KIRJALLISUUSKATSAUS

HISTAMIININ H3-RESEPTORI LÄÄKEKEHITYKSEN KOhteena

KOKEELLINEN OSA

NEURONAALISEN HISTAMIININ JA H3-RESEPTORIN MERKITYS ALKOHOLIVAikutusten VälittymiseSSä

Jenni Vanhanen
Helsingin yliopisto
Farmasian tiedekunta
Farmakologian ja toksikologian osasto

Lokakuu 2010
KIRJALLISUUSKATSAUS

HISTAMIININ H3-RESEPTORI LÄÄKEKEHITYKSEN KOHTEENA

Jenni Vanhanen
Helsingin yliopisto
Farmasian tiedekunta
Farmakologian ja toksikologian osasto

Lokakuu 2010
SISÄLLYSLUETTELO

1 JOHDANTO ... 1

2 NEURONAALINEN HISTAMIINI JA SEN RESEPTORIT ... 2
 2.1 Neuronaalinen histamiini ... 2
 2.2 H1-, H2- ja H4 –reseptoreista ... 4

3 H3-RESEPTORI ... 6
 3.3 H3-reseptorin localisaatio .. 7
 3.3.1 Distribuutio aivoalueilla ... 7
 3.3.2 Distribuutio hermosoluissa: Pre- ja postsynapitiset H3-reseptorit 7
 3.4 Solusignalointi ja välittäjäaineet ... 8
 3.5 Konstitutiivinen aktiivisuus ... 9
 3.6 H3-reseptorin variantit ... 10

4 H3-RESEPTORIAGONISTIT .. 11
 4.1 H3-reseptoriagonistien terapeutiset mahdollisuudet ... 12
 4.1.1 Migreeni .. 12
 4.1.2 Muut mahdollisuudet ... 13

5 H3-RESEPTORIANTAGONISTIT ... 14
 5.1 H3-reseptoriantagonistit ja lääkekehitys ... 15

6 H3-RESEPTORIANTAGONISTIEN TERAPEUTTISET MAHDOLLISUUDET 17
 6.1 Liikalihavuuden hoito .. 18
 6.2 Unihäiriöt .. 19
 6.3 Kognitiiviset häiriöt .. 20
 6.3.1 Alkoholin aiheuttamat kognitiiviset sikiöhäiriöt .. 20
 6.3.2 Alzheimerin tauti ... 21
 6.3.3 Ylivilkkaus- ja tarkkaavaisuushäiriö ... 22
 6.4 Parkinsonin tauti .. 23
 6.5 Skitsofrenia ja psykoosi ... 24
 6.6 Masennus ... 26
 6.7 Muut mahdollisuudet ... 26

7 YHTEENVETO .. 27
1 JOHDANTO

Kuitenkin vasta histamiinin H3-reseptorin löytymisen (Arrang ym. 1983) jälkeen ymmärrettiin, kuinka tärkeä rooli neuronaalisella histamiinilla on erilaisten keskushermostotoimintojen säätelyssä. Myös lääketeollisuus on sittemmin panostanut histamiinitutkimukseen havaittuna, että H3-reseptori on myös lääkekehityksen kannalta kiinnostava kohde (Sander ym. 2008).

muuttuneet erilaisissa keskushermostohäiriöissä. H3-reseptorin monimuotoisuuden vuoksi siihen kohdistuva lääkekehitys ei siis ole yksiselitteistä.

2 NEURONAALINEN HISTAMIINI JA SEN RESEPTORIT

2.1 Neuronaalinen histamiini

2.2 H1-, H2- ja H4 –reseptoreista

H3-reseptorista kerrotaan tarkemmin kappaleessa kolme, sillä tässä kirjallisuuskatsauksessa keskitytään tarkemmin juuri tähän histamiinireseptoriin ja sen välittämiin neurokemiallisiiin vasteisiin.

Postsynaptinen H4-reseptori on muiden histamiinireseptoreiden tavoin myös G-proteiinikytentäinen reseptori, joka kytkeytyy lähinnä G12/13-proteiineihin (Nguyen 2001). Tämän proteiinin aktivoituminen johtaa cAMP:n tuotannon laskuun. G12/13-proteiinin alayksiköt aktivoivat lisäksi fosfolipasaasi C:stä, joka johtaa kalsiumpitoisuuden kasvuun, joka puolestaan sätelee esimerkiksi syöttösolujen ja eosinofiliinien kemotaksista (Morse ym. 2001). H4-reseptorin geenisekvenssi on suurelta osin identtinen H3-reseptorin kanssa ja H3-reseptorin tavoin myös H4-reseptorilla on havaittu olevan erilaisia alatyyppejä. H4-reseptorin identtisyys H3-reseptorin kanssa on

3 H3-RESEPTORI

reseptorissa on havaittu eri lajeilla. Erilaisten H3-reseptoripolymorfien tai isoformien syynä on H3-reseptorigeenin vaihtoehtoinen silmukointi, joka johtaa useisiin H3-reseptori-isoformeihin (Drutel ym. 2001). Näillä eri isoformeilla on erilaiset ilmentymisprofiilit sekä eroja signaloinnissa.

Hiiren ja rotan H3-reseptorin farmakologinen profiili eroaa toisistaan jonkin verran, mutta ei yhtä paljon kuin hiiren ja ihmisen (Rouleau ym. 2004). Esimerkiksi H3-reseptoriantagonistit siproksifaani ja tioperamidi ovat potentimpia hiiren H3-reseptorissa kuin rotan H3-reseptorissa. Kuitenkin hiiren H3-reseptorissa kyseiset ligandit ovat 40-100 kertaa potentimpia kuin ihmisen H3-reseptorissa.

3.3 H3-reseptorin lokalisointi

3.3.1 Distribuutio aivoalueilla

3.3.2 Distribuutio hermosoluiissa: Pre- ja postsynaptiset H3-reseptorit

3.4 Solusignalointi ja välittäjääineet

H3-reseptori on G_{i/o}- proteiinikytentäinen reseptori, jossa on muiden G-proteiinikytentäisten tapaan seitsemän transmembraanialuetta (Clark ja Hill 1996). H3-reseptorin aktivaatio johtaa useiden solunsisäisten signalointiketjujen aktivaatioon. G_{i/o}- proteiini on negatiivisesti kytetty adenylyylisyklaasiin, reseptorikaavaatio johtaa siis solunsisäisen cAMP:n määrän laskuun. Tällöin CREB-transkriptiotekijästä riippuvainen geenitranskriptio vähenee (Lovenberg ym. 2000). G_{i/o}- proteiini aktivoi myös mitogeemen akivoinnan proteiinikinaasi- (MAPK) ja fosfatidyli-inositoli-3-kinaasi- (PI3K) reitin (Drutel ym. 2001). Lisäksi G_{i/o}- proteiinin aktivaatio voi myös johtaa fosfolipaaasi A₂:n (PLA₂) aktivaatioon, joka puolestaan johtaa arakidonihapon
vapautumiseen, solunsisäisen kalsiumpitoisuuden (Ca^{2+}) alenemiseen sekä natrium/vety-vaihtajan estoon (Drutel ym. 2001; Silver ym. 2001).

3.5 Konstitutiivinen aktiivisuus

3.6 H3-reseptorin variantit

Ihmisen H3-reseptorigeeni koostuu ainakin neljästä eksonista ja kolmesta intronista (Coge ym. 2001). Ihmisen talamuksesta kloonatulla H3-reseptorilla tehdysä tutkimuksessa havaittiin, että H3-reseptorilla on ainakin kuusi vaihtoehtoisen silmukoinnin tuloksena muodostunutta varianttia. Varianttien havaittiin olevan lähtöisin samasta H3-reseptorigeenistä. Näistä yleisin H3-reseptorivariantti oli Lovenbergin tutkimusryhmän aiakaisemmin kuvaama reseptori-isoformi H3

Kaiken kaikkiaan ihmisen H3-reseptorille on löytetty parisenkymmentä isoformia, jotka vaihtelevat muun muassa pituuden, kolmannen solunsisäisen silmukan ja N- sekä C-pääteen suhteen (Hancock ym. 2003; Leurs ym. 2005). H3-reseptorin farmakologinen karakterisointi on reseptorin heterogeenisyyden vuoksi haastavaa, mutta...
se on sekä histaminergisen järjestelmän tuntemuksen että lääkekehityksen kannalta tärkeää.

4 H3-RESEPTORIAGONISTIT

Kuva 1. Histamiinin (vasemmalla), R-α-metyylihistamiinin (keskellä) ja immepipin (oikealla) rakennekaavat. Kummassakin synteeettisessä H3-reseptoriagonistissa on heterosyklinen, aromaattinen imidatsolirengas, kuten histamiinireseptorien luonnollisessa agonistissa histamiinissa. (Tocris Bioscience 2010)

4.1 H3-reseptoriagonistien terapeuttiset mahdollisuudet

4.1.1 Migreeni

4.1.2 Muut mahdollisuudet

H3-reseptoriantagonisteilla on lisäksi havaittu olevan muun muassa tulehdusta lievittävää sekä antinosiseptiivistä vaikutusta (Rouleau ym. 1997; Cannon ym. 2003; Cannon ym. 2007). On myös ehdotettu, että H3-reseptoriagonistit voisivat vähentää sydänlihaksen iskemiaa vähentämällä noradrenaliinin vapautumista sympaattisessa hermostossa (Levi ja Smith 2000).

Kuva 2. Tioperamidin (vasemmalla) ja siproksifaanin (oikealla) rakennekaavat. Kummassakin H3-reseptoriantagonistissa on heterosyklinen, aromaattinen imidatsolirengas, kuten histamiinireseptorien luonnollisessa agonistissa histamiinissa (Sigma-Aldrich® 2010)

5.1 H3-reseptoriantagonistit ja lääkekehitys

H3-reseptoriantagonistien lääkekehityksen haasteena aluksi oli kehitää ligandi, joka poikkeais rakenteellisesti endogeenisesta histamiinista, ja josta puuttuisi myös sytokromi P450-entsyymejä estävä imidatsolirengas (Celanire ym. 2005). Gliatech oli ensimmäinen yritys, jonka H3-reseptoriantagonistia tutkittiin myös kliinisissä

Myös GlaxoSmithKlinen lääkeainekandidaatti GSK189254 -ligandia tutkittiin kliinisissä faasi I- ja II-tutkimuksissa narkolepsian hoitoon (Gemkow ym. 2009).

6 H3-RESEPTORIANTAGONISTIEN TERAPEUTTiset
MAHDOLLISUUDET

Sekä H1- että H2-reseptoriantagonistit ovat olleet jo vuosikymmeniä yleisesti käytössä olevia lääkeaineita keskushermoston ulkopuolisten sairauksien hoidossa (Gemkow ym. 2009). Tätä nykyä kuitenkin potentin ja selektiivisen H3-reseptoriantagonistin kehittäminen on yhä tärkeämmässä asemassa lääketeollisuudessa, sillä H3-reseptorilla on vaikutusta useisiin eri keskushermostohäiriöihin. H3-resesptori sätelee muun muassa asetyyliliolinin, noradrenaliniin, dopamiiniin ja serotoniinin vapautumista, jotka ovat tärkeitä välittääjäaineita kognitiivisten ja sensoristen toimintojen sekä mielialan säätelyssä (Schlicker ym. 1988; Schlicker ym. 1989; Schlicker ym. 1993; Arrang ym. 1995). Tämän ominaisuutensa vuoksi H3-reseptoriantagonistit ovat tulevaisuudessa
mahdollisia lääkeaineita useiden erityyppisten keskushermostohäiriöiden hoidossa, joista kerrotaan seuraavissa kappaleissa tarkemmin.

6.1 Liikalihavuuden hoito

käänteisagonisteja, ja näiden aikaansaamat vasteet olisivat erilaisia. On myös mahdollista, että H3-reseptorien useat isoformit ja niiden erilaiset farmakologiset ominaisuudet vaikuttavat eri ligandeilla havaittuihin vasteisiin.

6.2 Unihäiriöt

Farmakologisina työkaluina käytetty H3-reseptoriantagonistit, kuten tioperamidi ja siproksifaani, ovat osoittaneet, että ne lisäävät vireystilaa ja tarkkaavaisuutta sekä vähentävät hidasaaltounta ja nopeiden silmänliikkeiden univaihetta (engl. rapid eye movement, REM) (Lin ym. 1990; Monti ym. 1991; Ligneau ym. 1998).

6.3 Kognitiiviset häiriöt

6.3.1 Alkoholin aiheuttamat kognitiiviset sikiöhäiriöt

H3-reseptoriantagonisti ABT-239:n vaikutuksia alkoholin aiheuttamien sikiövaurioihin on tutkittu viime vuosina (Varaschin ym. 2010; Savage ym. 2010). Raskauden aikainen alkoholin käyttö heikentää sikiön aivoturson synaptista plastisuutta ja oppimista rotilla (Varaschin ym. 2010). Alkoholi aiheuttaa synaptisen toiminnan pitkäkestoisen vahvistumisen (engl. long-term potentiation, LTP) heikentymisen, jonka on havaittu olevan käännettävissä ABT-239:lla. Kontrollieläimillä, siis rotilla joiden emo ei olut

6.3.2 Alzheimerin tauti

Oppimista mallintavassa koe-eläinasetelmassa (engl. inhibitory avoidance test) tioperamidin on havaittu parantavan hiirten oppimista ja muistia (Meguro ym. 1995). Tioperamidin on lisäksi osoitettu estävän skopolamiinin aiheuttamaa amnesiaa (Giovannini ym. 1999). Johdonmukaisesti näiden tutkimuksien kanssa H3-reseptoriantagonistin on havaittu alentavan aivokuoren asetyylikoliinipitoisuksia ja heikentävän kognitiivisia toimintoja rotilla (Blandina ym. 1996a). Skopolamiini ei myöskään heikentänyt H3-reseptorin suhteen poistogeemen hiirten suorituskykyä inhibitory avoidance -menetelmässä (Toyota ym. 2002). Nämä tutkimustulokset vahvistavat sitä olettamusta, että H3-reseptorin vaikutus kolinergiseen järjestelmään on muistin kannalta oleellinen, joskaan kaikissa tutkimuksissa H3-reseptoriantagonisti ei ole parantanut kognitiivisia toimintoja (Bongers ym. 2004). H3-reseptorin salpauksen positiivinen vaikutus muistiin on näytetty myös Barnesin sokkelolla tehdyssä
tutkimuksessa, jossa H3-reseptorin suhteen poistogeeniset hiiret oppivat spatioalisia vihjeitä paremmin kuin villityypin hiiret (Rizk ym. 2004).

Perustuen olettamukseen, että asetyylikoliiniesteraasin estäjä yhdessä H3-reseptoriantagonistin kanssa saattaisi olla terapeuttisesti hyvää hoitomuoto Alzheimerin taudin hoidossa, Bembenek tutkimusryhmä on kehittänyt molekyylin, joka on aktiivinen molekyylillä saattaisi tutkimusryhmänsä mielestä olla myös hidastava vaikutus Alzheimerin taudin etenemiseen oireiden levittämisen lisäksi. Tällainen molekyyli saattaisi vaikuttaa joidenkin muiden asetyylikoliiniesteraasin estäjien tapaan β-amyloidipeptidiplakkeihin ja näin ollen hidastaa taudin etenemistä.

Koska H3-reseptoriantagonistien on havaittu vaikuttavan muistitomintoihin positiivisesti eikä H3-reseptoreiden määrä ilmeisesti ole vähentynyt Alzheimerin taudin potilailla (Medhurst ym. 2009), H3-reseptori saattaisi olla sopiva kohde tulevaisuuden Alzheimerin taudin lääkehoidossa (Timmerman 1990; Miyazaki ym. 1997).

6.3.3 Ylivilkkaus- ja tarkkaavaisuushäiriö

Koska H3-reseptoriantagonistien on havaittu parantavan muistitomintoja ja oppimista, on myös mahdollista että niitä voitaisiin käyttää ylivilkkaus- ja tarkkaavaisuushäiriön (engl. Attention-Deficit Hyperactivity Disorder, ADHD) hoidossa. Gliatech Company kehittikin lääkeainekandidaatin, GT-2331:n (sipralisantti, Perceptin®), jota tutkittiin jo

6.4 Parkinsonin tauti

H3-reseptoriantagonisteihin liittyvää Parkinsonin taudin tutkimus ei ole kuitenkaan edennyt kliiniisiin kokeisiin, lukuun ottamatta tiprolisantia. Tiprolisantia tutkitaan parhaillaan faasi III-tutkimuksissa Parkinsonin taudin potilaiden unihäiriöiden, ei kuitenkaan itse taudin hoidossa.

6.5 Skitsofrenia ja psykoosi

Koska histamiini sätelee useita aivotoimintoja, H3-reseptoriantagonistien käyttöä on ehdotettu myös skitsofrenian hoidossa (Ito 2004). Myös preklinisistä sekä kliinisistä tutkimuksista on saatu näyttöä siitä, että histamiinilla ja histaminergisellä järjestelmällä on oma roolinsa myös skitsofreniassa. Kliinisissä kokeissa on havaittu muun muassa, että histamiinin päämetabolitiin, N-tele-metyylihistamiinin, pitoisuus selkäyddennesteessä on skitsofreniapotilailla korkeampi kuin terveillä ihmisillä. Koska nykytiedon valossa skitsofrenia ei ole pelkästään dopaminergiseen järjestelmään liittyvä sairaus, on myös histamiinin roolia alettu tutkia enemmän.

6.6 Masennus

H3-reseptoriantagonistien lääkekehitystyö masennuksen hoidossa keskittyvät lähinnä sellaisen molekylin kehittämiseen, joka on aktiivinen sekä serotoniinitransporterissa että H3-reseptorissa, sillä tällä tavalla masennusta voitaisiin hoitaa laaja-alaisemmin (Stocking ym. 2007; Keith ym. 2007). Tällaisten farmakoforien prekliinisestä käytöstä ei kuitenkaan ainakaan vielä ole raportoitu.

6.7 Muut mahdollisuudet

Histaminergisten hermosolujen on havaittu säätelevän mekanismeja, jotka estävät epilepsiaassa esiintyvien sähköpurkauksien leviämistä aivoissa (Tuomisto ja Tacke, 1986). Histaminerginen järjestelmä säätelee myös audiogeenisiä kohtauksia ja niihin liittyvää liikeaktiivisuuden lisääntymistä rotilla (Vinogradova ym. 2007). Histamiinin on lisäksi osoitettu vaikuttavan kouristuskohtausten esiintyvyyteen ja eräiden H3-reseptoriantagonistien, kuten tioperamidin, VUF5514, VUF5515 ja VUF4929:n on

Histamiini ja H3-reseptori ovat myös mukana säätelemässä lääkeaineiden aiheuttamaa mielihytvätuntemusta, vahvistumista ja riippuvuutta (Brabant ym. 2010). H3-reseptorin merkityksenä mielihytvätuntemuksessa ja riippuvuudessa kerrotaan enemmän tämän pro gradu –tutkielman kokeellisessa osassa.

7 YHTEENVETO

Histamiinin on tiedetty olevan aivojen tärkeä välittäjääaine jo lähes 60 vuoden ajan (Kwiatkowski 1941; Kwiatkowski 1943). Kuitenkin vasta H3-reseptorin löytymisen jälkeen (Arrang ym. 1983) ymmärrettiin kuinka keskeinen rooli aivojen histaminergisellä järjestelmällä on erilaisten keskushermostotoimintojen säätelyssä.

Useita H3-reseptoriligandeja, lähinnä antagonisteja, onkin tutkittu tai tutkitaan parhaillaan preklinisten tutkimusten lisäksi myös kliinisissä tutkimuksissa (Sander ym. 2008). Vaikka toistaiseksi H3-reseptoriligandien tehosta ja turvallisuudesta ei ole riittävästi kliinistä näyttöä, on oletettava, että ainakin H3-reseptorin antagonisteja tullaan tulevaisuudessa käyttämään useiden eri keskushermostohäiriöiden, kuten narkolepsian, skitsofrenian ja kognitiivisten häiriöiden hoidossa joko yksin tai yhdistelmähoitona.
KOKEELLINEN OSA

NEURONAALISEN HISTAMIININ JA H3-RESEPTORIN MERKITYS
ALKOHOLIVAIKUTUSTEN VÄLITTYMISESSÄ
TYÖN TARKOITUS

2 MATERIAALIT JA MENETELMÄT

2.1 Koe-eläimet ja lääkeaineet

Siproksifaanivetykloridi (Sigma-Aldrich, St. Louis, Missouri, Yhdysvallat) ja immepipdivetybromidi (lahjoituksena prof. Rob Leursilta, Vrije Universiteit, Amsterdam, Hollanti) liuotettiin isotoniseen keittosuolaliuokseen (0,9 % NaCl). Uudet lääkeaineliuokset valmistettiin päivittäin. Kaikissa kokeissa siproksifaanin vapaan emäksen annostus oli 3 mg/kg ja immepipin vapaan emäksen annostus 30 mg/kg. Ehdollistetun paikkahakuisuuden kokeessa käytetty JNJ-10181457:n (Johnson&Johnson Pharmaceutical Research& Development, Kalifornia, Yhdysvallat) vapaan emäksen annoksina käytettiin joko 5 mg/kg tai 10 mg/kg. Tutkimuksissa käytetyt lääkeaineannokset valittiin aikaisempien tutkimusten perusteella. Kokeissa käytettiin 20 %, 15 % ja 10 % (w/v) etanoliliuokset valmistettiin viikoittain isotoniseen keittosuolaliuokseen 99,5 % etanolista (Altia, Rajamäki, Suomi). Etanoli, lääkeaineet ja kontrolliryhmien fysiologinen keittosuolaliuos (0,9 % NaCl) annosteltiin vatsakalvonsisäisesti (i.p.), injektiotilavuutena 0,01 ml/g. Lokomotorisen aktiivisuuden mittauksessa etanolin annos oli joko 1,0 g/kg tai 1,5 g/kg. Ehdollistetun paikkahakuisuuden kokeessa etanolia annosteltiin 2,0 g/kg. Kaikissa kokeissa kontrolliryhmän eläimille annosteltiin vastaavansuuruinen tilavuus keittosuolaliuostata.

2.2 Liikeaktiivisuuden mittaaminen

Liikeaktiivisuutta määrittävä lokomotoriikkakoe suoritettiin tavallisessa läpinäkyvössä, kannellisessa muovilaatikossa. Tutkimuksessa käytettiin DBA/2J-kannan uroshirriä, jotka tuotiin tutkimushuoneeseen 30–40 minuuttia ennen kokeen alkua. Hiiret satunnaistettiin kuuteen käsittelyryhmään: 1) keittosuolaliuos - keittosuolaliuos 2) keittosuolaliuos - etanoli 3) immepip - etanoli 4) immepip - keittosuolaliuos 5) siproksifaani - etanoli 6) siproksifaani - keittosuolaliuos. Ennen varsinaisen kokeen alkua hiiret laitettiin tutkimushäkkeihin, joissa niiden annettiin totuttautua uuteen ympäristöön 90 minuutin ajan. Totuttamisjakson jälkeen eläimille injektoitiin vatsaontelon soprosifaania (3 mg/kg) tai immepipia (30 mg/kg). Konrolliryhmän eläimille injektoitiin keittosuolaliuostata (0,9 % NaCl). Esikäsittelyyn jälkeen eläinten liikeaktiivisuutta mitattiin 30 minuutin ajan videokameran ja Ethovision Color-Pro 3.0 -ohjelman (Noldus Information Technology, Wageningen, Alankomaat) avulla. 30
Jotta siproksifaanin (3 mg/kg, i.p.) mahdollinen vaikutus etanolistimulaatioon olisi selkeämmän havaittavissa, toisen siproksifaaniryhmän etanoliannosta pienennettiin (1,0 g/kg, i.p) siproksifaanin yksityiskohtaisuudesta saadakseen paremman etsintätavan. Tutkimus suoritettiin muuten samalla tavalla kuin yllä kuvattu tutkimus, ainoastaan etanolin annostusta pienennettiin. Kontrolliryhmän hiirille annosteltiin siis keittosuolaliiuosta siproksifaanin asemesta ja 30 minuutin kuluttua esikäsittelyä injektoitiin etanoli (1,0 g/kg, i.p).

2.3 Ehdollistettu paikkakahakuisuus

Valittujen lattiamateriaalien tarkoituksena oli luoda eläimelle kaksi erilaista ympäristöä, jotta se osaisi yhdistää mahdollisen mielihyvää tuottavan aineen annostelun tiettyyn ympäristöön. Eläimet, lattiamateriaalien järjestys ja lääkeaineenkäsittelyn ajankohta satunnaisesti.

Varsinainen ehdollistamiskokeen suoritettiin aiemmin kuvatun protokollan mukaisesti (Taulukko 1) (Cunningham ym. 2006). Ehdollistamiskokeen ensimmäisenä päivänä hiiriä totutettiin viiden minuutin ajan tutkimuslaatikkoon, jossa ei ollut mitään ylimääräistä lattiamateriaalia laatikon pohjalla. Ennen totuttamista hiiret punnittiin ja niille annosteltiin keittosuolaliuosta (0,9 % NaCl, i.p.). Hiirten liikeaktiivisuutta
mitattiin videokameran ja Ethovision Color-Pro 3.0-ohjelman (Noldus Information Technology, Wageningen, Alankomaat) avulla 5 minuutin ajan jokaisena tutkimuspäivänä. Toisena päivänä alkoivat varsinnainen ehdollistaminen, jota tehtiin yhteensä kahdeksana seuraavana päivänä siten, että joka toinen päivä kulkein hiirelle annosteltiin etanoliin (2,0 g/kg, i.p.). Hiiri laitettiin heti injektion jälkeen laatikkoon tietyn lattiamateriaalin päälle viideksi minuutiksi (Kuva 1). Joka toinen päivä hiiri sai keittosuolainjektion toisen lattiamateriaalin päällä. H3-reseptoriagonisti immevip (30 mg/kg, i.p), H3-reseptorin käänteisagonisti siproksifaani (3 mg/kg, i.p), tai H3-reseptorin neutraali antagonisti JNJ-10181457 (5 mg/kg tai 10 mg/kg, i.p.) annosteltiin 30 minuuttia ennen etanoliilla tai keittosuolaliuoksella ehdollistamista. Varsinainen paikkahaku- ja suuksuokoe tehtiin viimeisen ehdollistamispäivän jälkeisenä päivänä (koepäivä 10) sekä kuusi päivää viimeisestä ehdollistamisesta (koepäivä 15). Punnitsemisen jälkeen hiirelle annosteltiin keittosuolaliuosta ja se laitettiin tutkimuslaatikkoon, jossa puolet laatista oli peitetty muovimatolla ja puolet kupariverkolla (Kuva 2). Videokameran ja Ethovision Color-Pro-ohjelman avulla mitattiin 30 minuutin ajan kumman lattiamateriaalin puolella hiiri vietti enemmän aikaa.
Taulukko 1. Ehdollistettu paikkahakuisuus -menetelmän kuvaus. Niissä ryhmissä, joissa käytettiin esikäsittelynä H3-reseptoriligandia, käsittely annosteltiin vatsakalvonsisäisesti (i.p.) 30 minuuttia ennen etanolin annostelua.

<table>
<thead>
<tr>
<th>Ehdollistamiskerta</th>
<th>Aika (min)</th>
<th>METALLI-RYHMÄ</th>
<th>MUOVI-RYHMÄ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lattiamateriaali</td>
<td>Käsittely (i.p.)</td>
</tr>
<tr>
<td>Totuttaminen</td>
<td>5</td>
<td>ei mitään</td>
<td>keittosuolaliuos</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>metalli</td>
<td>etanoli</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>muovi</td>
<td>keittosuolaliuos</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>metalli</td>
<td>etanoli</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>metalli</td>
<td>etanoli</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>metalli</td>
<td>etanoli</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>muovi</td>
<td>keittosuolaliuos</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>metalli</td>
<td>etanoli</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>muovi</td>
<td>keittosuolaliuos</td>
</tr>
<tr>
<td>Preferenssitestaus</td>
<td>30</td>
<td>½ metallia,</td>
<td>keittosuolaliuos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>½ muovia</td>
<td></td>
</tr>
<tr>
<td>Ekstinktio</td>
<td>30</td>
<td>½ metallia,</td>
<td>keittosuolaliuos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>½ muovia</td>
<td></td>
</tr>
</tbody>
</table>

Kuva 1. DBA/2J- kannan uroshiirten ehdollistaminen kuparisella verkolla (alhaalla vasemmalla) ja muovisella matolla (alhaalla oikealla).
Kuva 2. Kahdeksan ehdollistamiskerran jälkeinen preferenssitesti. Kaikille DBA/2J – kannan uroshiirille annosteltiin keittosuolaliuosta (0,01 ml/g, i.p.) ja eläimet laitettiin tutkimuslaatikkoon 30 minuutin ajaksi. Tuloksista määritettiin eläimen viettämä aika (s/min) laatikon metalli- sekä muovipuolella.

2.4 Plasman etanolipitoisuuden määrittäminen

Kokeessa käytettiin samoja DBA/2J- kannan uroshiiria, jotka olivat aiemmin olleet lokomotorisen aktiivisuuden kokeessa. Hiiret olivat etanolipitoisuuden määrittämiskokeessa 12-viikoisia. Esikäsittelynä hiirille (n=6/ryhmä) injektoitiin joko immepipiä (30 mg/kg, i.p.), siproksifaania (3 mg/kg, i.p.) tai keittosuolaliuosta 30 minuuttia ennen etanolin (1,5 g/kg, i.p.) annostelua. 15 minuuttia etanoliannostelun jälkeen hiiret lopetettiin hiilidioksidilla (CO₂). Verinäyte otettiin sydänpunktiolla (20 G:n neula) heti eläimen kuoltua ja laitettiin kylmään litium-heparinimikrosentrifugiputkeen (Terumo T-MLH, 12,5 IU, Leuven, Belgia). Näytteitä sentrifugoitiin kahden minuutin ajan (14000 rpm). Supernatantti (plasma) pipetoitiin uuteen mikrosentrifugiputkeen heti sentrifugoinnin jälkeen ja laitettiin jäille. Plasmanäytteet säilytettiin pakastimessa (-20 °C) myöhempää etanolipitoisuuden määrittämistä varten.

Etanolipitoisuus määritettiin kaupallisella etanolipitoisuuden määrittysmenetelmällä (Ab65343, Abcam, Cambridge, Iso-Britannia). Määritys tehtiin 96-kuoppalevyllä ja standardisuoran etanolipitoisuudet olivat 0, 80, 160, 240, 320, ja 400 µM. Kaikista näytteistä tehtiin kolme rinnakkaista näytettä. Näytteiden absorbanssit mitattiin spektrofotometrillä aallonpituudella 570 nm ja plasmanäytteiden etanolipitoisuudet

2.5 Radioaktiivinen in situ –hybridisaatio

2.5.1 Aivojen poistaminen ja leikkeiden teko

2.5.2 Koettimen suunnittelu ja syntetisointi

Selektiiviset ja spesifiset oligonukleotidikoettimet (43 emästä) hiiren dopamiini D1-resseptorin mRNA:n ilmentymisen määrittämistä varten suunniteltiin Eprimer3 -ohjelman (Tieteen tietotekniikan keskus 2010) avulla. Kaksi parhaat ominaisuudet (muun muassa sulamislämpö, GC %) omaavaa oligonukleotidia, jotka tunnistavat eri kohdat D1-resseptorin nukleotidisekvenssistä (ATGGACTGCTGCCCTCTCAAGCTGAGATGCCTTCGGATTTGC ja GGCTGGGTCTCCTCAGAGCCACAGAAGGGCACCATACAGTTCG) syntetisoiin SeqLab-laboratoriossa (Helsinki, Suomi). Ennen varsinaista koetta tilattujen koettimien spesifisyys testattiin in situ –hybridisaatiota käyttämällä sellaisten aivoleikkeiden avulla, joilla D1-resseptoreja tiettävästi ilmenee.
2.5.3 Koettimien leimaaminen

Jotta oligonukleotidikoetin tuottaa havaittavan hybridisaatiosignaalin, se on leimattava siirtämällä radioaktiivinen deoksiadenosiini 5’-trifosfaatti (\(^{33}\)P-dATP) koettimen 3’ päähän (Wilkinson 1992). RNAasivapaa, DEPC-käsittelty vesi (10 µl), 5-kertainen terminaalitransferaasipuskuri (4 µl), oligonukleotidit (5 pmol/µl, 1 µl), \(^{33}\)P-dATP (4 µl) ja terminaalitransferaasi (1 µl) pipetoitiin mikrocentrifugiputkeen, jonka jälkeen liuosta sentrifugoitiin noin 10 sekunnin ajan. Liuosta inkuboitiin 37 °C:ssa noin tunti. Leimausreaktio lopetettiin lisäämällä liuokseen 10 µl tris-hydrokloridietylenidiamiinitetraetikkahappo- (TE-) puskuria. 1 µl valmistettua liuosta pipetoitiin 5 ml:n tuikenestettä (HiSafe2), jotta koettimen radioaktiivisuus ennen suodattamista voitiin määrittää. Puhdistuskolonnit (G-50 Sephadex columns, Roche, Mannheim, Saksa) valmisteltiin valmistajan ohjeiden mukaisesti. Leimausreaktioseos (29 µl) pipetoitiin kolonniin ja kolonnia sentrifugoitiin 4 minuutin ajan (1100 g). Keräysputken saanto pipetoitiin puhtaaseen mikrosentrifugiputkeen ja tilavuus määritettiin. Tästä pipetoitiin 1 µl liuosta 5 ml:n tuikenestettä. Koettimien radioaktiivisuudet ennen ja jälkeen suodatuksen määritettiin Wallac Scintillation counter (Wallac 1409) –lukijalaitteella.

2.5.4 Hybridisaatio

Hybridisaatioreaktiolius valmistettiin siirtäjä-RNA:sta (tRNA, 50 mg/ml), denaturoidusta lohen sperman DNA:sta (ssDNA, 10 mg/ml), leimatusta koettimesta (10 000 000 cpn/ml) ja hybridisaatioliusksesta (50 % deionisoitu formamidi, 4-kertainen natriumkloridi-natriumsitraattiliuos [4xSSC: 0,6 M natriumkloridi, 0,06 M natriumsitraatti], 1-kertainen Denhardtin liuos [0,02 % polyvinylypirrroidoni, 0,02 % Hicoll, 0,02 % nautan seerumin albumiini], 1 % sarkosyyli [N-lauroylisarkosiini], 0,02 M fosfaattipuskuri [pH 7,0], 10 % dekstraanisulfaatti [500µg/ml]). Valmis hybridisaatiolius pidettiin inkubaattorissa (+45 °C), kunnes se levitettiin aivoleikkeiden päälle. Hybridisaatiokammion pohjalle laitettiin vahtomuovipalat, jotka kostutettiin 4-kertaisella natriumkloridi-natriumsitraattiliuoskella (4xSSC) ja mikrokooppilasit laitettiin niiden päälle. Juuri ennen hybridisaatioreaktioliuoksen levittämistä mikrokooppipilaseille aivoleikkeet käsiteltiin UV-valolla (Stralinker® UV Croslinker)
leikkeiden kiinnittymisen varmistamiseksi. +45 °C -asteinen hybridisaatioreaktioluos centrifugoitiin (2000 rpm, 5 min) juuri ennen liuoksen levittämistä aivoleikkeiden päälle. Hybridisaatioreaktioluos levitettiin leikkeiden päälle varovasti Parafilmmin avulla, jonka jälkeen hybridisaatiokammio siirrettiin lämpökaappiin (+45 °C) inkuboitumaan 18 tunniksi.

2.5.5 Pesut ja kuivaaminen

Hybridisaation jälkeen leikelaseja pestiin natriumkloridi-natriumsitraattipuskurilla (1xSSC), joka laimennettiin 20-kertaisesta kantaliuoksesta (20xSSC) milliQ-vedellä ja lämmitettiin vesihäteessa (+55 °C). Pesu aloitettiin kastamalla mikroskooppilasit huoneenlämpöiseen puskuriin. Sen jälkeen mikroskooppilasit siirrettiin uuteen puskuriin ja +55 °C:n vesihäteeseen 20 minuutin ajaksi. Puskuri vaihdettiin yhteensä kolme kertaa. Lopuksi mikroskooppilaseja liotettiin huoneenlämmössä SSC:ssä vähintään tunnin ajan. Sen jälkeen mikroskooppilasit kastettiin nopeasti milliQ-veteen, kuivattiin etanolisarjassa (30 sekuntia 60 %, 80 % ja 100 % etanolissa) ja jätettiin vetokaappiin huoneenlämpöön vuorokaudeksi.

2.5.6 Filmien valottaminen, kehittäminen ja tulosten kvantitointi

2.5.7 Kresyyliviolettivärjäys

Aivoleikkeet värjätettiin kresyyliviolettiasetaatilla (noin 0,2 %), jonka pH-arvo oli 3,7. Värjäys aloitettiin upottamalla leikkeet 15 minuutin ajaksi kresyyliviolettiliuokseen, jonka jälkeen ne laitettiin etanoliliuokseen (50 %) 2-3 minuutin ajaksi. Sitten aivoleikkeet kastettiin toiseen etanoliliuokseen (100 %) ja lopuksi ne kastettiin vielä ksyleenisä. Värjättyjen aivoleikkeiden päälle laitettiin pieni määrä ksyleeniä (50 %)
sisältävää Eukitt®-kiinnitysainetta (YA Kemia, Helsinki, Suomi) ja sen päälle asetettiin ohut mikroskooppilasi (Thermo Scientific, Saksa) värjättyjen aivoleikkeiden suojaksi.

2.6 Tilastolliset menetelmät

Kaikilla menetelmillä saadut tulokset analysoitiin GraphPad Prism 4 -ohjelman avulla. Tilastollisina testeinä käytettiin joko yksi- tai kaksisuuntaista varianssianalyysiä tai Studentin t-testiä. Jatkotesteinä käytettiin Neuman–Keuls-, Tukey- ja Bonferronin testiä. Luottamusvälinä tilastollisissa analyyseissä oli 95 %.

3 TULOKSET

3.1 Liikeaktiivisuus

Liikeaktiivisuuden määrittämiskoe suoritettiin kuvan 3 aikajanan mukaisesti. Ennen varsinaista koetta hiirten annettiin tottua tutkimuslaatikkoon ja uuteen ympäristöön 90 minuutin ajan, jotta etanolin aiheuttaman liikeaktiivisuuden muutosta voitii luotettavasti arvioida (Kuva 4a). Totuttamisjakson jälkeen annosteltu immepip (30 mg/kg, i.p.) lisäsi hiirten liikeaktiivisuutta kontrolliryhmään verrattuna 15-20 minuutin kuluttua injektiosta (*p<0,05) (Kuva 4b). Siproksifaani (3 mg/kg) sen sijaan ei vaikuttanut tilastollisesti merkitsevästi hiirten liikeaktiivisuuteen. Hiirille annosteltiin 30 minuutin kuluttua esikäsittelystä etanolia (1,5 g/kg, i.p) tai keittosuolaliuosta, jonka jälkeen hiirten liikeaktiivisuutta mitattiin 30 minuutin ajan (Kuva 4c). Immepip vähensi etanolin aiheuttamaa liikeaktiivisuuden lisääntymistä merkittävän tarkoituksen observationaatalossa (p<0,05) ensimmäisen kumulatiivisen 15 minuutin aikana. Siproksifaanin ei vaikuttanut etanolisimulaatioon (Kuva 4c). Koska siproksifaanilla havaittiin kuitenkin taipumusta kohottaa etanolisimulaatiota, päätimme tutkia, onko etanoliannoksella merkitystä asiaan. Suoritimme siis saman kokeen muuttamatta siproksifaanin annosta, mutta pienentäen etanoliannoksen 1,5 g/kg:sta 1,0 g/kg:n. Tällä etanoliannoksella siproksifaanin havaittiin paitsi nostavan myös pidentävän etanolisimulaatiota (p<0,05) (Kuva 5a ja 5b).
Kuva 3. Liikeaktiivisuuden määrittämiskokeen aikana.

Kuva 4. H3-reseptorin agonisti immepip lisää DBA/2J- kannan uroshiirten liikeaktiivisuutta, mutta vähentää etanolin aiheuttamaa liikeaktiivisuuden stimulaatiota. H3-reseptorin käänteisagonistilla siproksifaanilla ei ole vaikutusta hiirten liikeaktiivisuuteen tai etanolin stimulaatiovaikutukseen. a) Lokomotorinen aktiivisuus 90 minuutin totuttamisjakson aikana n=72. b) Lokomotorinen aktiivisuus 30 minuutin aikana keittosuolaliuoksen (sal), siproksifaanin (3 mg/kg, i.p.) (sipr) tai immepipin (30 mg/kg, i.p.) (imm) annostelun jälkeen. n=22-34 c) Hiirten kumulatiivinen aktiivisuus 15 minuutin aikana etanoliannostelun (1,5 g/kg, i.p.) jälkeen, n=10-12. Tulokset analysoitu joko yksi- tai kaksisuuntaisella varianssanalyysillä ja Bonferronin tai Newman-Keulsin jatkotestillä (*p<0,05, ***P<0,001).
Kuva 5. Siproksifaani lisää etanolin aiheuttamaa liikeaktiivisuuden lisääntymistä DBA/2J-kannan uroshiirillä. a) Lokomotorinen aktiivisuus 30 minuutin aikana keittosuolaliuos-etanoli (sal+etoh) ja siproksifaani-etanoli (sipr+etoh) -ryhmien välillä. Siproksifaanin annos oli 3 mg/kg ja etanolin annos 1,0 g/kg. b) Hiirten kumulatiivinen aktiivisuus 30 minuutin aikana etanoliannostelun (1,0 g/kg, i.p.) jälkeen. Tulokset analysoitu kaksisuuntaisella varianssianalyysillä ja Bonferronin jatkotestillä tai parittomalla t-testillä (*p<0,05). Kaikki tulokset ilmoitettu liikuttuna matkana (cm)+SEM, n=12.

3.2 Ehdollistettu paikkahakuisuus

Ennen varsinaista tutkimusta selvitettiin, ettei hiirillä ole mieltymystä kumpaankaan lattiamateriaaliin (Kuva 6). Tällä tavoin ehdollistetun paikkahakuisuuden tutkimisen voidaan olettaa kuvastavan vain käytetyn aineen mielihyvävaikutusta, eikä esimerkiksi lääkkeineen mahdollinen anksiolyyttinen vaikutus sekoita tulosten tulkintaa (Cunningham ym. 2006). Mahdollisesti kehitettynyt paikkahakuisuus todetaan tutkimuksen viimeisenä päivänä vertaamalla, kuinka kauan aikaa eri lattiamateriaaleille ehdollistetut eläimet viettivät toisella lattiamateriaaleista. Jos näiden kahden ryhmän välillä on tilastollisesti merkitsevä ero, eläimillä katsotaan olevan ehdollistettua paikkahakuisuutta. Selvittääksemme, vaikuttavatko H3-reseptoriligandit etanolin aiheuttaman paikkahakuisuuden kehittymiseen, osalle hiiristä annettiin esikäsittelynä joko immepipiä (30 mg/kg), siproksifaania (3 mg/kg) tai JNJ-10181457 (5 mg/kg tai 10 mg/kg) 30 minuuttia ennen etanolin annostelua. Ehdollistamisten aikana mitattiin hiirten liikeaktiivisuutta videokameran ja Ethovison Pro 3.0-ohjelman avulla. Hiirten liikeaktiivisuus viiden minuutin ehdollistamisjaksojen aikana nähdään kuvassa 7.
Kaikissa etanolikäsittelyn saaneiden hiirten ryhmissä liikeaktiivisuus viiden minuutin ehdollistamisen aikana lisääntyi koepäivien edetessä, hiiret siis herkistyivät etanolistimulaatiolle. Kuvan 8 (kohdat a, b ja c) kontrolliryhmistä havaitaan, että etanoli (2 g/kg) ilman esikäsittelyä aiheuttaa voimakasta ehdollistettua paikkahakuisuutta DBA/2J-kannan hiirillä. Immepipesikäsittely ei vaikuttanut etanolin aiheuttamaan ehdollistetun paikkahakuisuuden kehittymiseen (kuva 8a). Siproksifaaniesikäsittely ehdollistamisen aikana sen sijaan esti ehdollistetun paikkahakuisuuden kehittymisen (kuva 8b). Pienempi annos (5 mg/kg) JNJ-10181457:a esti ehdollistetun paikkahakuisuuden kehittymisen. Suurempi annos (10 mg/kg) ei estänyt paikkahakuisuuden kehittymistä, joskaan paikkahakuisuus ei ollut yhtä voimakas kuin pelkkää etanolia saaneiden eläinten (kuva 8c).

Käytetyillä H3-reseptoriligandeilla on siis vaikutusta ehdollistetun paikkahakuisuuden kehittymiseen ja näitä tuloksia vahvistaa merkitsevä interaktio lattiamateriaalin ja lääkeaineikäsittelyn välillä kaksisuuntaisella varianssianalyysillä (vapausaste 1-25, p=0,0078). Keittosuolaliuos-annostelun jälkeen hiirten aktiivisuuksissa 30 minuutin preferenssitestin aikana ryhmien välillä ei ollut tilastollisesti merkitseviä eroja. Liikuttujen matkojen keskiarvot (cm) ± keskiarvon keskivirhe (SEM) preferenssitestin aikana olivat: 3389±193 (etanoli), 3502±297 (immepip), 3643±152 (siproksifaani), 3665±184(JNJ-10181457 5 mg/kg), 3699±1667 (JNJ-10181457 10 mg/kg).

Kuvasta 8d havaitaan, että toistettaessa preferenssitestaus kuuden päivän jälkeen viimeisestä ehdollistamiskerrasta, ei minkään ryhmän hiirillä enää ole ehdollistettua paikkahakuisuutta.
Kuva 6. Mahdollisen lattiamateriaalipreferenssin testaaminen DBA/2J-kannan hiirillä. Tutkimuslaatikon pohja oli peitetty siten, että puolet lattiasta oli peitetty metalliverkolla ja puolet muovimatolla. Hiirillä \(n=16/\text{ryhmä} \) ei havaittu tilastollisesti merkitsevää mieltymystä kumpaankaan lattiamateriaaliin 30 minuutin testausjakson aikana. Tulos analysoitiin parittomalla t-testillä, \(p=0,9890 \).

Kuva 7. DBA/2J-hiirten liikeaktiivisuus neljän ehdollistamiskerran aikana ehdollistetun paikkahakuisuuden menetelmässä. a) Kontrolliryhmän hiirten liikeaktiivisuus ehdollistamispäivinä heti keittosuolaliuoksen tai etanolin (2,0 g/kg) annostelun jälkeen b) Immepipesikäsittelyryhmän hiirten liikeaktiivisuus keittosuolaliuosannostelun yhteydessä ja immepip-etanoli-annostelun jälkeen. Immepipin annos oli 30 mg/kg, i.p. (imm) c) Siproksifaaniryhmän liikeaktiivisuus keittosuolakäsittely ja siproksifaani-etanolikäsittelyn jälkeen. Siproksifaanin annos oli 3 mg/kg, i.p. (sipr) d) JNJ-10181457-esikäsittelyryhmän liikeaktiivisuus keittosuola-annostelun ja JNJ-10181457-
etanolikäsittelyn jälkeen. JNJ10181457:n annokset olivat 5 mg/kg, i.p. (JNJ 5 mg) ja 10
mg/kg, i.p. (JNJ 10 mg). n=16/käsittelyryhmä. Etanoli lisäsi eläinten liikeaktiivisuutta
tilastollisesti merkitsevästi kaikissa ryhmissä. Kaksisuuntasaisella varianssanalyysillä
kaikissa ryhmissä oli merkitsevä interaktio ajan ja lääkeainekäsittelyn välillä
(P<0.0001).

Kuva 8. H3-reseptoriligandit vaikuttavat etanolin aiheuttaman ehdollistetun
paikkahakuisuuden kehittymiseen DBA/2J-kannan uroshiirillä. a) H3-reseptori agonisti
immepip (imm) ei muuta etanolin (kontr) aiheuttamaa ehdollistettua paikkahakuisuutta.
Mieltymys etanoliin yhdistettyyn lattiamateriaaliin on yhtä voimakas huolimatta
immeppesikäsittelystä ehdollistamisen aikana. b) H3-reseptorin käänteisagonisti
siproksifaani (sipr) estää etanolin (kontr) aiheuttamaa ehdollistettua paikkahakuisuutta.
H3-reseptorin neutraali antagonisti JNJ-10181457 estää etanolin aiheuttamaa
ehdollistettua paikkahakuisuutta pienemmällä (5 mg/kg) annoksella mutta ei
suuremmalla annoksella (10 mg/kg). d) Preferenssitestaus kuuden päivän kuluttua
viimeisestä ehdollistamiskerrasta. Millään ryhmällä ei enää esiintynny ehdollistettua
paikkahakuisuutta. Kaikki tulokset analysoitu yksisuuntaisella varianssanalyysillä ja
Tukeyn jatkotestillä, ***p<0,001, **<0,001, *p<0,05, n=6-8.
3.3 Plasman etanolipitoisuuden määritys

DBA/2J-kannan uroshiirten terminaaliverinäytteestä määritettiin etanolin pitoisuus plasmassa hiiriltä, joille annettiin esikäsittelynä immeippiä (30 mg/kg) tai siproksifaania (3 mg/kg). Kontrolliryhmän hiirille annosteltiin ainoastaan etanolia (1,5 g/kg). Kaupallisella etanolinäyritysmenetelmällä suoritetussa määrityksessä näytteiden absorbanssit mitattiin spektrofotometrillä aallonpituudella 570 nm ja plasmanäytteiden etanolipitoisuudet laskettiin saaduista tuloksista standardisuoran avulla (Kuva 9). Standardisuoran yhtälöksi saatiin: $y = 632,58x + 31,522$. 15 minuuttia etanolin annostelun jälkeen otetun verinäytteet etanolikonsentraation keskiarvo ± keskiarvon keskivirhe (SEM) ($n=6/ryhmä$) oli etanoliryhmässä $1,37±0,14$ mg/ml, immepipryhmässä $1,24±0,17$ mg/ml ja siproksifaaniryhmässä $1,24±0,07$ mg/ml. Kuvassa 10 on esitetty eri käsittelyryhmien plasman etanolipitoisuudet (mg/ml). Tuloksista nähdään, että H3-reseptorin agonistilla tai antagonistilla ei ole tilastollisesti merkitsevää vaikutusta etanolin pitoisuuteen plasmassa ($p>0,7357$).

Kuva 10. Plasman etanolikonsentraatiot etanolin (1,5 g/kg, i.p.) (etoh), immepipin (30 mg/kg, i.p.) ja etanolin (1,5 mg/kg) (imm+etoh) sekä siproksifaanin (3 mg/kg, i.p.) ja etanolin (1,5 g/kg) (sipr+etoh) annostelun jälkeen DBA/2J-kannan uroshiirillä. Immepip ja siproksifaani annosteltiin 30 min ennen etanolikäsittelyä. Eläimet lopetettiin 15 min kuluttua etanoliannosta. Tulokset analysoitiin yksisuuntaisella varianssianalyysillä. Ryhmien välillä ei ole tilastollisesti merkitseviä eroja (p>0,05). n=6/käsittelyryhmä.

3.4 Radioaktiivinen in situ –hybridisaatio

Kuva 11. D1-reseptorin mRNA:n ilmentyminen villityypin ja histidiimidekarboksylaasin (HDC) suhteen poistogeisten hiirten striataalisista aivoleikkeistä radioaktiivisen in situ –hybridisaation avulla. a) ja b) Villityypin ja HDC-poistogeisten hiirten D1-reseptorin ilmentyminen striatumissa c) ja d) Aivoleikkeet a ja b kresyyliviolettivärjäyksen jälkeen. D1-reseptorin ilmentymisessä ei havaittu tilastollisesti merkitseviä eroja yksisuuntaisella varianssianalyysillä (p>0,05).
Taulukko 2. D1-reseptorin mRNA:n ilmentyminen villityypin (WT) ja histidiinidekarboksylaasin (HDC-) suhteen poistogeenisten (KO) hiirten striatumissa

<table>
<thead>
<tr>
<th>AIVOALUE</th>
<th>WT ± SEM</th>
<th>KO ± SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>caudate putamen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dorsolateraalininen</td>
<td>63±6</td>
<td>65±6</td>
</tr>
<tr>
<td>dorsomediaalininen</td>
<td>62±6</td>
<td>60±6</td>
</tr>
<tr>
<td>ventraaalininen</td>
<td>61±7</td>
<td>63±5</td>
</tr>
<tr>
<td>accumbens-tumake</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ydin</td>
<td>43±8</td>
<td>51±9</td>
</tr>
<tr>
<td>kuori</td>
<td>61±11</td>
<td>67±12</td>
</tr>
</tbody>
</table>

Tulokset on ilmoitettu mRNA:n ilmentymisen keskiarvona (ka) (pCi/mg) ± keskiarvon keskivirhe (SEM).

4 TULOSTEN TARKASTELU

4.1 Yleistä H3-reseptorivälitteisistä vasteista

reseptorina, mutta tämän reseptorityypin merkitys ei ole täysin selvä (Pollard ym. 1993; Pillot ym. 2002a).

Kuva 12. Presynaptiset H3-reseptorit histaminergisessa hermosolussa vaikuttavat GABAergisen hermosolun toimintaan joko suoraan säätelmällä histamiinin vapautumista tai epäsuorasti säätelmällä dopamiinin vapautumista dopaminergisestä hermosolusta. (Muokattu Yoshimoto ym. 2006)

H3-reseptori on G-proteiinikytentäinen reseptori, joka on spontaanisti aktiivinen myös ilman agonistia (Morisset ym. 2000). H3-reseptorin konstituttiivinen aktiivisuus on todettu sekä rekonbinanttisysteemeissä että kudosnäytteissä, joissa sen on havaittu säätelvän hermosolun aktiivisuutta (Rouleau ym. 2002).

H3-reseptoriligandien suora vaikutus presynaptisessa dopaminergisessa hermosolussa on sen sijaan päinvastainen: H3-reseptoriin sitoutuessaan siproksifaani antagonistina lisää dopamiinin vapautumista hermopääteestä kun immepip puolestaan estää dopamiinin vapautumista synapsiraokoon.

4.2 Liikeaktiivisuuden mitattaminen

sivukammioon annosteltu histamiini-infuusio aiheuttaa hypokinesiaa, jonka tutkijat olettivat johtuvan dopaminergisen järjestelmän aktiivisuuden vähentymisestä, joka on seurausta histamiinin sitoutumisesta H3-heteroreseptoriin (Chiavegatto ym. 1998). Koska käytössämme oli eri antoreitit, annokset ja eri eläinlaji, on tuloksia kuitenkin vaikea verrata keskenään. Brabant tutkimusryhmäen havaitsi, että immepip yksin ei vaikuttanut merkitsevästi C57BL/6J- kannan hiirten liikeaktiivisuuteen annoksilla 10 mg/kg ja 20 mg/kg (Brabant ym. 2009). Koska näyttöä immepipin vaikutuksesta eläinten liikeaktiivisuuteen on suhteellisen vähän, ja saadut tulokset ovat keskenään ristiriitaisia, lisätutkimukset ovat tarpeen.

Siproksifaani ei tässä tutkimuksessa vaikuttanut koe-eläinten liikeaktiivisuuteen tilastollisesti merkitsevästi, mutta siproksifaani mieluummin vähentäisi kuin lisäsi eläinten liikeaktiivisuutta. Muutkin tulokset viittaavat siihen, ettei siproksifaanilla ole merkittävää vaikutusta hiirten liikeaktiivisuuteen (Pan ym. 2006; Nuutinen ym. 2010).

Siproksifaanin sen sijaan ei havaittu muuttavan etanolistimulaatiota, kun etanolia annosteltiin 1,5 g/kg. Nähäksemme siproksifaanin mahdollisen vaikutuksen selkeämmin päättämme pienentää etanolin annostusta. Siproksifaani lisäsi hiirten liikeaktiivisuutta, kun etanolin annostusta pienennettiin 1,5 g/kg:sta 1,0 g/kg:n siproksifaanin annostuksen pysyessä samana kuin aikaisemmassa kokeessa (3 mg/kg). Tulokset analysoitiin 30 minuutin ajalta, sillä tuloksista oli havaittavissa, että siproksifaani ei ainoastaan voimista mutta myös pidentää etanolistimulaation kestoa (kuva 5a). Pelkän etanolin stimulaatiovaikutus on voimakkaimmillaan 15 minuutin kohdalla, jonka jälkeen se laskee nopeasti. Myös tioperamidin on havaittu voimistavan kokaiinin aiheuttamaa liikeaktiivisuuden lisääntymistä samansuuntaisesti kuin tässä tutkimuksessa siproksifaani voimisti etanolistimulaatiota (Brabant ym. 2006; Brabant ym. 2009; Brabant ym. 2009:). Toisaalta tioperamidin on havaittu myös heikentävän amfetamiinin, apomorfinin ja kokaiinin aiheuttamaa liikeaktiivisuuden stimulaatiota (Clapham ja Kilpatrick 1994). Myös siproksifaanin on havaittu heikentävän metamfetamiinin aiheuttamaa liikeaktiivisuuden lisääntymistä ja voimistavan haloperidolin aiheuttamaa liikeaktiivisuuslamaa (Morisset ym. 2002; Pillot ym. 2002b).
Tulosten tulkitseminen ei siis ole suoraviivaista ja ristiriitaiset tulokset vaikeuttavat tulosten ymmärtämistä. On kuitenkin muistettava, että eri aineilla saavutettu liikeaktiivisuuden lisääntyminen johtuneee ainakin osittain eri mekanismeista ja välittäjäaineista, joten etanolistimulaation ja dopamiiniagonistien aiheuttaman stimulaation vertaaminen keskenään ei välttämättä ole perusteltua.

Poiketen tämän erikoistyön tuloksista, aikaisemmassa tutkimuksessa on havaittu, ettei immepip yksin vaikuttanut merkitsevästi hiirten liikeaktiivisuuteen annoksilla 10 mg/kg ja 20 mg/kg (Brabant ym. 2009). Immepipin ei myöskään havaittun muuttavan kokaiinin aiheuttamaa liikeaktiivisuuden lisääntymistä. Sen sijaan tutkimusryhmä havaitsi, että immepip vähensi tilastollisesti merkittävästi H3-reseptioriantagonisti tioperamidin potensoivaa kokaiinin aiheuttamaa stimulaatiovaikutusta. Tutkimusryhmä ehdotti, että heidän tuloksensa johtuisivat osittain tioperamidin ja kokaiinin farmakokineettisestä yhteisvaikutuksesta sekä ventraalisen striatumin postsynaptisten H3-reseptorien salpaantumisesta. Tämä tukee myös meidän havaitsemiamme tuloksia ja hypoteeseja siitä, että postsynaptinen H3-reseptori ja sen ligandit todella ovat merkittäviä etanolistimulaation säätelyssä.

4.3 Ehdollistettu paikkahakuisuus

Neljä ehdollistamista etanolilla sai aikaan selkeän paikkahakuisuuden kehittymisen, joka oli vastaavansuuruinen kuin aiemmin on kuvattu DBA/2J-kannan hiirissä (Cunningham ym. 2006; Dickinson ym. 2003). Etanoli aiheutti ehdollistettua paikkahakuisuutta, jota immepipesikäsittely ehdollistamisen aikana ei muuttanut. Sen
sijaan siproksifaani esti etanolin aiheuttaman ehdollistetun paikkahakuisuuden kehittymistä viitaten siihen, että H3-reseptorin antagonisti estää etanolin mielihyvävaikutusta. Aikaisemmassa tutkimuksessa osoitettiin myös, ettei siproksifaani itsessään aiheuttanut ehdollistettua paikkahakuisuutta 129/Sv- kannan hiirillä (Nuutinen ym. 2010). Siproksifaani ei siis itsessään aiheuta mielihyvää, mutta kuten tuloksemme osoittavat, se mahdollisesti estää etanolin aiheuttamaa mielihyvävaikutusta.

Olettaen, että etanolin aiheuttama mielihyvävaikutus on dopamiinista riippuvaisia (Gonzales ym. 2004), siproksifaanin päävaikutuskohteen ei voi olla presynaptinen dopaminerginen H3-reseptori, johon sitoutuessaan siproksifaani lisäisi dopaminiin vapautumista ja sitä kautta myös mielihyvävaikutusta. Luultavimmin käytettyjen H3-reseptoriligandien tärkeimmät vaikutuskohteet ovat H3-autoreseptorit histaminergisissä hermosoluissa ja postsynaptiset H3-reseptorit GABAergisissä hermosoluissa kuten liikkeaktivisuuden määrittämiskoekessakin. Siproksifaani lisää histamiinin vapautumista, joka puolestaan lisää GABAergistä aktiivisuutta, jolloin dopaminiin vapautuminen dopaminergisestä hermosolusta vähenee (Korotkova ym. 2002). Dopaminiin vapautumisen vähentyminen selittäisi myös, miksi siproksifaani yksin ei aiheuttanut ehdollistettua paikkahakuisuutta aikaisemmassa tutkimuksessa.

Tulostemme perusteella sekä H3-reseptorin käänteisagonisti siproksifaani että H3-reseptorin neutraali antagonisti JNJ-10181457 (5 mg/kg) esikäsittelnyä estävät etanolin aiheuttamaa paikkahakuisuutta. Ferrada tutkimusryhmä on osannut, että D1- ja H3-reseptorin välillä voi tapahtua heteromerisaatio, jonka seurauksena toisen heteromeerialayksikon antagonistointi vähentää myös toisen reseptorin signalointia (Ferrada ym. 2009). Hypoteesina voidaan siis olettaa, että siproksifaanin tai JNJ-10181457:n sitoutuminen muodostumiseen reseptoriheteromeeriin vähentää D1-reseptorivälitteistä signalointia. D1-välitteisen signaloinnin heikentyminen johtaa myös alhaisempaan mielihyvävaikutukseen, joskaan D1-reseptori ei ole ainoa mielihyvää säätellevä tekijä. D1- ja H3-reseptorin yhteisvaikutuksesta seuraava dopaminergisen signaloinnin muutos on kuitenkin yksi mahdollinen selitys sille, että siproksifaani ja JNJ-10181457 (5 mg/kg) estivät etanolin aiheuttamaa paikkahakuisuutta ja sen aiheuttamaa mielihyvävaikutusta. Koska mielihyväätuntemukseen liittyvät dopaminiin...
lisäksi myös muita tekijöitä, havaitun vasteen taustalla voi lisäksi olla monimutkaisia säätelymekanismeja ja niistä seuraavia yhteisvaikutuksia reseptoritoiminnoissa.

Yllättäen suurempi annos JNJ-10181457:ä (10 mg/kg) ei tässä tutkimuksessa estänyt etanolin aiheuttamaa ehdollistetun paikkahakuisuuden kehittymistä. Tämä voi johtua annoksesta. JNJ-10181457:n vaikuttava annos (ED$_{50}$) on ihonalaisesti annosteltuna 3 mg/kg (Bonaventure ym. 2007), joten 10 mg/kg voi hyvin olla liian suuri annosa ja aiheuttaa epäesimerkittävä vasteita. On jopa mahdollista, että liian suuri annos JNJ-10181457-ligandia on itsessään mielihyvävää aiheuttava. Tällöin se saattaisi aiheuttaa mielihyvää myös yhdistettynä etanoliin, vaikka heteromerasatio H3- ja D1-reseptorin välillä onkin tapahtunut ja D1-reseptorivälitteinen signalointi on heikentynyt. Asian selvittämiseksi olisi hyödyllistä tutkia JNJ-10181457:n vaikutuksia käyttäen useampaa annosta, mutta myös sen omaa vaikutusta ehdollistetun paikkahakuisuuteen.

Sitoutuessaan presynaptiseen dopaminergiseen hermosolun siproksifaani ja tioperamidi lisäävät histamiinin lisäksi myös dopamiinin vapautumista ja tämä saattaa selittää siproksifaanin ja tioperamidin aiheuttaman mielihyvävaikutuksen voimistumisen. Jos histamiini on mielihyvävääntemusta estävä, on myös mahdollista että se vähentää etanolin aiheuttamaa mielihyvävaikutusta. Koska siproksifaani ei kuitenkaan yksin aiheuta mielihyvää eikä aversiota (Nuutinen ym. 2010), on selvää, että näitä tuloksia ei voida selittää pelkän histamiinin avulla. Taustalla on monimutkaisia mekanismeja, joita pelkän histamiinin vasteet eivät riitä selittämään. Aiempien tutkimusten sekä tämän erikoistyön perusteella histamiinilla ja H3-reseptoreilla on kuitenkin selkeä rooli mielihyväväntemuksessa, mutta niiden neurokemiallinen vaikutusmekanisminä jää edelleen avoimeksi.

reseptori antagonistit estävät nimenomaan ehdollistumisen kehittymisen, sillä H3-
reseptoriligandit annosteltiin ennen etanolilla ehdollistamista.

Ehdollistumisen ilmentyminen lienee haluamista ja haluaminen on todennäköisesti
dopamiinista riippuva (Berridge ja Robinson 1998). Eräsä toisessa tutkimuksessa
havaittiin, että keskiaivojen ventraaliseen tegmentumii annosteltu
opioidireseptoriantagonisti metyylinaloksoni tai GABA_B-agonisti baklofeeni estivät
annosvasteisesti etanolin aiheuttamaa ehdollistettua paikkahakuaitta DBA/2J-
kannan hiirillä (Bechtholt ja Cunningham 2005). Metyylinaloksonin annostelu accumbens-
tumakkeeseen ei kuitenkaan estänyt tätä. Niinpä etanolin aiheuttama ehdollistettu
paikkahakuaitta näyttäisi olevan keskiaivojen ventraalisesta tegmentumista lähtöisin
oleva ilmiö, joka voidaan estää joko salpaamalla tämän alueen opioidireseptorit tai
aktiviomalla GABA_B-reseptorit. Tämä havainto tukee Dickinsonin tutkimusryhmän
kantaa siinä, että ehdollistettu paikkahakuaitta ei ilmenisikään suoraan dopamiinin
välityksellä, vaan mahdollisesti glutamaatti- ja dopaminireseptorien
yhteisvaikutuksesta. Mielestämme kuitenkin tutkimuksia, joissa lääkeaineita annetaan
juuri ennen preferenssitestä, tulisi tulkita kriittisisti. Ehdollistettu paikkahakuaitta on
riippuvuuden malli, jossa on tärkeää tutkia riippuvuuden kehittymistä ja lääkeaineita,
jotka voisivat sen kehittymistä mahdollisesti estää. Toki riippuvuuden ilmentymiseen
vaikuttamallakin voitaisiin mahdollisesti hoitaa alkoholiriippuvuutta, mutta sen
toteuttaminen puuttumatta muihin mielihyvätuntemuksiin tuskin on realistista. Jos
lääkeaine annostellaan riippuvuuden jo kehittyttyä, on todennäköistä, että estämällä
mielihyvätuntemusta puuttuaan myös muihin mielihyvää tuottaviin ärsykkeisiin. Sen
sijaan terapeuttisesti kiinnostava hoitomuoto olisi riippuvuuden kehittymisen esto
sellaisella lääkeaineella, joka muuttaa mielihyvätuntemusta vain nautittavan aineen
osalta. Dopaminergisen signaloinnin tulisi tällöin vähentää ainoastaan silloin, kun
dopamiinin vapautuminen lisääntyy voimakkaasti, ei siis normaalissa

Dopaminergisen aktivisuvuuden yhteydessä. Tällainen "on demand"-hoitomuoto saattaisi olla
mahdollinen, sillä useat riippuvuutta aiheuttavat aineet, kuten etanol, lisäävät
dopaminergistä signalointia voimakkaasti. Tämän vuoksi olisi tärkeää tutkia, miten H3-
reseptorin antagonistit vaikuttavat dopaminergiseen signaloihin sellaisenaan ja yhdessä
dopaminergistä signalointia lisäävän aineen kanssa.
Koska alkoholin aiheuttama mielihyvävaikutus ja alkoholiriippuvuus eivät ole ainoastaan dopaminergisen järjestelmän sätelemiä ilmiöitä, vaan myös asian ymmärtäminen laaja-alaista ja monimuotoista tutkimusta. Muun muassa opioiidergisen järjestelmän tiedetään olevan tärkeässä roolissa alkoholiriippuvuuden synnyssä (Herz 1997), jonka vuoksi etanoli ja H3-reseptoriligandien vaikutuksia myös tähän järjestelmään olisi tärkeä tutkimuksessa. Tässä erikoistyössä keskitymme kuitenkin ainoastaan histaminergisen ja dopaminergisen järjestelmän yhteisvaikutuksiin, koska molempien järjestelmien tiedetään olevan mukana alkoholivaikutusten säätelyssä (Soderpalm ym. 2009; Brabant ym. 2010).

4.4 Plasman etanolipitoisuuden määrittäminen

Koska vanhemmat H3-reseptoriligandit ovat imidatsolirakenteisia yhdisteitä, halusimme tässä erikoistyössä selvitää, vaikuttavatko H3-reseptorin agonistin tai antagonistin
aiheuttamat histamiinin pitoisuuden muutokset etanolin pitoisuuteen elimistössä. Kun hiirille annosteltiin H3-reseptorin käänteisagonisti siproksifaania tai H3-reseptorin agonisti immeipiä 30 minuuttia ennen etanolin annostelua ja sydätemestä otetuun termiinaaliverinaan elanokonsentraatio määrättiin, havaittiin, ettei etanolipitoisuuksissa ollut eroja ryhmien välillä. Tämän tutkimuksen perusteella imidatsolirakenteiset H3-reseptoriligandit ja histamiinin pitoisuuden muutokset elimistössä eivät siten vaikuta etanolin kenttiikkaan. Näin ollen tämän erikoistyön käytävälyskokeissa havaitut vasteet eivät johdu etanolipitoisuuden muutoksista elimistössä vaan ovat farmakologisesti H3-reseptorivälineisiä.

4.5 Radioaktiivinen in situ -hybridisaatio

5 YHTEENVETO

H3-reseptori on mielenkiintoinen kohde erilaisten keskushermostohäiriöiden hoidossa, ja H3-reseptorilla on merkitystä myös erilaisten alkoholivaikutusten välittymisessä. Nähtäväksi jää, onko H3-reseptorista tulevaisuudessa potentiaalia lääkekehityksen kohteeksi myös alkoholirippuvuuden hoidossa.

6 KIITOKSET

Kiitokset prof. Pertti Panulalle, erikoistyööjaajalleni FaT Saara Nuutiselle ja farmasian opiskelija Maria Chiara Pignille.
7 KIRJALLISUUSLUETTELO

Bechtholt AJ ja Cunningham CL: Ethanol-induced conditioned place preference is expressed through a ventral tegmental area dependent mechanism. Behav. Neurosci. 119, 213-23, 2005

Bongers G, Leurs R, Robertson J, Raber J: Role of H3-receptor-mediated signaling in anxiety and cognition in wild-type and apoe-/- mice. Neuropsychopharmacology. 29, 441-9, 2004

Brabant C, Alleva L, Quertemont E, Tirelli E: Involvement of the brain histaminergic system in addiction and addiction-related behaviors: A comprehensive review with emphasis on the potential therapeutic use of histaminergic compounds in drug dependence. Prog. Neurobiol., 421-441, 2010

Brabant C, Charlier Y, Quertemont E, Tirelli E: The H3 antagonist thioperamide reveals conditioned preference for a context associated with an inactive small dose of cocaine in C57BL/6J mice. Behav. Brain Res. 160, 161-8, 2005

Brabant C, Quertemont E, Tirelli E: The psychostimulant and rewarding effects of cocaine in histidine decarboxylase knockout mice do not support the hypothesis of an inhibitory function of histamine on reward. Psychopharmacology (Berl). 190, 251-63, 2007

Brabant C, Quertemont E, Tirelli E: Effects of the H3-receptor inverse agonist thioperamide on the psychomotor effects induced by acutely and repeatedly given cocaine in C57BL/6J mice. Pharmacol. Biochem. Behav. 83, 561-9, 2006

Brown RE ja Reymann KG: Histamine H3 receptor-mediated depression of synaptic transmission in the dentate gyrus of the rat in vitro. J. Physiol. 496 (Pt 1), 175-84, 1996

Chu M, Huang ZL, Qu WM, Eguchi N, Yao MH, Urade Y: Extracellular histamine level in the frontal cortex is positively correlated with the amount of wakefulness in rats. Neurosci. Res. 49, 417-20, 2004

Cunningham CL ja Noble D: Conditioned activation induced by ethanol: Role in sensitization and conditioned place preference. Pharmacol. Biochem. Behav. 43, 307-13, 1992

Dale HH ja Richards AN: The vasodilator action of histamine and of some other substances. J. Physiol. 52, 110-65, 1918

Dreher JK ja Jackson DM: Role of D1 and D2 dopamine receptors in mediating locomotor activity elicited from the nucleus accumbens of rats. Brain Res. 487, 267-77, 1989

Esbenshade TA, Fox GB, Cowart MD: Histamine H3 receptor antagonists: Preclinical promise for treating obesity and cognitive disorders. Mol. Interv. 6, 77-88, 2006

Gonzales RA, Job MO, Doyon WM: The role of mesolimbic dopamine in the development and maintenance of ethanol reinforcement. Pharmacol. Ther. 103, 121-46, 2004

Goodearl ADJ: Nuclei acids encoding muscarinic receptors and uses therefore. United States Patent # 5,882,893, 1999

Hancock AA, Esbenshade TA, Krueger KM, Yao BB: Genetic and pharmacological aspects of histamine H3 receptor heterogeneity. Life Sci. 73, 3043-72, 2003

Ito C: The role of the central histaminergic system on schizophrenia. Drug News. Perspect. 17, 383-7, 2004

Karlstedt K, Senkas A, Ahman M, Panula P: Regional expression of the histamine H(2) receptor in adult and developing rat brain. Neuroscience. 102, 201-8, 2001

Kwiatkowski H: Histamine in nervous tissue. J. Physiol. 102, 32-41, 1943

Kwiatkowski H: Observations on the relation of histamine to reactive hyperaemia. J. Physiol. 100, 147-58, 1941

Lin JS: Brain structures and mechanisms involved in the control of cortical activation and wakefulness, with emphasis on the posterior hypothalamus and histaminergic neurons. Sleep Med. Rev. 4, 471-503, 2000

Lucy JD: Histamine tolerance in schizophrenia. AMA Arch. Neurol. Psychiatry. 71, 629-39, 1954

Medvedev IO, Gainetdinov RR, Sotnikova TD, Bohn LM, Caron MG, Dykstra LA: Characterization of conditioned place preference to cocaine in congenic dopamine transporter knockout female mice. Psychopharmacology (Berl). 180, 408-13, 2005

Meyer PJ, Meshul CK, Phillips TJ: Ethanol- and cocaine-induced locomotion are genetically related to increases in accumbal dopamine. Genes Brain Behav. 8, 346-55, 2009

Miyazaki S, Onodera K, Imaizumi M, Timmerman H: Effects of clobenpropit (VUF-9153), a histamine H3-receptor antagonist, on learning and memory, and on cholinergic and monoaminergic systems in mice. Life Sci. 61, 355-61, 1997

Sakata T, Yoshimatsu H, Kurokawa M: Thermoregulation modulated by hypothalamic histamine in rats. Inflamm. Res. 46 Suppl 1, S35-6, 1997a

Soderpalm B, Lof E, Ericson M: Mechanistic studies of ethanol's interaction with the mesolimbic dopamine reward system. Pharmacopsychiatry. 42 Suppl 1, S87-94, 2009

Taylor KM ja Snyder SH: Brain histamine: Rapid apparent turnover altered by restraint and cold stress. Science. 172, 1037-9, 1971

Timmerman H: Histamine H3 ligands: Just pharmacological tools or potential therapeutic agents? J. Med. Chem. 33, 4-11, 1990

Zimatkin SM ja Anichtchik OV: Alcohol-histamine interactions. Alcohol Alcohol. 34, 141-7, 1999
