Search for high-mass Z gamma resonances in e(+)e(-)gamma and mu(+)mu(-)gamma final states in proton-proton collisions at root s=8 and 13 TeV

Khatchatryan, V.

2017-01-17

http://hdl.handle.net/10138/182818
https://doi.org/10.1007/JHEP01(2017)076

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.
Search for high-mass $Z\gamma$ resonances in e^+e^- and $\mu^+\mu^-$ final states in proton-proton collisions at $\sqrt{s} = 8$ and 13 TeV

The CMS collaboration

E-mail: cms-publication-committee-chair@cern.ch

ABSTRACT: This paper describes the search for a high-mass narrow-width scalar particle decaying into a Z boson and a photon. The analysis is performed using proton-proton collision data recorded with the CMS detector at the LHC at center-of-mass energies of 8 and 13 TeV, corresponding to integrated luminosities of 19.7 and 2.7 fb$^{-1}$, respectively. The Z bosons are reconstructed from opposite-sign electron or muon pairs. No statistically significant deviation from the standard model predictions has been found in the 200–2000 GeV mass range. Upper limits at 95% confidence level have been derived on the product of the scalar particle production cross section and the branching fraction of the Z decaying into electrons or muons, which range from 280 to 20 fb for resonance masses between 200 and 2000 GeV.

KEYWORDS: Beyond Standard Model, Hadron-Hadron scattering (experiments)

ArXiv ePrint: 1610.02960

doi:10.1007/JHEP01(2017)076
1 Introduction

The ATLAS and CMS experiments have observed [1–3] a standard model (SM) like Higgs boson at 125 GeV [4]. While this discovery has reaffirmed the SM, it is widely believed that the SM is a low-energy approximation of a more complex theory [5]. An enhancement with respect to the SM in the rate of rare decays of the 125 GeV boson or the discovery of additional scalar or pseudoscalar bosons would provide evidence that this is the case. Searches for the rare decay of the 125 GeV Higgs boson into a Z boson and a photon have been conducted by both ATLAS and CMS [6, 7], but have insufficient sensitivity to probe the SM Higgs boson hypothesis.

In the context of the wider search for new resonances in the diphoton final state [8–10], information from the $Z\gamma$ channel provides important complementary information. For example, an extended SM incorporating a scalar (or pseudoscalar) decaying to two photons would imply that $Z\gamma$ decays should be observed as well [11].

We present the results for a search for a high-mass scalar, X, with mass between 200 GeV and 2 TeV, decaying to $Z\gamma$. The analysis is performed by studying proton-proton collisions recorded with the CMS detector at the CERN LHC. The analyzed data samples correspond to integrated luminosities of 19.7 and 2.7 fb$^{-1}$, recorded at center-of-mass energies of 8 and 13 TeV, respectively. The search is for localized excesses in the $X \rightarrow Z\gamma$ channel, with the Z boson identified by means of its decays into an electron or a muon pair. The dominant backgrounds consist of the irreducible contribution from the continuum $Z\gamma$ production and the reducible backgrounds from either final-state radiation in Z...
boson decays or Z boson production in association with one or more jets (Z plus jets), where a jet is misidentified as a photon. The background is determined directly from data. Searches for a scalar singlet decaying to $Z\gamma$ have been performed at the LHC by ATLAS at center-of-mass energies of 8 [12] and 13 TeV [13].

2 The CMS detector

A detailed description of the CMS detector, together with the definition of the coordinate system used and the relevant kinematic variables, can be found elsewhere [14]. The central feature of the CMS apparatus is a superconducting solenoid, 13 m in length and 6 m in diameter, which provides an axial magnetic field of 3.8 T. Within the field volume there are several particle detection systems. Charged-particle trajectories are measured by silicon pixel and strip trackers, covering $0 < \phi < 2\pi$ in azimuth and $|\eta| < 2.5$ in pseudorapidity. A lead tungstate crystal electromagnetic calorimeter (ECAL) is partitioned into a barrel region with $|\eta| < 1.48$ and two endcaps that extend up to $|\eta| = 3$. A brass and scintillator hadron calorimeter surrounds the ECAL volume and covers the region $|\eta| < 3$. Iron forward calorimeters with quartz fibers, read out by photomultipliers, extend the calorimeter coverage up to $|\eta| = 5$. The calorimeters provide measurements of the energy of photons, electrons, and hadronic jets. Lead and silicon-strip preshower detectors are located in front of the endcap electromagnetic calorimeter. Muons are identified and measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. The detector is nearly hermetic, allowing energy balance measurements in the plane transverse to the beam direction. A two-tier trigger system selects proton-proton collision events of interest.

3 Particle reconstruction and event selection

The selected events are required to pass a dielectron trigger, which has transverse momentum, p_T, thresholds of 17 and 12 GeV, respectively, on the two electrons, or a dimuon trigger, with thresholds of 17 and 8 GeV on the two muons. The analysis of the 13 TeV data also makes use of trigger paths that require the presence of only one muon, with a transverse momentum threshold of 20 GeV. The trigger efficiencies for events containing two leptons satisfying the subsequent event selection requirements are measured to be between 90% and 98% for the $e^+e^-\gamma$ channel depending on the electron transverse momenta, and about 91% for the $\mu^+\mu^-\gamma$ channel. These efficiencies are determined with a data sample enriched in Z boson events.

Events with two opposite-sign, same-flavor leptons (electrons or muons) and a photon are selected. All particles are required to be isolated, and the lepton with the highest p_T is required to satisfy $p_T > 20$ (25) GeV in the analysis of 8 (13) TeV data, while the second-leading lepton must have $p_T > 10$ (20) GeV. The photon is required to satisfy $p_T > 40$ GeV. The electrons and photon must have $|\eta| < 2.5$, while the muons must have $|\eta| < 2.4$. Photons and electrons in the ECAL barrel-endcap transition region $1.44 < |\eta| < 1.57$ of the electromagnetic calorimeter are excluded. More details on reconstruction of photons, electrons, and muons can be found in refs. [15–17].
Events are required to have at least one vertex [18], with the reconstructed longitudinal position within 24 cm of the geometric center of the detector and the transverse position within 2 cm of the beam interaction region. There are multiple reconstructed vertices associated with additional interactions (pileup), and the vertex with the highest sum of the p_T^2 of its associated tracks is chosen as the primary vertex. The leptons are required to originate from the same primary vertex by requiring, for each track, that its transverse impact parameter with respect to the primary vertex is smaller than 2 mm and that its longitudinal impact parameter is smaller than 2 (5) mm for electrons (muons).

The observables used in the photon selection are as follows: isolation variables based on a particle-flow (PF) algorithm [19, 20], kinematic variables corresponding to the location and energy of the photon, shower shape variables that provide information on the size and shape of the energy deposition in the ECAL, and a variable taking into account the energy deposited by pileup interactions, calculated with the FastJet package [21]. Identification and isolation requirements in the analysis of the 8 TeV data are enforced through the use of a multivariate discriminant, whereas simple, cut-based selection is used in the analysis of 13 TeV data. The search conducted in 8 TeV data targets a lower mass range, so the photon identification criteria with the most efficient rejection of the jet-induced background were chosen.

Photon candidates are rejected if a cluster of hits in the tracker pixel detector is found to be compatible with the ECAL energy cluster position. The efficiency of the photon identification is measured from $Z \rightarrow ee$ data [22] by treating the electrons as photons [3], and is found to be 90% for photons with $p_T > 40$ GeV. These efficiencies include the losses due to photon conversions caused by the pixel tracker veto requirement, estimated with $Z \rightarrow \mu\mu\gamma$ events, where the photon is produced via final-state radiation.

Isolation requirements are based on objects reconstructed with the PF algorithm within $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.3$ from the photon candidate direction, where $\Delta \eta$ and $\Delta \phi$ are, respectively, the differences in the pseudorapidity and azimuth angles between the photon and the given reconstructed object. Only charged candidates are considered in the enforcement of isolation criteria in the analysis of 13 TeV data, whereas additional photons are also considered in the analysis of 8 TeV data.

Electron candidates are reconstructed as clusters of energy deposits in the ECAL matched to signals in the silicon tracker [16]. The electron energy resolution is improved by using a multivariate regression technique resulting in improvements of 10 and 30% in the mass resolution for $Z \rightarrow ee$ events over the standard CMS electron reconstruction in the barrel and endcap calorimeters, respectively [16]. Electrons are identified via loose requirements on the shape of these energy deposits, on the ratio of energies in associated hadron and electromagnetic calorimeter cells, on the geometrical matching between the energy deposits and the associated track, and on the consistency between the energy reconstructed from the calorimeter deposits and the momentum measured in the tracker. The electron selection criteria used in the analysis of 8 TeV data are optimized further for background rejection using a multivariate approach. The training of the multivariate electron reconstruction is performed using simulated events, while the performance is validated using data.
Muon candidates \cite{17} are reconstructed from tracks found in the muon system that are associated with the tracks in the silicon detectors. Muon identification criteria are based on the quality of the track fit and the number of associated energy deposits in the pixel and strip tracking detectors. The total efficiencies for the combined muon identification and pileup-corrected isolation criteria are better than 95%.

Electrons and muons from Z boson decays are expected to be isolated from other particles. A fixed cone of size $\Delta R = 0.4$ is constructed around the direction of each lepton candidate in the search performed in 8 TeV data, while ΔR varies with the lepton p_T in the selection used in the analysis of 13 TeV data according to the relation:

$$\Delta R = \begin{cases}
0.2, & p_T < 50 \text{ GeV} \\
\frac{10 \text{ GeV}}{p_T}, & 50 < p_T < 200 \text{ GeV} \\
0.05, & p_T > 200 \text{ GeV}.
\end{cases} \quad (3.1)$$

This ensures high lepton identification efficiency even for highly-boosted Z boson decays, as expected in the decay of high-mass resonances. The relative isolation of the lepton is quantified by summing the transverse momenta of the relevant PF candidates within this cone, excluding the lepton itself. To account for the contamination from pileup interactions, charged particles originating from additional vertices are excluded from the estimate, and a correction is applied to account for the neutral PF objects originating from pileup activity, which cannot be excluded by vertex identification. The resulting quantity, divided by the lepton transverse momentum, is required to be less than 0.4 for both electrons and muons in the analysis of 8 TeV data, and less than 0.1 (0.2) for electrons (muons) in 13 TeV data. This requirement rejects misidentified leptons and background arising from hadronic jets. Finally, the separation between each lepton and the photon must satisfy $\Delta R > 0.4$ in order to reject events with final-state radiation.

The invariant mass of the dilepton system is required to be greater than 50 GeV. In the selection used in 8 TeV data, no upper dilepton mass condition is needed, while in the selection used in 13 TeV data the dilepton mass is required to be below 130 GeV. The minimum dilepton mass requirement rejects contributions from $pp \rightarrow \gamma \gamma^*$, where an internal conversion of the photon produces a dilepton pair. In the rare cases where more than one dilepton pair is present, the one with an invariant mass closest to the Z boson mass is taken. The final set of requirements combines the information from the photon and the leptons: (i) the invariant mass $M_{\ell \ell'}$ of the $\ell^{+}\ell^{-}\gamma$ system (where $\ell = e, \mu$), is required to be above 150 (200) GeV in the analysis of 8 (13) TeV data; and (ii) the ratio of the photon transverse energy to $M_{\ell \ell'}$ must be greater than 0.27. This latter requirement suppresses backgrounds due to misidentification of photons, without significant loss in signal sensitivity and without introducing a bias in the $M_{\ell \ell'}$ spectrum.

4 Background modelling

Simulations indicate that 80–90% of the background after the full event selection is due to SM $Z\gamma$ production with initial-state radiation, with the remainder mostly due to the
<table>
<thead>
<tr>
<th>Mass (GeV)</th>
<th>Data</th>
<th>Fit</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>1.5</td>
<td>1.3</td>
<td>0.2</td>
</tr>
<tr>
<td>400</td>
<td>2.5</td>
<td>2.0</td>
<td>0.3</td>
</tr>
<tr>
<td>650</td>
<td>3.5</td>
<td>3.0</td>
<td>0.4</td>
</tr>
<tr>
<td>900</td>
<td>4.5</td>
<td>4.0</td>
<td>0.5</td>
</tr>
<tr>
<td>1150</td>
<td>5.5</td>
<td>5.0</td>
<td>0.6</td>
</tr>
<tr>
<td>1400</td>
<td>6.5</td>
<td>6.0</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Figure 1. Observed $M_{\ell\ell}$ invariant mass spectra in the 8 TeV data, for the $e^+e^-\gamma$ (left) and the $\mu^+\mu^-\gamma$ (right) channels. The fitted function is represented by a line, with the 68% uncertainty band as grey shading. The lower panels show the difference between the data and the fit, divided by the uncertainty σ_{stat}, that includes the statistical uncertainty in both the data and the fit. For bins with a low number of data entries, the error bars correspond to the Garwood confidence intervals.

contribution from Z plus jet events, where the jet is misreconstructed as a photon. The $M_{\ell\ell}$ distributions are steeply and smoothly falling with increasing mass. The background is measured directly in the data, through an unbinned maximum-likelihood fit to the observed $M_{\ell\ell}$ distributions, separately in the $e^+e^-\gamma$ and $\mu^+\mu^-\gamma$ channels. The background is parametrized with empirical formulae.

In the 8 TeV analysis the background shape is parameterized with the sum of three exponential decay functions. The fit is performed for values of $M_{\ell\ell} > 150$ GeV. The potential bias in the background measurement is studied by using pseudo-data generated from different functional forms and fitted with the function under test. The results of these fits are used to determine an appropriate model for the background, such that the bias introduced in the signal measurement is smaller than 1/5 of the statistical uncertainty in its determination. The chosen model (sum of three exponential decay functions) is found to satisfy this criterion across the search mass range. The observed $M_{\ell\ell}$ invariant mass spectra in 8 TeV data are shown in figure 1. The results of the fit is represented by a line, with the 68% uncertainty band as grey shading.

The 13 TeV search employs a strategy similar to the 8 TeV search. The fit is performed for values of $M_{\ell\ell} > 200$ GeV. The function chosen for the background estimate,

$$f(x) = x^{a+b \log x},$$

(4.1)
describes the background shape well and does not create a significant bias. The absence of significant bias has been verified by fitting a large number of pseudo-datasets generated from various background models, and measuring the difference between the true and fitted background yields in different $M_{\ell\ell}$ windows; in each window a pull variable is defined as
the difference between the true and fitted yields, divided by the statistical uncertainty. If the absolute value of the median of this distribution is found to be above 0.5 in an interval, an additional uncertainty is assigned to the background parametrization. A modified pull distribution is then constructed, increasing the statistical uncertainty in the fit by an extra term, denoted the bias term. The bias term is parametrized as a smooth function of $M_{\ell\ell\gamma}$, which is tuned in such a manner that the absolute value of the median of the modified pull distribution is less than 0.5 in all intervals. This additional uncertainty is included in the likelihood function by adding to the background model a component having the same shape as the signal, with a normalization coefficient distributed as a Gaussian of mean zero, and with a width equal to the integral of the bias term. This inclusion of the additional component takes into account the possible mismodeling of the background shape. The bias term which is used in this analysis amounts to about 5×10^{-3} events/GeV at $M_{\ell\ell\gamma} = 600$ GeV, and smoothly falls to about 5×10^{-4} events/GeV around $M_{\ell\ell\gamma} = 2$ TeV.

The observed $M_{\ell\ell\gamma}$ invariant mass spectra in 13 TeV data are shown in figure 2, for the $e^+e^-\gamma$ (left) and $\mu^+\mu^-\gamma$ (right) channels. The results of the fit and its uncertainty are shown with a line and a band.

No events with invariant mass larger than 1275 (1220) GeV pass the selection on 8 (13) TeV data.

5 Signal modeling

We focus on narrow-width signal models, where the intrinsic width of the resonance is negligible compared to the experimental resolution. Scalar resonances decaying to $Z\gamma$ are
generated at leading order with \textsc{pythia} 8.175 [23] and NNPDF2.3 [24] parton distribution functions (PDF). The 8 TeV generator uses the Z2* tune [25] to describe the underlying event and the 13 TeV generator, the CUETP8M tune [26]. Several samples are generated with masses ranging from 200 (350) GeV to 1.2 (2) TeV, in the 8 (13) TeV analysis. The search performed in 13 TeV data begins at higher invariant mass in order to avoid the region where the background is sculpted by the kinematic selections imposed on the final-state objects. As far as the upper range, the analysis of the 8 TeV data ends where the results based on the 13 TeV analysis dominate the combination.

The signal distribution in $M_{\ell\ell\gamma}$ is obtained from the generated events that pass the full selection. The signal shape is parametrized with empirical functions; the function chosen is the sum of a Gaussian and Crystal Ball function ([27], see appendix D) for the 8 TeV analysis, and an extended form of the Crystal Ball function, with a Gaussian core and two power-law tails, for the 13 TeV analysis. The fitted parameters are determined from the simulated samples at each mass point, separately for the electron and muon channels, and then interpolated through polynomial fits to generic $M_{\ell\ell\gamma}$ values in order to have smoothly varying signal shape parametrizations. The typical mass resolution for signal events is 1% for the $e^+e^-\gamma$ channel and 1–2% for the $\mu^+\mu^-\gamma$ channel, depending on the mass of the resonance.

The product of the expected signal acceptance and efficiency in the analysis of 8 TeV data rises from about 33% at $M_{\ell\ell\gamma} = 200$ GeV to about 45% at $M_{\ell\ell\gamma} = 1.2$ TeV. In the analysis of 13 TeV data it rises from about 25% (35%) at $M_{\ell\ell\gamma} = 350$ GeV to about 45% (55%) at $M_{\ell\ell\gamma} = 2$ TeV, for the $e^+e^-\gamma$ ($\mu^+\mu^-\gamma$) channel.

6 Systematic uncertainties

The background spectra are described by parametric functions of $M_{\ell\ell\gamma}$. The coefficients are obtained from a fit to the data events, and considered as unconstrained nuisance parameters in the fit. Thus the description of the background is derived from data. No systematic uncertainty related to the background description is considered, as possible biases are accounted for in the bias terms.

The systematic uncertainty in the signal description arises from the integrated luminosity measurement [28, 29], the trigger efficiency, the effect on the signal acceptance from the choice of parton distribution functions [30], the imperfect simulation of the lepton and photon efficiencies, and the signal mass scale and resolution. These uncertainties have been evaluated separately at 8 and 13 TeV, and their magnitudes are summarized in table 1. The photon efficiency uncertainty of the 13 TeV data analysis is larger because of the use of preliminary calibrations. The sources of uncertainty are considered to be completely uncorrelated between the two center-of-mass energies.

7 Results

No significant excess is observed with respect to the SM background predictions. Upper limits are set on the production cross section of high-mass scalar resonances using the
Table 1. Summary of considered systematic uncertainties in signal.

<table>
<thead>
<tr>
<th>Source</th>
<th>8 TeV</th>
<th>13 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated luminosity</td>
<td>2.6%</td>
<td>2.7%</td>
</tr>
<tr>
<td>PDF choice</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>Trigger efficiency (ee, μμ)</td>
<td>3%, 2%</td>
<td>3%, 2%</td>
</tr>
<tr>
<td>Lepton efficiency</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>Photon efficiency</td>
<td>1–2.6%</td>
<td>5%</td>
</tr>
<tr>
<td>Mass scale and resolution (eeγ, μμγ)</td>
<td>1%, 1–10%</td>
<td>1%, 1–5%</td>
</tr>
<tr>
<td>Total systematic uncertainty (eeγ, μμγ)</td>
<td>6.6–7.0%, 6.2–12%</td>
<td>8.3%, 8.3–9.6%</td>
</tr>
</tbody>
</table>

Figure 3. Expected and observed upper limits, at 95% CL, on the cross section times branching fraction for X → Zγ obtained with the searches performed at 8 TeV (left) and at 13 TeV (right).

modified frequentist method, commonly known as CLs [31, 32]. An example of its usage is found in [2]. Asymptotic formulae [33] are used in the calculation. The individual expected and observed upper limits at 95% confidence level (CL) on the product of the cross section and the branching fraction for X → Zγ are shown in figure 3.

The combination of the two results accounts for the different parton luminosities for collisions at 8 and 13 TeV, which have been calculated with the NNPDF2.3 parton distributions [24]. The effect of using different PDFs for the scaling has been evaluated and affects the limits by at most a few percent, mainly in the low-mass region. The signal is assumed to be produced solely through gluon-gluon fusion, and the 8 TeV limit is scaled up by the corresponding parton luminosity ratio, which ranges between 3 and 7 in the 0.2 to 1.2 TeV mass region, and is about 4.3 for a signal with a mass of 750 GeV.

Figure 4 (left) shows the 95% CL upper limits on the 13 TeV cross section, σ13 TeV(X → Zγ), as a function of the resonance mass, for the 8 TeV (blue, lighter) and 13 TeV (red, darker) analyses, and their combination (black). The expected (observed) limits are shown as dashed (solid) lines. Figure 4 (right) shows the combined 8 and 13 TeV limit with its 68% (inner green) and 95% (outer yellow) uncertainty bands. The discontinuities in the limits are an artifact of the different ranges exploited by the two searches.
Figure 4. Left: expected and observed upper limits, at 95% CL, on the 13 TeV cross section \(\sigma_{13\text{ TeV}}(X \to Z\gamma)\) for the scaled 8 TeV (blue, lighter) and 13 TeV (red, darker) searches, together with their combination (black). Expected limits are shown with dashed lines, observed ones with solid lines. Right: 95% CL upper limit for the combination of 8 TeV and 13 TeV data. The solid (dashed) line represents the observed (expected) limit, whereas the inner green (outer yellow) bands represent the 68% (95%) uncertainty bands.

Figure 5. Observed background-only local \(p\)-values for the scaled 8 TeV search (blue, dotted), the 13 TeV search (red, dashed), and the combination (black). Background-only local \(p\)-values are defined as the probability of obtaining, under the background-only hypothesis, a result equal or larger than the one observed in the data. Figure 5 shows the observed background-only \(p\)-values for the 8 TeV search (blue, dotted), the 13 TeV search (red, dashed), and their combination (black). The fluctuation at \(M_{\ell\ell\gamma} \approx 370\) GeV corresponds to a local significance of 2.6 \(\sigma\), and a global significance smaller than one standard deviation, once the ‘look-elsewhere’ effect has been taken into account [34]. This has been computed by counting the fraction of times the background-only \(p\)-value crosses the level corresponding to 0.5 standard deviations in the full mass range in which limits are set.
8 Summary

A search for heavy resonances decaying to $Z\gamma$, with further decay $Z \rightarrow \ell^+\ell^-$, with $\ell = e$ or μ, has been presented. The search makes use of proton-proton data collected by the CMS detector at the LHC, corresponding to integrated luminosities of 19.7 and 2.7 fb$^{-1}$ at 8 and 13 TeV, respectively. The background is measured directly from data and localized excesses are looked for. No significant deviation with respect to the standard model expectation is found. Upper limits at 95% confidence level are set on the production cross section of narrow resonances, ranging from 280 to 20 fb for resonance masses from 200 to 2000 GeV.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.A.).

Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2013/11/B/ST2/04202, 2014/13/B/ST2/02543 and 2014/15/B/ST2/03998, Sonata-
bis 2012/07/E/ST2/01406; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Programa Clarín-COFUND del Principado de Asturias; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845.

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

CMS collaboration, *Commissioning of the particle-flow event reconstruction with the first LHC collisions recorded in the CMS detector*, CMS-PAS-PFT-10-001 (2010).

M.J. Oreglia, *A study of the reactions \(\psi' \rightarrow \gamma \gamma \psi^* \)*, Ph.D. thesis, Stanford University, Stanford U.S.A. (1980) [SLAC-R-236], see appendix D.

The CMS collaboration

Yerevan Physics Institute, Yerevan, Armenia
V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik, Wien, Austria

Institute for Nuclear Problems, Minsk, Belarus
O. Dvornikov, V. Makarenko, V. Zykunov

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Université de Mons, Mons, Belgium
N. Beliy

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

Universidade Estadual Paulista, Universidade Federal do ABC, São Paulo, Brazil

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova

University of Sofia, Sofia, Bulgaria
A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov

Beihang University, Beijing, China
W. Fang

Institute of High Energy Physics, Beijing, China

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu

Universidad de Los Andes, Bogota, Colombia

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, K. Kadija, S. Micanovic, L. Sudic, T. Susa

University of Cyprus, Nicosia, Cyprus
Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt,
Egyptian Network of High Energy Physics, Cairo, Egypt
E. El-khateeb, S. Elgammal, A. Mohamed

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
B. Calpas, M. Kadastik, M. Murumaa, L. Perrini, M. Raidal, A. Tiko, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, J. Pekkanen, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
J. Hakonen, T. Jarvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, J. Tuominiemi, E. Tuovinen, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland
J. Talvitie, T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
Institut für Experimentelle Kernphysik, Karlsruhe, Germany

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, I. Topsis-Giotis

National and Kapodistrian University of Athens, Athens, Greece
S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi

University of Ioánnina, Ioánnina, Greece
I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Loukas, N. Manthos, I. Papadopoulos, E. Paradas

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
N. Filipovic

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, P. Hidas, D. Horvath, F. Sikler, V. Veszpremi, G. Vesztergombi, A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi, A. Makovec, J. Molnar, Z. Szillasi

University of Debrecen, Debrecen, Hungary
M. Bartók, P. Raics, Z.L. Trocsanyi, B. Ujvari

National Institute of Science Education and Research, Bhubaneswar, India

Panjab University, Chandigarh, India

University of Delhi, Delhi, India
Ashok Kumar, A. Bhawdaj, B.C. Choudhary, R.B. Garg, S. Keshri, S. Malhotra, M. Naimuddin, N. Nishu, K. Ranjan, R. Sharma, V. Sharma
Saha Institute of Nuclear Physics, Kolkata, India

Indian Institute of Technology Madras, Madras, India
P.K. Behera

Bhabha Atomic Research Centre, Mumbai, India
R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty, P.K. Netrakanti, L.M. Pant, P. Shukla, A. Topkar

Tata Institute of Fundamental Research-A, Mumbai, India

Tata Institute of Fundamental Research-B, Mumbai, India

Indian Institute of Science Education and Research (IISER), Pune, India
S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, A. Rane, S. Sharma

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
H. Behnamian, S. Chenarani, E. Eskandari Tadavani, S.M. Etesami, A. Fahim, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi, F. Rezaei, B. Safarzadeh, M. Zeinali

University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald

INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy

INFN Sezione di Bologna, Università di Bologna, Bologna, Italy

INFN Sezione di Catania, Università di Catania, Catania, Italy
S. Albergo, M. Chiorboli, S. Costa, A. Di Mattia, F. Giordano, R. Potenza, A. Tricomi, C. Tuve
INFN Sezione di Firenze a, Università di Firenze b, Firenze, Italy
G. Barbaglia, V. Ciullia,b, C. Civininia, R. D’Alessandroa,b, E. Focardia,b, V. Goria,b, P. Lenzia,b, M. Meschinia, S. Paolettia, G. Sguazzonia, L. Viliania,b,14

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera

INFN Sezione di Genova a, Università di Genova b, Genova, Italy
V. Calvellia,b, F. Ferroa, M. Lo Veterea,b, M.R. Mongea,b, E. Robuttia, S. Tosia,b

INFN Sezione di Milano-Bicocca a, Università di Milano-Bicocca b, Milano, Italy
L. Brianza14, M.E. Dinaroa,b, S. Fiorendia,b, S. Gennaia, A. Ghezzia,b, P. Govonia,b, M. Malberti, S. Malvezzia, R.A. Manzonia,b,14, D. Menascea, L. Moronia, M. Paganonia,b, D. Pedrinia, S. Pigazzini, S. Ragazzia,b, T. Tabarelli de Fatisa,b

INFN Sezione di Napoli a, Università di Napoli ‘Federico II’ b, Napoli, Italy, Università della Basilicata c, Potenza, Italy, Università G. Marconi d, Roma, Italy
S. Buontempoa, N. Cavalloa,c, G. De Nardo, S. Di Guidaa,d,14, M. Espositoa,b, F. Fabozzia,c, F. Fiengaa,b, A.O.M. Iorioa,b, G. Lanzaa, L. Listaa, S. Meolaa,d,14, P. Paolucci14, C. Sciaccaa,b

INFN Sezione di Padova a, Università di Padova b, Padova, Italy, Università di Trento c, Trento, Italy
P. Azzi14, N. Bacchettaa, L. Benatoa,b, A. Bolettia,b, R. Carlina,b, P. Checchiaa, M. Dall’Ossoa,b, P. De Castro Manzanoa, T. Dorigoa, U. Dossellia, S. Fantinela, F. Gasparinia,b, U. Gasparinia,b, A. Gozzelinoa, S. Lacapraraa, M. Margonia,b, A.T. Meneguzzoa,b, F. Montecassianoa, J. Pazzinia,b, N. Pozzobona,b, P. Ronchesea,b, F. Simonettoa,b, E. Torassaa, M. Zanetti, P. Zottoa,b, G. Zumerlea,b

INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy
A. Braghieria, A. Magnania,b, P. Montagnaa,b, S.P. Rattia,b, V. Rea, C. Riccardia,b, P. Salvinia, I. Vaia,b, P. Vituloa,b

INFN Sezione di Perugia a, Università di Perugia b, Perugia, Italy
L. Alunni Solestizia,b, G.M. Bileia, D. Ciangottinia,b, L. Fan$i^{a,b}$, P. Laricciaa,b, R. Leonardia,b, G. Mantovania,b, M. Menichellia, A. Sahaa, A. Santocchiaa,b

INFN Sezione di Pisa a, Università di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy
K. Androsova,29, P. Azzurria,14, G. Bagliesia, J. Bernardinia, T. Boccalia, R. Castaldia, M.A. Cioccia,29, R. Dell’Orsoa, S. Donatoa,c, G. Fedi, A. Giassia, M.T. Grippoa,29, F. Ligabuea,c, T. Lontadzea, L. Martina,b, A. Messineoa,b, F. Pallaa, A. Rizzia,b, A. Savoy-Navarroa,30, P. Spagnoloa, R. Tenchinia, G. Tonellia,b, A. Venturia, P.G. Verdinia
INFN Sezione di Roma a, Università di Roma b, Roma, Italy
L. Baronea,b, F. Cavallaria, M. Cipriania,b, G. D'imperioa,b,14, D. Del Rea,b,14, M. Diemoza, S. Gellia,b, E. Longoa,b, F. Margarolia,b, B. Marzocchia,b, P. Meridiania, G. Organtinia,b, R. Paramattia, F. Preiatoa,b, S. Rahatloua,b, C. Rovellia, F. Santanastasioa,b

INFN Sezione di Torino a, Università di Torino b, Torino, Italy, Università del Piemonte Orientale c, Novara, Italy
N. Amapanea,b, R. Arcidiaconoa,c,14, S. Argiroa,b, M. Arneodoa,c, N. Bartosika, R. Bellana,b, C. Biinoa, N. Cartigliaa, F. Cennaa,b, M. Costaa,b, R. Covarellia,b, A. Deganoa,b, N. Demariaa, L. Fincoa,b, B. Kiania,b, C. Mariottia, S. Masellia, E. Migliorea,b, V. Monacoa,b, E. Monteila,b, M.M. Obertinoa,b, L. Pachea,b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia,b, F. Raveraa,b, A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, K. Shchelinaa,b, V. Solaa, A. Solanoa,b, A. Staianoa, P. Traczyka,b

INFN Sezione di Trieste a, Università di Trieste b, Trieste, Italy
S. Belfortea, M. Casarsaa, F. Cossuttia, G. Della Riccaa,b, A. Zanettia

Kyungpook National University, Daegu, Korea

Chonbuk National University, Jeonju, Korea
A. Lee

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
H. Kim

Hanyang University, Seoul, Korea
J.A. Brochero Cifuentes, T.J. Kim

Korea University, Seoul, Korea

Seoul National University, Seoul, Korea

University of Seoul, Seoul, Korea

Sungkyunkwan University, Suwon, Korea
Y. Choi, J. Goh, C. Hwang, J. Lee, I. Yu

Vilnius University, Vilnius, Lithuania
V. Dudenas, A. Juodagalvis, J. Vaitkus
Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
L. Chchiphounov, V. Golovtsov, Y. Ivanov, V. Kim37, E. Kuznetsova38, V. Murzin, V. Oreshkin, V. Sulimov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lyakhovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology
A. Bylinkin36

National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia
M. Chadeeva39, O. Markin, E. Tarkovskii

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin36, I. Dremin36, M. Kirakosyan, A. Leonidov36, S.V. Rusakov, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Baskakov, A. Belyaev, E. Boos, V. Bunichev, M. Dubinin40, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Miagkov, S. Obraztsov, S. Petrushanko, V. Savrin

Novosibirsk State University (NSU), Novosibirsk, Russia
V. Blinov41, Y. Skovpen41

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic42, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic, V. Rekovic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
D. Salerno, Y. Yang, A. Zucchetta

National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, G. Singh, N. Srimanobhas, N. Suwonjandee

Cukurova University, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey
B. Bilin, S. Bilmis, B. Isildak, G. Karapinar, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey
E. Gülmez, M. Kaya, O. Kaya, E.A. Yetkin, T. Yetkin

Istanbul Technical University, Istanbul, Turkey
A. Cakir, K. Cankocak, S. Sen

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom
University of California, Santa Barbara - Department of Physics, Santa Barbara, U.S.A.

California Institute of Technology, Pasadena, U.S.A.

Carnegie Mellon University, Pittsburgh, U.S.A.
M.B. Andrews, V. Azzolini, T. Ferguson, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev

University of Colorado Boulder, Boulder, U.S.A.
J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, T. Mulholland, K. Stenson, S.R. Wagner

Cornell University, Ithaca, U.S.A.

Fairfield University, Fairfield, U.S.A.
D. Winn

Fermi National Accelerator Laboratory, Batavia, U.S.A.

University of Florida, Gainesville, U.S.A.

Florida International University, Miami, U.S.A.
S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez
Florida State University, Tallahassee, U.S.A.

Florida Institute of Technology, Melbourne, U.S.A.

University of Illinois at Chicago (UIC), Chicago, U.S.A.

The University of Iowa, Iowa City, U.S.A.

Johns Hopkins University, Baltimore, U.S.A.

The University of Kansas, Lawrence, U.S.A.

Kansas State University, Manhattan, U.S.A.
A. Ivanov, K. Kaadze, S. Khalil, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda

Lawrence Livermore National Laboratory, Livermore, U.S.A.
F. Rebassoo, D. Wright

University of Maryland, College Park, U.S.A.

Massachusetts Institute of Technology, Cambridge, U.S.A.
University of Minnesota, Minneapolis, U.S.A.

University of Mississippi, Oxford, U.S.A.
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, U.S.A.

State University of New York at Buffalo, Buffalo, U.S.A.
M. Alyari, J. Dolen, J. George, A. Godshalk, C. Harrington, I. Iashvili, J. Kaisen, A. Kharchilava, A. Kumar, A. Parker, S. Rappoccio, B. Roozbahani

Northeastern University, Boston, U.S.A.

Northwestern University, Evanston, U.S.A.

University of Notre Dame, Notre Dame, U.S.A.

The Ohio State University, Columbus, U.S.A.

Princeton University, Princeton, U.S.A.

University of Puerto Rico, Mayaguez, U.S.A.
S. Malik

Purdue University, West Lafayette, U.S.A.

Purdue University Calumet, Hammond, U.S.A.
N. Parashar, J. Stupak
Rice University, Houston, U.S.A.

University of Rochester, Rochester, U.S.A.
B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti

Rutgers, The State University of New Jersey, Piscataway, U.S.A.

University of Tennessee, Knoxville, U.S.A.
A.G. Delannoy, M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa

Texas A&M University, College Station, U.S.A.

Texas Tech University, Lubbock, U.S.A.

Vanderbilt University, Nashville, U.S.A.
S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu

University of Virginia, Charlottesville, U.S.A.
M.W. Arenton, P. Barria, B. Cox, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, X. Sun, Y. Wang, E. Wolfe, F. Xia

Wayne State University, Detroit, U.S.A.
C. Clarke, R. Harr, P.E. Karchin, J. Sturdy

University of Wisconsin - Madison, Madison, WI, U.S.A.

\dagger: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
46: Also at Riga Technical University, Riga, Latvia
47: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
48: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
49: Also at Adiyaman University, Adiyaman, Turkey
50: Also at Mersin University, Mersin, Turkey
51: Also at Cag University, Mersin, Turkey
52: Also at Piri Reis University, Istanbul, Turkey
53: Also at Gaziosmanpasa University, Tokat, Turkey
54: Also at Ozyegin University, Istanbul, Turkey
55: Also at Izmir Institute of Technology, Izmir, Turkey
56: Also at Marmara University, Istanbul, Turkey
57: Also at Kafkas University, Kars, Turkey
58: Also at Istanbul Bilgi University, Istanbul, Turkey
59: Also at Yildiz Technical University, Istanbul, Turkey
60: Also at Hacettepe University, Ankara, Turkey
61: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
62: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
63: Also at Instituto de Astrofísica de Canarias, La Laguna, Spain
64: Also at Utah Valley University, Orem, U.S.A.
65: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
66: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
67: Also at Argonne National Laboratory, Argonne, U.S.A.
68: Also at Erzincan University, Erzincan, Turkey
69: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
70: Also at Texas A&M University at Qatar, Doha, Qatar
71: Also at Kyungpook National University, Daegu, Korea