma}$</th>
<th>$B_{\text{exp}-\sigma}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trilepton</td>
<td>1.34</td>
<td>1.47</td>
<td>2.09</td>
<td>1.05</td>
</tr>
<tr>
<td>Same-sign dilepton</td>
<td>0.93</td>
<td>0.85</td>
<td>1.16</td>
<td>0.62</td>
</tr>
<tr>
<td>Multilepton combined</td>
<td>0.86</td>
<td>0.82</td>
<td>1.14</td>
<td>0.60</td>
</tr>
<tr>
<td>Diphoton hadronic</td>
<td>1.26</td>
<td>1.33</td>
<td>1.87</td>
<td>0.95</td>
</tr>
<tr>
<td>Diphoton leptonic</td>
<td>0.99</td>
<td>0.93</td>
<td>1.26</td>
<td>0.68</td>
</tr>
<tr>
<td>Diphoton combined</td>
<td>0.42</td>
<td>0.60</td>
<td>0.96</td>
<td>0.39</td>
</tr>
<tr>
<td>b jet + lepton</td>
<td>1.92</td>
<td>0.84</td>
<td>1.31</td>
<td>0.57</td>
</tr>
<tr>
<td>Full combination</td>
<td>0.55</td>
<td>0.40</td>
<td>0.58</td>
<td>0.27</td>
</tr>
</tbody>
</table>

from data recorded with the CMS detector, corresponding to an integrated luminosity of 19.7 fb$^{-1}$. The topologies $pp \rightarrow t\bar{t} \rightarrow Hq + Wb$ events, where $q = u, c$ and H is allowed to decay into WW, ZZ, $\tau\tau$, $\gamma\gamma$, and $b\bar{b}$. No excess of events above the SM background is observed, and branching fractions of $B(t \rightarrow Hc)$ larger than 0.40% and $B(t \rightarrow Hu)$ larger than 0.55% are excluded at the 95% confidence level. These observed upper limits on $B(t \rightarrow Hq)$ and the corresponding constraints on the top quark flavor-changing Higgs boson Yukawa couplings are amongst the most stringent measured to date.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science, Research and Economy and the Austrian Science Fund; the
Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport, and the Croatian Science Foundation; the Research Promotion Foundation, Cyprus; the Secretariat for Higher Education, Science, Technology and Innovation, Ecuador; the Ministry of Education and Research, Estonian Research Council via IUT23-4 and IUT23-6 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucléaire et de Physique des Particules / CNRS, and Commissariat à l’Énergie Atomique et aux Énergies Alternatives / CEA, France; the Bundesministerium für Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Innovation Office, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Ministry of Science, ICT and Future Planning, and National Research Foundation (NRF), Republic of Korea; the Lithuanian Academy of Sciences; the Ministry of Education, and University of Malaya (Malaysia); the Mexican Funding Agencies (BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI); the Ministry of Business, Innovation and Employment, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundação para a Ciência e a Tecnologia, Portugal; JINR, Dubna; the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Education, Science and Technological Development of Serbia; the Secretaría de Estado de Investigación, Desarrollo e Innovación and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the Ministry of Science and Technology, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research and the National Science and Technology Development Agency of Thailand; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the National Academy of Sciences of Ukraine, and State Fund for Fundamental Researches, Ukraine; the Science and Technology Facilities Council, U.K.; the US Department of Energy, and the US National Science Foundation.

Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech
Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2013/11/B/ST2/04202, 2014/13/B/ST2/02543 and 2014/15/B/ST2/03998, Sonata-bis 2012/07/E/ST2/01406; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Programa Clarín-COFUND del Principado de Asturias; the Rachadapisek Sompop Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845.

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

[9] ATLAS collaboration, Search for top quark decays $t \to gH$ with $H \to \gamma\gamma$ using the ATLAS detector, JHEP 06 (2014) 008 [arXiv:1403.6293] [insPIRE].

CMS collaboration, Measurement of the $t\bar{t}$ production cross section in pp collisions at $\sqrt{s} = 8$ TeV in dilepton final states containing one τ lepton, *Phys. Lett.* **B 739** (2014) 23 [arXiv:1407.6643] [insPIRE].

M.V. Garzelli, A. Kardos, C.G. Papadopoulos and Z. Trócsányi, $t\bar{t}W^\pm$ and $t\bar{t}Z$ hadroproduction at NLO accuracy in QCD with parton shower and hadronization effects, *JHEP* **11** (2012) 056 [arXiv:1208.2665] [insPIRE].

LHC HIGGS CROSS SECTION WORKING GROUP collaboration, S. Dittmaier et al., Handbook of LHC Higgs cross sections: 1. Inclusive observables, arXiv:1101.0593 [insPIRE].

The CMS collaboration

Yerevan Physics Institute, Yerevan, Armenia
V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik, Wien, Austria

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Université de Mons, Mons, Belgium
N. Beliy

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
Charles University, Prague, Czech Republic
M. Finger8, M. Finger Jr.8

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt,
Egyptian Network of High Energy Physics, Cairo, Egypt
A.A. Abdelalim9,10, E. El-khateeb11, M.A. Mahmoud12,13, A. Radj11,13

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
B. Calpas, M. Kadastik, M. Murumaa, L. Perrini, M. Raidal, A. Tiko, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, J. Pekkanen, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
J. Härkönen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén,
P. Luukka, T. Peltola, J. Tuominiemi, E. Tuovinen, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland
J. Talvitie, T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
M. Besançon, F. Couderc, M. Decjardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro,
F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry,

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau,
France
A. Abdulsalam, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro,
E. Chapon, C. Charlot, O. Davignon, R. Granier de Cassagnac, M. Jo, S. Lisniak, P. Miné,
I.N. Naranjo, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigned, S. Regnard,
R. Salerno, Y. Sirois, T. Strebler, Y. Yilmaz, A. Zabi

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg,
Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
J.-L. Agram14, J. Andrea, A. Aubin, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert,
N. Chanon, C. Collard, E. Conte14, X. Coubez, J.-C. Fontaine14, D. Gelé, U. Goerlach,
A.-C. Le Bihan, J.A. Merlin15, K. Skovpen, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique
des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut
de Physique Nucléaire de Lyon, Villeurbanne, France
S. Beauceron, C. Bernet, G. Boudoul, E. Bouvier, C.A. Carrillo Montoya, R. Chierici,
D. Contardo, B. Courbon, P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon,
Institut für Experimentelle Kernphysik, Karlsruhe, Germany

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, I. Topsis-Giotis

National and Kapodistrian University of Athens, Athens, Greece
A. Agapitos, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi

University of Ioánnina, Ioánnina, Greece
I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Loukas, N. Manthos, I. Papadopoulos, E. Paradas

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
N. Filipovic

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, P. Hidas, D. Horvath, F. Sikler, V. Veszpremi, G. Vesztergombi, A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi, J. Molnar, Z. Szillasi

University of Debrecen, Debrecen, Hungary
M. Bartók, A. Makovec, P. Raics, Z.L. Trocsanyi, B. Ujvari

National Institute of Science Education and Research, Bhubaneswar, India

Panjab University, Chandigarh, India

University of Delhi, Delhi, India
Ashok Kumar, A. Bhardwaj, B.C. Choudhary, R.B. Garg, S. Keshri, A. Kumar, S. Malhotra, M. Naimuddin, N. Nishu, K. Ranjan, R. Sharma, V. Sharma
Saha Institute of Nuclear Physics, Kolkata, India

Indian Institute of Technology Madras, Madras, India
P.K. Behera

Bhabha Atomic Research Centre, Mumbai, India
R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty, P.K. Netrakanti, L.M. Pant, P. Shukla, A. Topkar

Tata Institute of Fundamental Research-A, Mumbai, India

Indian Institute of Science Education and Research (IISER), Pune, India
S. Chauhan, S. Dube, A. Kapoor, K. Kothekar, A. Rane, S. Sharma

Tata Institute of Fundamental Research-B, Mumbai, India

University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald

INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy

INFN Sezione di Bologna, Università di Bologna, Bologna, Italy

INFN Sezione di Catania, Università di Catania, Catania, Italy
S. Albergo, M. Chiorboli, S. Costa, A. Di Mattia, F. Giordano, R. Potenza, A. Tricomi, C. Tuve

INFN Sezione di Firenze, Università di Firenze, Firenze, Italy
G. Barbaglì, V. Ciulli, C. Civinini, R. D’Alessandro, E. Focardi, V. Gori, P. Lenzi, M. Meschini, S. Paoletti, G. Sguazzoni, L. Viliani

– 30 –
INFN Sezione di Torino a, Università di Torino b, Torino, Italy, Università del Piemonte Orientale c, Novara, Italy
N. Amapanea,b, R. Arcidiaconoa,c,15, S. Argiroa,b, M. Arneodoa,c, N. Bartosika, R. Bellana,b, C. Biinoa, N. Cartigliaa, M. Costaa,b, R. Covarellia,b, A. Deganoa,b, N. Demariaa, L. Fincoa,b, B. Kiania,b, C. Mariottia, S. Masellia, E. Migliorea,b, V. Monacoa,b, E. Monteila,b, M.M. Obertinoa,b, L. Pachera,b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia,b, F. Raveraa,b, A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, K. Shchelinaa,b, V. Solaa, A. Solanoa,b, A. Staianoa, P. Traczyka,b

INFN Sezione di Trieste a, Università di Trieste b, Trieste, Italy
S. Belfortea, V. Candelisea,b, M. Casarsaa, F. Cossuttia, G. Della Riccaa,b, C. La Licataa,b, A. Schizzia,b, A. Zanettia

Kyungpook National University, Daegu, Korea

Chonbuk National University, Jeonju, Korea
H. Kim, A. Lee

Hanyang University, Seoul, Korea
J.A. Brocherio Cifuentes, T.J. Kim

Korea University, Seoul, Korea

Seoul National University, Seoul, Korea

University of Seoul, Seoul, Korea

Sungkyunkwan University, Suwon, Korea
Y. Choi, J. Goh, D. Kim, E. Kwon, J. Lee, I. Yu

Vilnius University, Vilnius, Lithuania
V. Dudenas, A. Juodagalvis, J. Vaitkus

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia
Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
S. Carpinteyro, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
A. Morelos Pineda

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, M.A. Shah, M. Shoaib, M. Waqas

National Centre for Nuclear Research, Swierk, Poland

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
L. Chetchipounov, V. Golovtsov, Y. Ivanov, V. Kin38, E. Kuznetsova39, V. Murzin, V. Oreshkin, V. Sulimov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, M. Toms, E. Vlasov, A. Zhokin
National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia
R. Chistov, V. Rusinov, E. Tarkovskii

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, S.V. Rusakov, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, P. Cirkovic, D. Devetak, J. Milosevic, V. Rekovic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

Universidad Autónoma de Madrid, Madrid, Spain
J.F. de Trocóniz, M. Missiroli, D. Moran

Universidad de Oviedo, Oviedo, Spain
J. Cuevas, J. Fernandez Menendez, I. Gonzalez Caballero, J.R. Gonzalez Fernandez, E. Palencia Cortezon, S. Sanchez Cruz, J.M. Vizan Garcia

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
CERN, European Organization for Nuclear Research, Geneva, Switzerland

Paul Scherrer Institut, Villigen, Switzerland

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

Universität Zürich, Zurich, Switzerland

National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, G. Singh, N. Srimanobhas, N. Suwonjandee
Cukurova University, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey
B. Bilin, S. Bilmis, B. Isildak, G. Karapinar, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey
E. Gülmez, M. Kaya, O. Kaya, E.A. Yetkin, T. Yetkin

Istanbul Technical University, Istanbul, Turkey
A. Cakir, K. Cankocak, S. Sen

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leslie, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, U.S.A.
A. Borzou, K. Cali, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika
The University of Alabama, Tuscaloosa, U.S.A.
O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio

Boston University, Boston, U.S.A.
D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou

Brown University, Providence, U.S.A.

University of California, Davis, Davis, U.S.A.

University of California, Los Angeles, U.S.A.

University of California, Riverside, Riverside, U.S.A.

University of California, San Diego, La Jolla, U.S.A.

University of California, Santa Barbara - Department of Physics, Santa Barbara, U.S.A.

California Institute of Technology, Pasadena, U.S.A.

Carnegie Mellon University, Pittsburgh, U.S.A.
University of Colorado Boulder, Boulder, U.S.A.
J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, T. Mulholland, K. Stenson, S.R. Wagner

Cornell University, Ithaca, U.S.A.

Fairfield University, Fairfield, U.S.A.
D. Winn

Fermi National Accelerator Laboratory, Batavia, U.S.A.

University of Florida, Gainesville, U.S.A.

Florida International University, Miami, U.S.A.
S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, U.S.A.

Florida Institute of Technology, Melbourne, U.S.A.

University of Illinois at Chicago (UIC), Chicago, U.S.A.
The University of Iowa, Iowa City, U.S.A.

Johns Hopkins University, Baltimore, U.S.A.

The University of Kansas, Lawrence, U.S.A.

Kansas State University, Manhattan, U.S.A.
A. Ivanov, K. Kaadze, S. Khalil, M. Makouski, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda

Lawrence Livermore National Laboratory, Livermore, U.S.A.
D. Lange, F. Rebassoo, D. Wright

University of Maryland, College Park, U.S.A.

Massachusetts Institute of Technology, Cambridge, U.S.A.

University of Minnesota, Minneapolis, U.S.A.

University of Mississippi, Oxford, U.S.A.
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, U.S.A.
State University of New York at Buffalo, Buffalo, U.S.A.
M. Alyari, J. Dolen, J. George, A. Godshalk, C. Harrington, I. Iashvili, J. Kaisen, A. Kharchilava, A. Kumar, A. Parker, S. Rappoccio, B. Roozbahani

Northeastern University, Boston, U.S.A.

Northwestern University, Evanston, U.S.A.

University of Notre Dame, Notre Dame, U.S.A.

The Ohio State University, Columbus, U.S.A.

Princeton University, Princeton, U.S.A.

University of Puerto Rico, Mayaguez, U.S.A.
S. Malik

Purdue University, West Lafayette, U.S.A.

Purdue University Calumet, Hammond, U.S.A.
N. Parashar, J. Stupak

Rice University, Houston, U.S.A.

University of Rochester, Rochester, U.S.A.
B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhuainashvili, K.H. Lo, P. Tan, M. Verzetti

Rutgers, The State University of New Jersey, Piscataway, U.S.A.
J.P. Chou, E. Contreras-Campana, Y. Gershtein, T.A. Gómez Espinosa, E. Halkiadakis, M. Heindl, D. Hidas, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou,

University of Tennessee, Knoxville, U.S.A.
M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa

Texas A&M University, College Station, U.S.A.

Texas Tech University, Lubbock, U.S.A.

Vanderbilt University, Nashville, U.S.A.
A.G. Delannoy, S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu

University of Virginia, Charlottesville, U.S.A.
M.W. Arenton, P. Barria, B. Cox, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, X. Sun, Y. Wang, E. Wolfe, F. Xia

Wayne State University, Detroit, U.S.A.
C. Clarke, R. Harr, P.E. Karchin, P. Lamichhane, J. Sturdy

University of Wisconsin - Madison, Madison, WI, U.S.A.

Tata Institute of Fundamental Research, Mumbai, ZZ
S. Bhowmik, R.K. Dewanjee, S. Ganguly, S. Kumar, M. Maity, B. Parida, T. Sarkar

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
3: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
4: Also at Universidade Estadual de Campinas, Campinas, Brazil
5: Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France
6: Also at Université Libre de Bruxelles, Bruxelles, Belgium
7: Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany
8: Also at Joint Institute for Nuclear Research, Dubna, Russia
9: Also at Helwan University, Cairo, Egypt
10: Now at Zewail City of Science and Technology, Zewail, Egypt
11: Also at Ain Shams University, Cairo, Egypt
12: Also at Fayoum University, El-Fayoum, Egypt
13: Now at British University in Egypt, Cairo, Egypt
14: Also at Université de Haute Alsace, Mulhouse, France
15: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
16: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
17: Also at Tbilisi State University, Tbilisi, Georgia
18: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
19: Also at University of Hamburg, Hamburg, Germany
20: Also at Brandenburg University of Technology, Cottbus, Germany
21: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
22: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
23: Also at University of Debrecen, Debrecen, Hungary
24: Also at Indian Institute of Science Education and Research, Bhopal, India
25: Also at Institute of Physics, Bhubaneswar, India
26: Also at University of Ruhuna, Matara, Sri Lanka
27: Also at Isfahan University of Technology, Isfahan, Iran
28: Also at University of Tehran, Department of Engineering Science, Tehran, Iran
29: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
30: Also at Università degli Studi di Siena, Siena, Italy
31: Also at Purdue University, West Lafayette, U.S.A.
32: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
33: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
34: Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico
35: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
36: Also at Institute for Nuclear Research, Moscow, Russia
37: Now at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
38: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
39: Also at University of Florida, Gainesville, U.S.A.
40: Also at P.N. Lebedev Physical Institute, Moscow, Russia
41: Also at California Institute of Technology, Pasadena, U.S.A.
42: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
43: Also at INFN Sezione di Roma: Università di Roma, Roma, Italy
44: Also at National Technical University of Athens, Athens, Greece
45: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
46: Also at National and Kapodistrian University of Athens, Athens, Greece
47: Also at Riga Technical University, Riga, Latvia
48: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
49: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
50: Also at Adiyaman University, Adiyaman, Turkey
51: Also at Mersin University, Mersin, Turkey
52: Also at Cag University, Mersin, Turkey
53: Also at Piri Reis University, Istanbul, Turkey
54: Also at Gaziosmanpasa University, Tokat, Turkey
55: Also at Ozyegin University, Istanbul, Turkey
56: Also at Izmir Institute of Technology, Izmir, Turkey
57: Also at Marmara University, Istanbul, Turkey
58: Also at Kafkas University, Kars, Turkey
59: Also at Istanbul Bilgi University, Istanbul, Turkey
60: Also at Yildiz Technical University, Istanbul, Turkey
61: Also at Hacettepe University, Ankara, Turkey
62: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
63: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
64: Also at Instituto de Astrofísica de Canarias, La Laguna, Spain
65: Also at Utah Valley University, Orem, U.S.A.
66: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
67: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
68: Also at Argonne National Laboratory, Argonne, U.S.A.
69: Also at Erzincan University, Erzincan, Turkey
70: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
71: Also at Texas A&M University at Qatar, Doha, Qatar
72: Also at Kyungpook National University, Daegu, Korea
73: Also at University of Visva-Bharati, Santiniketan, India