Lactoferrin in Bovine Intramammary Infection

Paula Hyvönen

ACADEMIC DISSERTATION

To be presented, with the permission of the Faculty of Veterinary Medicine, University of Helsinki, for public examination in Walter Hall, Agnes Sjöbergin katu 2, Helsinki, on 15 October 2010, at 12 noon.

Helsinki 2010
To Pekka and the Boys

A hidden connection is stronger than obvious one.

Heraclitus
ABSTRACT .. 6
ORIGINAL ARTICLES .. 8
ABBREVIATIONS .. 9
INTRODUCTION .. 11
REVIEW OF THE LITERATURE .. 13
1 Lactoferrin .. 13
 1.1 Structure of lactoferrin ... 13
 1.2 Functions of lactoferrin .. 16
 1.2.1 Antibacterial activity of lactoferrin ... 18
 1.2.2 Anti-inflammatory and immunomodulatory activities of lactoferrin 19
2 Expression of lactoferrin in the milk ... 20
 2.1 Lactoferrin in bovine milk .. 22
3 Lactoferrin and intramammary infection .. 24
 3.1 Lactoferrin in milk of cows with intramammary infection .. 25
 3.2 Interaction between lactoferrin and mastitis causing bacteria 26
4 Practical applications for lactoferrin ... 27
 4.1 General aspects ... 27
 4.2 Lactoferrin in the treatment and prevention of bovine mastitis 28
AIMS OF THE STUDY ... 30
MATERIALS AND METHODS .. 31
1 Experimentally induced mastitis (I, IV, V) ... 31
 1.1 Animals .. 31
 1.2 Clinical observations (I, IV, V) .. 32
 1.3 Ethical considerations .. 32
2 Bacteria (II, IV, V) .. 32
3 Endotoxin (I) .. 34
4 Analytical methods .. 34
 4.1 Analysis of bovine and human lactoferrin ... 34
 4.1.1 ELISA (III, IV, V) .. 34
 4.1.2 DELFIA (I) ... 35
 4.1.3 Purification of bovine lactoferrin (II) ... 35
 4.1.4 In vitro susceptibility of CNS strains to bovine lactoferrin (II) 35
4.2 Analysis of citrate (I) .. 35
4.3 Internalization assay (II) ... 35
4.4 Bacterial count (IV, V) and LPS in milk (IV) ... 36
4.5 Indicators if inflammation in milk and blood (IV, V) .. 36
4.6 Statistics (I, II, IV, V) ... 36

RESULTS ... 38
1 Lactoferrin in endotoxin mastitis in early- vs. late-lactating cows (I) 38
2 Internalization of coagulase-negative staphylococci in the BME cell model (II) 39
 2.1 Sensitivity of CNS to bovine lactoferrin ... 41
 2.2 Effect of bovine lactoferrin on the internalization .. 41
3 Bovine and human lactoferrin (III, IV, V) ... 42
4 Response of the rhLf-transgenic cows in experimentally induced intramammary
 infection (IV, V) .. 44

DISCUSSION ... 48
1 Lactoferrin in bovine intramammary infection .. 48
2 Behavior of lactoferrin and citrate in endotoxin mastitis (I) 48
3 The effect of bovine lactoferrin on staphylococcal internalization in the BME cell
 model (II) ... 50
4 The effect of expression of rhLf in the milk on experimentally induced intramammary
 infection (IV, V) ... 52

CONCLUSIONS ... 57
ACKNOWLEDGEMENTS ... 58
REFERENCES .. 60
ORIGINAL ARTICLES ... 78
Lactoferrin (Lf) is a bioactive molecule found in milk that is expressed in and secreted by mammary epithelial cells. It is also present in the secondary granules of neutrophils. The concentration of Lf in milk depends on the stage of lactation of the cow and infection status of the mammary gland. Lf has many biological functions that relate to bovine intramammary infections. Lf exerts bacteriostatic activity by binding iron and has bactericidal activity that results from the interaction between Lf and bacterium. Lf regulates the inflammatory response by binding to bacterial endotoxin, which inhibits formation of pro-inflammatory cytokines, or indirectly stimulates the host immune system. Lf inhibits intracellular invasion of pathogens and biofilm formation. It has immunoregulatory functions that affect antibody synthesis, production of various cytokines, and complement activation.

Mastitis is the most costly disease of dairy cows, causing decrease in milk quality and safety and marked economic losses for the industry. In addition, this disease affects animal welfare and is one of the main reasons for culling dairy cows. Mastitis is the most common reason for treating dairy cows with antibiotics, but results of the treatments are often poor. Thus, new approaches for mastitis control are urgently needed.

This thesis focuses on the behavior and effects of Lf in the bovine mammary gland. The studies include in vivo experiments, using induced mastitis with endotoxin, and two different udder pathogens, as well as in vitro experiments using bovine mammary epithelial (BME) cells. Concentrations of bovine Lf (bLf) and citrate in milk were investigated in experimentally induced endotoxin mastitis using the same cows during early- and late-lactation period. The ability of coagulase-negative staphylococci (CNS) isolated from bovine mastitis to adhere to, and invade and replicate intracellularly, and the related effect of bLf, were studied in a BME cell model. Transgenic cows expressing recombinant human Lf (rhLf) in their milk were used in two experiments in which intramammary infection was induced by a major pathogen Escherichia coli, and a minor pathogen, Staphylococcus chromogenes. Basal concentrations of bLf and rhLf in the milk of the rhLf-transgenic cows were determined during the first months of the lactation period.

Concentration of bLf in milk was significantly higher during the early lactation period than during the late lactation in experimentally induced endotoxin mastitis. The molar ratio of citrate to bLf before and after challenge was also significantly higher during the early lactation period. The molar ratio is more important than the absolute concentration of either component, and a low molar ratio increases resistance of the mammary gland to invading bacteria, coliforms in
particular. The results of this study may partly explain the susceptibility of dairy cows to intramammary infections during early lactation.

All CNS species examined were able to adhere to BME cells, but internalization varied among the strains. The effect of bLf on the adhesion and invasion of the CNS strains was weak, but it significantly decreased intracellular replication rates. Sequestering of free iron by exogenous bLf could inhibit staphylococcal growth. The effect of bLf was not related to the in vitro susceptibility of the CNS strain to bLf.

A new approach to prevention of bovine intramammary infection could be represented by genetic engineering, which was tested here using rhLf-transgenic cows. Two different udder pathogens, E. coli and S. chromogenes, were selected for induction of experimental mastitis in the transgenic and control cows. The bacterial strains used in the experiments were susceptible in vitro to bLf; susceptibility to hLf varied such that the E. coli strain was intermediately susceptible and the S. chromogenes strain fully susceptible. The response of the cows was monitored by determining concentrations of bLf and rhLf in the milk and concentrations of several indicators of inflammation in the milk and blood, such as somatic cell count (SCC), N-acetyl-β-D-glucosamidase (NAGase) activity and acute phase proteins. Expression of rhLf in the milk did not protect the cows from E. coli or staphylococcal intramammary infection. All cows became infected in both models. In the E. coli model, all cows developed clinical mastitis, but rhLf-cows showed milder systemic signs and lower concentrations of cortisol and haptoglobin in serum than the controls. rhLf-cows were protected from clinical disease after challenge with staphylococci and had a milder inflammatory reaction, which was recorded as lower NAGase activity and lower concentration of serum amyloid A in the milk.

The results of the investigations reported in this thesis show that one aspect of the innate immunity of the mammary gland is mediated by Lf, which has a multifunctional role. The host response of the cow to intramammary infection depends on the stage of lactation, and on the infectious agent and its virulence. The limited positive effects in the experiments using rhLf-transgenic cows do not warrant further development of this type of genetic engineering to increase mastitis resistance in dairy cows. However, Lf could be of potential benefit if it were able to be used to support the immune defense of the bovine mammary udder.
ORIGINAL ARTICLES

This thesis is based on the following original articles, referred to in the text by their Roman numerals I-V:

The original articles are reprinted with the permission of their copyright holders: Cambridge University Press (I, II), Wiley-VCH Verlag GmbH & Co. KGaA (III), American Society of Microbiology (IV), and Elsevier B.V. (V).
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFLP</td>
<td>amplified fragment length polymorphism</td>
</tr>
<tr>
<td>APC</td>
<td>antigen presenting cell</td>
</tr>
<tr>
<td>apo-Lf</td>
<td>iron-free lactoferrin</td>
</tr>
<tr>
<td>APP</td>
<td>acute phase protein</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>Ay</td>
<td>Finnish Ayrshire</td>
</tr>
<tr>
<td>bLf</td>
<td>bovine lactoferrin</td>
</tr>
<tr>
<td>BME cell</td>
<td>bovine mammary epithelial cell</td>
</tr>
<tr>
<td>CFU</td>
<td>colony-forming unit</td>
</tr>
<tr>
<td>CMT</td>
<td>California Mastitis Test</td>
</tr>
<tr>
<td>CNS</td>
<td>coagulase-negative staphylococci</td>
</tr>
<tr>
<td>DELFIA</td>
<td>dissociation-enhanced lanthanide fluoroimmunoassay</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>FepA</td>
<td>ferric enterobactin receptor A</td>
</tr>
<tr>
<td>FecA</td>
<td>ferric citrate receptor A</td>
</tr>
<tr>
<td>HF</td>
<td>Holstein Friesian</td>
</tr>
<tr>
<td>hLf</td>
<td>human lactoferrin</td>
</tr>
<tr>
<td>holo-Lf</td>
<td>iron-bound lactoferrin</td>
</tr>
<tr>
<td>Hp</td>
<td>haptoglobin</td>
</tr>
<tr>
<td>IL</td>
<td>interleukin</td>
</tr>
<tr>
<td>IMI</td>
<td>intramammary infection</td>
</tr>
<tr>
<td>LBP</td>
<td>LPS-binding protein</td>
</tr>
<tr>
<td>Lf</td>
<td>lactoferrin</td>
</tr>
<tr>
<td>Lfcin</td>
<td>lactoferricin</td>
</tr>
<tr>
<td>LfH</td>
<td>lactoferrin hydolysate</td>
</tr>
<tr>
<td>LfR</td>
<td>lactoferrin receptor</td>
</tr>
<tr>
<td>LPS</td>
<td>lipopolysaccharide</td>
</tr>
<tr>
<td>MAA</td>
<td>milk amyloid A</td>
</tr>
<tr>
<td>NAGase</td>
<td>N-acetyl-β-D-glucosamidase</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>PMN</td>
<td>polymorphonuclear cell</td>
</tr>
<tr>
<td>rhLf</td>
<td>recombinant human lactoferrin</td>
</tr>
<tr>
<td>SAA</td>
<td>serum amyloid A</td>
</tr>
<tr>
<td>SCC</td>
<td>somatic cell count</td>
</tr>
<tr>
<td>SUAM</td>
<td>Str. uberis adhesion molecule</td>
</tr>
<tr>
<td>Tf</td>
<td>transferrin</td>
</tr>
<tr>
<td>TNF-α</td>
<td>tumor necrosis factor alpha</td>
</tr>
</tbody>
</table>
Defense of the bovine mammary gland against invasion of mastitis-causing bacteria is based on several anatomical, cellular, and soluble protective factors. The efficiency of the defense mechanisms determines whether a new intramammary infection (IMI) develops after the bacteria successfully penetrate the teat opening. During early stages of infection, the activity of resident and newly recruited leucocytes plays a critical role in limiting the infection. There are several types of somatic cells, but in a healthy mammary gland they mainly comprise macrophages. Polymorphonuclear neutrophils (PMN) are the predominant cells in mammary tissues of infected glands, and are secreted during inflammation and are able to ingest pathogens through endocytosis and phagocytosis. Collectively these cells constitute the innate cellular host defense system. Compounds released from pathogens, for instance lipopolysaccharide (LPS) from the cell wall of Gram-negative bacteria, stimulate the host cells to produce various compounds, such as antibacterial proteins and peptides, proteases, hydrolytic enzymes and free radicals. Phagocytic cells also release enzymes and pro-inflammatory cytokines, which trigger the humoral and cellular response of acute phase proteins and cytokines.

Lactoferrin (Lf) is one of the proteins present in bovine milk, which plays a role in the innate host defense. Lf is found in all external secretions, including milk, tears and saliva, and also in the secondary granules of PMN. Lf is an iron-binding glycoprotein that is structurally closely related to the iron-transport protein transferrin (Tf) in the plasma. Two features distinguish Lf from Tf; Lf contains a strongly basic region, which is very flexible, and has relatively high isoelectric point as well as being strongly cationic, which is a major factor in the ability of Lf to bind to many different cell types and anionic molecules (Baker and Baker, 2009). The concentration of bovine Lf (bLf) in milk is high in the colostrum (Sanchez et al., 1988) and in udder secretions during dry periods (Welty et al., 1976). During IMI, the concentration of bLf increases, and is dependent on the severity of the infection (Kawai et al., 1999).

In IMIs, Lf is both bacteriostatic and bactericidal (Farnaud and Evans, 2003). Bacteriostatic activity of Lf is based on its ability to sequester iron and thereby prevent growth of bacteria. Coliforms have a high requirement for iron, and are more susceptible to Lf than other mastitis-causing bacteria (Bishop et al., 1976; Nonnecke and Smith, 1984b; Rainard, 1986b; Kutila et al., 2003b). Bactericidal activity results from a direct interaction between Lf and the bacterium. Ellison et al. (1988) showed that Lf binds directly to the outer membrane of Gram-negative bacteria, causing a rapid release of LPS, with increased membrane permeability and damage to the cell wall. The other antimicrobial mechanisms of Lf may be related to the inhibition of bacterial biofilm formation (Singh et al., 2002) or inhibition of intracellular invasion by blocking bacterial adhesion to host cells (Naidu et al., 1990; Naidu et al., 1991). Lf modulates the immune response by decreasing free radical formation and by down-regulating LPS-induced cytokines.
(Britigan et al., 1989; Crouch et al., 1992; Haversen et al., 2002). Other mechanisms of inhibition of LPS-induced release of cytokines are interactions between Lf and the receptor sCD14 and the sCD14-LPS complex, terminating their activating functions (Puddu et al., 2009).

Results have been published on in vivo studies on the use of bLf alone or with antimicrobials in the treatment and prevention of bovine mastitis. Intramammary bLf-treatment of Staphylococcus aureus mastitis combined with penicillin G was shown to increase cure rate as compared with the antibiotic alone, and had also some effect on mastitis caused by a penicillin-resistant isolate (Diarra et al., 2002a; Kai et al., 2002; Komine et al., 2006; Petitclerc et al., 2007). Kutila et al. (2004) showed in an experimental mastitis model induced with Escherichia coli that intramammary infused bLf had a LPS neutralizing effect, and suggested bLf as an alternative for treatment of severe coliform mastitis.

This dissertation on Lf in bovine IMI represents a continuation of previous studies investigating possible clinical applications of Lf. The dissertation focuses on the use and effects of Lf in treating bovine IMI. E. coli and coagulase-negative staphylococci (CNS) among mastitis-causing bacteria, were selected as target pathogens, representing major and minor udder pathogens. The effects of Lf were studied in vivo in experimental mastitis models, as well as in vitro using a bovine mammary epithelial (BME) cell model. Dairy cows expressing recombinant human Lf (rhLf) in their milk (van Berkel et al., 2002) were used in experimental infection models to test the feasibility of genetic engineering to increase the host defense against mastitis.
Lactoferrin (Lf) is an iron-binding glycoprotein of the transferrin (Tf) family discovered in 1939 as “the red protein from milk” (Sørensen and Sørensen, 1939). Lf was first purified from human and bovine milk in 1960 (Johannson, 1960; Groves, 1965). Transferrins are generally recognized for their roles in iron transport and in nonspecific antimicrobial defense (Bullen et al., 1972; Brock, 1980; Schanbacher et al., 1993). Lf is a multifunctional protein with numerous roles, some of which are clearly related to its iron-binding properties and others that appear to be independent of them (Brock, 2002; Farnaud and Evans, 2003; Baker and Baker, 2005; Legrand et al., 2008). Lf is found in the milk of most mammals, including several rodents (Masson and Heremans, 1971). Lf has also recently been identified in rainbow trout eggs (Gonzalez-Chavez et al., 2009).

Lf is present in a variety of tissues and cell types, and its expression is under different regulatory controls. Lf is expressed and secreted by glandular epithelial cells and found in the secondary granules of PMN. It is present in mucosal secretions including tears, saliva, vaginal fluids, semen, nasal and bronchial secretions, and in bile, gastrointestinal fluids, urine, blood plasma, amniotic fluid and milk; high concentrations are found in colostrum (Mason et al., 1966). In the secondary granules of PMN, Lf is found in considerable amounts (15 µg/10⁶ neutrophils), where it plays a significant physiological role (Gonzalez-Chavez et al., 2009).

1.1 Structure of lactoferrin

Lf is a basic, positively charged protein with an isoelectric point (pI) of 8.4-9.0, which is higher than that associated with other members of the transferrin family (pI 5.4-5.9). The highly basic character is distinctive to Lfs and is extremely important to the iron binding activity and the ability to bind many different cell types and anionic macromolecules (Farnaud and Evans, 2003). Bovine Lf (bLf) is an 80-kDa glycosylated, single chain protein of 708 amino acids with a 19 amino acid signal peptides, and with a high degree of homology among species (Goodman and Schanbacher, 1991). Metz-Boutigue et al. (1984) determined the complete amino acid sequence. The three-dimensional structure of Lf was characterized by X-ray crystallography in order to investigate factors that influence the iron binding and release by TfS. The amino acid sequence of Lf is known for nine animal species: human, pig, horse, cow, buffalo, sheep, goat, camel and mouse (Baker, 2005). The structure of human Lf (hLf) (Anderson et al., 1987; Anderson et al., 1989), rabbit serum Tf (Bailey et al., 1988), chicken and duck ovotransferrins (Kurokawa et al., 1995; Rawas et al., 1996) and bovine Lf (Figure 1) (Moore et al., 1997) show that these proteins
are folded similarly, and have similar iron-binding sites. Transferrins have an extensive amino acid sequence with similarities ranging from a minimum of 65% to nearly 100%. hLf and bLf share 69% sequence homology and are structurally very similar when viewed at the tertiary level (Pierce et al., 1991). The three-dimensional structure of Lf from five animal species is known: human (Anderson et al., 1989), cow (Moore et al., 1997), buffalo (Karthikeyan et al., 1999), horse (Sharma et al., 1998) and camel (Khan et al., 2001), and all share over 90% sequence identity with each other and represent an extremely closely related group.

![Figure 1](image1.png)

Figure 1. Schematic structure of the bLf molecule with N (left) and C (right) lobes. The β-strands are represented as blue arrows and α-helices as red cylinders. The iron atoms appear as spheres and the three carbohydrate moieties (Asn368, Asn476 and Asn545) attached to the C lobe are presented as bars (Moore et al., 1997, reproduced with the permission of Edward Baker).

The single polypeptide chain is folded into two symmetrical globular lobes representing N- and C-terminal halves of the polypeptide. Both lobes are further subdivided into two domains, N1 and N2, and C1 and C2. These lobes are highly homologous with each other, and are connected by a hinge region between amino acids, containing parts of an α-helix, which provides additional flexibility to the molecule. Lf has two metal binding sites that lie between the two domains in each lobe (Figure 1), and are similar to each other in their capacity to bind reversibly a single ferric iron Fe$^{3+}$. Four protein ligands and a synergistically bound CO$_3^{2-}$ anion are covalently
bound to the metal ion crosslinking the two domains. This explains the high stability of the structure (Moore et al., 1997).

Despite the similarity in structures among members of the Tf family, considerable differences exist in the surface structure of the proteins, and in antigenicity and cross-reactivity among Lfs (Magnuson et al., 1990). All Lfs are glycosylated, and locations of potential glycosylation sites vary among proteins. The amino acid sequence of bLf has five potential N-glycosylation sites Asn233, Asn281, Asn368, Asn476 and Asn545 (Pierce et al., 1991). The glycan composition of Lf differs among different species such as human, mouse, cow and goat, and chemical studies showed that only four glycan chains are attached, and Asn281 is not used (Spik et al., 1988). Moreover, glycosylation of Lf affects the ability to bind iron (Baker and Baker, 2009). Attachment of carbohydrates to proteins reduces the susceptibility of Lf to proteolysis and thermal denaturation (van Berkel et al., 1996).

Because of reverse iron binding, Lf can exist free of Fe$^{3+}$ (apo-Lf) or in association with it (holo-Lf) with respectively different three-dimensional conformations (Baker and Baker, 2004). apo-Lf has an open conformation while the iron-bound holo-form of Lf is a closed molecule, conformationally rigid and very stable; the bound iron is only removed at a low pH or using very strong small-molecule chelating agents. The maximum iron binding capacity of Lf is 1.4 mg/g (Kussendrager, 1993). The metal-free apo-form is flexible and more prone to thermal denaturation and proteolysis. The conformational changes of holo and apo forms of Lf do not affect the molecule surface and thus the surface binding sites for bacterial and viral receptors are unlikely to be affected by the presence or absence of iron ions (Baker and Baker, 2009).

The first helix of Lf forms the major part of the bactericidal domain, described as the lactoferricin (Lfcin) domain, identified by Bellamy et al. (1992b). This bactericidal domain can also serve as a macromolecule binding surface. The strong positive charge at the N-terminal residues, and the adjacent C-terminal end of first helix, form the proposed binding site for bacterial LPS (van Berkel et al., 1997). The properties of Lf that depend on surface features are not necessarily common to Lfs of all species. Lfcin B is released by gastric peptic cleavage of bLf (Bellamy et al., 1992a) and consists of a positively charged looped peptide with more potent bactericidal and fungicidal activity than the native protein (Bellamy et al., 1993). A second putative antimicrobial domain, lactoferrampin has been identified in the same N1-domain of bLf (van der Kraan et al., 2004). Its antimicrobial activity also differs from that of Lfcin, but physiologically the localization of the peptides in the same N1-domain is important as it allows the protein to bind to the membrane interface and could initiate its bactericidal activity by disturbing membrane integrity (van der Kraan et al., 2004). Lfs of mammals share considerable sequence and structural homology and their functional differences are explained by regional differences in deduced amino acid sequences.
1.2 Functions of lactoferrin

Lf has been ascribed several biological functions (Table 1), including regulation of iron homeostasis, cellular growth and differentiation, host defense against microbial infections, anti-inflammatory activity and protection against cancer development and metastasis (Ward et al., 2005).

Table 1. In vitro and in vivo studies where different functions of lactoferrin and lactoferricin have been demonstrated

<table>
<thead>
<tr>
<th>Function</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibacterial</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Growth inhibition of iron-requiring microorganisms, such as Staphylococcus spp. and Escherichia coli by Lf</td>
</tr>
<tr>
<td></td>
<td>Bactericidal effect of iron-free hLf</td>
</tr>
<tr>
<td></td>
<td>Damage to the outer membrane of Gram-negative bacteria</td>
</tr>
<tr>
<td></td>
<td>Iron-regulated Lf-binding outer membrane protein in some bacteria</td>
</tr>
<tr>
<td>Antiviral</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Potent inhibitor effect of bLf in the early phase of human immunodeficiency virus infection (HIV-1)</td>
</tr>
<tr>
<td></td>
<td>Prevented absorption of rotavirus to the target cell by Lf</td>
</tr>
<tr>
<td></td>
<td>Disturbed entry of poliovirus into target cell by Lf</td>
</tr>
<tr>
<td></td>
<td>Neutralization of HSV-1 and inhibited replication and cell-to-cell spread by hLf</td>
</tr>
<tr>
<td>Antifungal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fungicidal effect of hLf against Candida albicans</td>
</tr>
<tr>
<td></td>
<td>Binding of Lfcin B to C. albicans and lethal effect on them</td>
</tr>
<tr>
<td></td>
<td>Fungicidal effect of hLfcin by forming pores in cell surface of C. albicans</td>
</tr>
<tr>
<td>Antiparasitic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lfcin-B inactivation of the capacity of Toxoplasma gondii to penetrate host cells in vitro and in vivo</td>
</tr>
<tr>
<td></td>
<td>T. gondii has a bLf binding protein</td>
</tr>
<tr>
<td>Anti-inflammatory activity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neutralizing effect of Lf against exogenous pro-inflammatory molecules such as LPS</td>
</tr>
</tbody>
</table>
The highly cationic character and structural dynamics of the Lf molecule explain many of its proposed roles, and many of its functions depend on the metal-binding capacity and surface properties. The biological activities of Lf depend on the target cells and presence of specific receptors on their surfaces, such as the human Lf receptor (LfR) for iron uptake in the small intestine of infants and the monocyte LfR for the inflammatory response. In addition to small intestinal cells and monocytes, LfRs have been reported to exist in hepatocytes, lymphocytes, platelets, fibroblasts and osteoblastic cells (Suzuki et al., 2005).

Particular domains or peptides, such as Lfcin and the novel peptide lactoferrampin, are responsible for the principal antimicrobial activities (Pierce and Legrand, 2009). Peptides produced by enzymatic hydrolysis of hLf (Bellamy et al., 1992a) and bLf (Hoek et al., 1997) are much more effective in killing bacteria than the intact protein. The peptides showed activity against all bacteria tested (E. coli, Klebsiella, Pseudomonas, Listeria and Staphylococcus), and bLfcin was about nine-fold as effective as hLfcin (Bellamy et al., 1992a). Nibbering et al. (2001) showed that hLf and peptides derived from its N terminus were effective against infections with antibiotic-resistant S. aureus and K. pneumoniae and the initial two arginines were essential to this activity.
Studies of Lf gene expression have revealed factors related to Lf production and secretion. The bLf gene sequence and identified polymorphisms account for Lf variants and differences in Lf expression (Teng, 2002). While the host defense activities of Lf were originally attributed to the iron-binding property and the immunomodulatory effects to the ability to form complexes with LPS, recent studies suggest that the roles of Lf in host defense against infection are diverse. Lf directly interacts with antigen presenting cells (APCs) such as monocytes and macrophages, and modulates important aspects of APC. At the molecular level it affects expression of soluble mediators (Puddu et al., 2009). Anti-tumoral and anti-metastatic activities could be attributed to the immunomodulatory potential of Lf and its ability to stimulate cytokine production and to promote apoptosis in cancer cells.

1.2.1 Antibacterial activity of lactoferrin

Reiter and Oram (1967) showed that in common with other body fluids, milk contained some bactericidal and bacteriostatic factors, inhibiting growth of *Bacillus subtilis* and *B. stearothermophilus*. The inhibitor was identified as the iron-binding protein lactotransferrin. The inhibitory activity was reversed by ferrous ions, and therefore the bacteriostatic activity of Lf was considered to be primarily due to the depletion of the iron in the medium to a concentration below that required for bacterial growth (Reiter and Oram, 1967; Oram and Reiter, 1968). Iron is an essential nutrient for the growth of almost all bacteria. Within the body, bacteria are often exposed to conditions of low iron, due to the presence of iron binding proteins Tf and Lf, which are normally only 30-40% saturated with iron. The bacteriostatic form of Lf is either *apo*-Lf or partly saturated Lf because the fully saturated form has no antimicrobial activity (Bishop et al., 1976; Arnold et al., 1982). The effect of Lf can be reversed by adding iron or sodium citrate (Bishop et al., 1976; Nonnecke and Smith, 1984a; Nonnecke and Smith, 1984b).

Bacteria have developed several mechanisms for obtaining iron. In normal situations iron in the body is protein-bound, rather than free, in order to minimize the generation of unwanted free radicals. In response to iron-limited stress, some bacteria synthesize and secrete iron chelators, termed siderophores that bind iron and are capable of removing iron from TfS (Bullen et al., 2005). These bacteria usually possess membrane proteins that function as receptors for the iron-siderophore complex. For example, *E. coli* produces the iron chelators enterobactin and aerobactin (Bullen et al., 2005) and expresses outer membrane iron receptors such as ferric enterobactin receptor FepA (Lin et al., 1998) and ferric citrate receptor FecA (Lin et al., 1999). Many bacteria have specific outer membrane receptors that directly bind host iron by binding Lf or Tf, and these receptors are often protein-specific and species-specific (Schryvers and Morris, 1988).

Several studies suggest that Lf kills sensitive organisms by mechanisms distinct from sequestering of iron by a direct interaction with the bacterial cell surface (Arnold et al., 1977; Arnold et al., 1980; Arnold et al., 1981; Arnold et al., 1982; Ellison et al., 1988). This
bactericidal mechanism limits the proliferation and adhesion of microbes or kills them. Lf has a tendency to interact with negatively charged bacterial surface components. Arnold et al. reported a direct interaction of apo-Lf with a variety of microorganisms, resulting in inhibition of bacterial growth. Lf caused release of LPS from the cell wall of Gram-negative bacteria, and resulted in increase in permeability of the outer membrane (Ellison et al., 1988). Ellass-Rochard et al. (Ellass-Rochard et al., 1995) showed that Lf binds to LPS, and is capable of modulating the host response to LPS (Ellass-Rochard et al., 1998). Lf binds to the lipid A portion to LPS with a high affinity, and can inhibit growth of bacteria or kill them, also decreasing the effect of LPS (Appelmelk et al., 1994). In addition to this antimicrobial effect, Lf has been reported to decrease LPS-induced cytokine release (Crouch et al., 1992).

Lf alone is mainly bacteriostatic, but with other antimicrobial proteins such as lysozyme, has a synergistic effect and is bactericidal for Gram-negative bacteria (Ellison and Giehl, 1991). E. coli and many other Gram-negative bacteria have surface receptors, pore-forming proteins (porins), which constitute a permeability barrier against nutrients and antibiotics in the bacteria’s outer membrane. Lf recognizes these porins and is able to bind to them (Erdei et al., 1994).

It has been suggested that chronic infections are associated with biofilm formation (Costerton et al., 1999; Melchior et al., 2006; Clutterbuck et al., 2007). bLf has been shown to inhibit biofilm growth of S. epidermidis on soft contact lenses in vitro (Leitch and Willcox, 1999b). Singh et al. (2002) reported that Lf blocked biofilm development of the opportunistic pathogen Pseudomonas aeruginosa at lower concentrations than necessary for killing or growth inhibition. Lf stimulates twitching, a specialized form of surface motility, by chelating iron, inhibiting the formation of clusters and biofilm, which generally requires a higher concentration of iron than needed for growth (Weinberg, 2004). B-Lfcin acts synergistically with the antimicrobial agent to increase antimicrobial efficacy in vitro against S. aureus and P. aeruginosa isolates from ocular infections and in vivo in corneal infection (Oo et al., 2010). The mechanisms that contribute to synergistic therapy with b-Lfcin are thought to occur via cell membrane interactions with the bacteria, increasing permeability (Naidu et al., 1993; Vorland et al., 1999). The antibacterial activity of b-Lfcin may be enhanced in the presence of antimicrobial factors, such as lysozyme (Facon and Skura, 1996).

1.2.2 Anti-inflammatory and immunomodulatory activities of lactoferrin

In addition to the antimicrobial properties of Lf, many studies have focused on its ability to modulate the inflammatory process and the overall immune response. A number of in vivo studies indicated that Lf regulates the immune system: Zagulski et al. (1989) showed a protective effect of Lf during lethal bacteraemia and Lee et al. (1998) in septic shock of piglets by inhibiting LPS from binding to monocytes. Breton-Gorius et al. (1980) reported that people with congenital or acquired Lf deficiency have recurring infections. The protective effect of Lf may involve an inhibition of production of several pro-inflammatory cytokines, including tumor
necrosis factor alpha (TNF-α), interleukin-1β (IL-1β) and IL-6 (Crouch et al., 1992; Machnicki et al., 1993; Haversen et al., 2002). The anti-inflammatory activity of Lf in response to LPS challenge may also involve inhibition of proinflammatory cytokine synthesis following Lf translocation to the nucleus, where it prevents NF-κB activation (Haversen et al., 2002). Lf modulates immune response by decreasing free radical formation (Britigan et al., 1989). The results of Kruzel et al. (2006) suggest the utility of Lf in human allergic inflammatory disorders by decreasing accumulation of eosinophils into airways and preventing development of mucin producing cells in mice. At the cellular level, Lf modulates important aspects of antigen presenting cell biology, including migration and cell activation (Puddu et al., 2009). The anti-inflammatory role of Lf has been demonstrated in the gastrointestinal tract: the administration of Lf can reduce gastritis induced *Helicobacter felis* in mice (Dial et al., 2000) and protect gut mucosal integrity during LPS-induced endotoxemia (Kruzel et al., 2000). According to current studies, Lf can act as a potent anti-inflammatory protein at local sites of inflammation including the respiratory and gastrointestinal tracts (Conneely, 2001).

2 Expression of lactoferrin in the milk

Milk is the major source of Lf. Unlike other proteins found in milk, Lf is secreted in abundance by mammary epithelial cells throughout all phases of lactation, including the non-lactating and involuting stages. Lf is present in milk of many species including human, pig, horse, cow, buffalo, sheep, goat, camel, mouse, elephant and alpaca (Stumpf and Welch, 2004; Baker, 2005; Conesa et al., 2008). Human milk is unusually rich in Lf, in contrast to some species such as rat, rabbit, dog and grey seal, which have low or zero concentrations of Lf in their milk (Masson and Heremans, 1971; Conesa et al., 2008). In dog milk, concentrations as low as <0.05 mg/ml have been reported (Masson and Heremans, 1971). Cross-reactivity among Lfs occurs when proteins share part of their amino acid sequence; antibodies against hLf can recognize Lfs from human, sheep and goat milk, but antisera against bLf did not react with hLf (Shimazaki et al., 1991; Conesa et al., 2008).

The concentration of Lf in milk of different species varies: in human milk it is 1-2 mg/ml, in the milk of mouse, mare, sow and guinea pig it ranges from 0.2 to 2 mg/ml, in milk of cows and goats from 0.02 to 0.35 mg/ml and in milk of rat, rabbit and dog it is <0.05 mg/ml (Masson and Heremans, 1971; Nagasawa et al., 1972; Roberts and Boursnell, 1975; Welty et al., 1976; Smith and Schanbacher, 1977; Davidson and Lonnerdal, 1986). The concentration of Lf in human colostrum is 5-7 mg/ml, and in bovine colostrum approximately 0.8 mg/ml (Masson and Heremans, 1971; Smith et al., 1971; Harmon et al., 1975; Sanchez et al., 1988). The concentration of Lf in human and bovine milk is markedly elevated during mammary involution (Welty et al., 1976; Nonnecke and Smith, 1984a; Schanbacher et al., 1993).

Lf and Tf in milk are generally inversely correlated; species with a high Lf content in their milk often have little or no Tf, and vice versa. Human and bovine milk contain lower concentrations
of Tf compared with Lf: the concentration of Tf in human milk is <0.05 mg/ml and that in bovine milk 0.02-0.2 mg/ml (Bullen et al., 1972).

Normal bovine milk contains 30 to 35 g/l protein. Milk proteins can be divided into caseins, which form about 80% of milk proteins, and whey proteins, representing the remaining 20% (Swaisgood, 1992). Lf in milk is associated with the whey fraction; about 70% of Lf remains in the whey and 30% occurs in a complex with casein (Oram and Reiter, 1968). A total of 0.75% of whey is proteins, which consists of β- and α-lactoglobulins (70-90%), immunoglobulins (10-15%), bovine serum albumin (5-6%) proteose-peptone (10-20%), β-caseins (1-2%) and minor proteins <0.5%. Minor proteins include biologically active proteins, e.g. Lf, and the enzymes lactoperoxidase and lysozyme (Korhonen, 1995). Cow’s milk contains about 0.03 mg/ml lactoperoxidase (Kussendrager, 1993) and about 0.003 mg/ml lysozyme (Farkye, 1992).

Sequences of the Lf gene promoter have been cloned for various species including human, mouse and cattle (Johnston et al., 1992; Teng, 1994). The complete structure of the bLf encoding gene and its promoter was determined in 1994 by Seyfert, but information available on the bLf promoter is limited compared with that for human and mouse promoter regions (Seyfert et al., 1994). The bLf gene has been mapped to bovine chromosome 22 (Schwerin et al., 1994). Numerous nucleotide polymorphisms were found in this region both within and across cattle breeds (Daly et al., 2006; Arnould et al., 2009). Lf promoter variants may serve as markers for healthier animals and can be used to improve animal breeding (Daly et al., 2006).

The regulation of Lf in the mammary gland differs substantially among species. The activity of the Lf gene is most sensitive to oestrogen stimulation in the human and mouse reproductive organs such as the mammary gland and uterus (Teng et al., 2002b; Teng, 2006). However, the oestrogen response module is not found in the bLf promoter. Concentrations of Lf in human and bovine mammary secretions and milk during development, lactation and involution of the mammary gland differ substantially, but the pattern of Lf concentration changes is similar; involution initiates increase in Lf concentrations similarly in both species (Lonnerdal et al., 1976; Welty et al., 1976). During mammary development, a mitogen-stimulated region identified within the proximal hLf, bLf and mouse Lf promoters, is important for Lf expression (Seyfert et al., 1994). Bovine mammary cells derived from a developing gland produced significantly higher amounts of Lf than did cells from a lactating gland cultured under the same conditions (Talhouk et al., 1998). Wang et al. (2005) found that iron, included a dietary supplement, significantly increased Lf expression in the mammary gland.

The regulation of bLf apparently contrasts with that for other milk proteins, including casein and α-lactalbumin in bovine mammary secretions during development, lactation and involution (Smith and Schanbacher, 1977; Talhouk et al., 1998). Molenaar et al. (1996) studied bLf gene expression in developing, ductal, resting and regressing parenchymal epithelium of the mammary gland by examining the amount of mRNA. The level of mRNA varied with the state of activity of the secretory cells, and was inversely related to the expression of α-lactalbumin and αs1-casein during pregnancy, lactation, stasis and involution. During lactation, elevated
expression of bLf occurs in the ducts, compared with the mammary epithelial cells, especially in proximal to the teat (Molenaar et al., 1996).

2.1 Lactoferrin in bovine milk

The bLf concentration of mammary secretions varies according to the stage of mammary development and function (Table 2).

Concentration of bLf decreases within two days of calving, from 1-2 mg/ml in colostrum to only 0.01-0.1 mg/ml throughout the remaining lactation. In the involuting mammary gland, concentration of bLf increases substantially to its maximal concentrations, from about 20 mg/ml to 100 mg/ml (Schanbacher et al., 1993). The increase of Lf concentration begins 2 to 4 days after cessation of regular milking and continues at a rate of 1.15 mg/ml per day during the first 14 to 21 days of involution. The maximum bLf concentration is achieved after 3 to 4 weeks of involution. Consequently, a 100-fold increase in bLf concentration is recorded compared to that in normal milk (Welty et al., 1976).

Colostrum is the first natural food for a newborn calf, and contains several biologically active molecules essential for special functions, including growth factors and antimicrobial factors that provide passive immunity and protect against infections during the first week of life. The antimicrobial activity of colostrum is due mostly to immunoglobulins, but colostrum also contains other antimicrobial factors such as Lf, lysozyme and lactoperoxidase. Tsuji et al. (1990) found two different size isoforms, a and b, of the bLf molecule in colostrum. The content of Lf-b was double that of Lf-a, and the antimicrobial activity against \textit{E. coli} was higher for apo-Lf-a than for apo-Lf-b. The concentration of bLf-a in colostrum was greater than that in the normal milk, and bLf-a could play an important role in the health of the newborn calf (Tsuji et al., 1990).

In dairy cows, concentration of bLf in the colostrum varies considerably within breed and among individuals: multiparous cows had two to three times as high bLf concentration as primiparous cows. In beef breeds, no significant differences in Lf concentrations of colostrum were found between parities (Tsuji et al., 1990). The concentration of bLf in colostrum of dairy breeds was four times as high as in beef breeds (Gaunt et al., 1980).

In contrast, Hagiwara et al. (2003) found that the concentration of Lf in the milk was significantly related to the age of cows but not to the stage of lactation. However, it tended to be higher during the late lactation period as compared with early or middle lactation period (Hagiwara et al., 2003). According to Cheng et al. (2008), bLf is significantly associated with the stage of lactation and daily milk production, but not with parity. Król et al. (2010) reported that a breed had significant effect on a content of lactoferrin, and milk obtained from Simental and Jersey cows proved to be excellent source of bLf.
Table 2. Concentration of bLf in colostrum, milk and dry period-secretion of a normal, healthy mammary gland

<table>
<thead>
<tr>
<th>Type of mammary secretion</th>
<th>bLf mg/ml</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colostrum</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-5 ¹)</td>
<td>Smith and Schanbacher, 1977</td>
</tr>
<tr>
<td></td>
<td>0.34 ²)</td>
<td>Gaunt et al., 1980</td>
</tr>
<tr>
<td></td>
<td>1.8¹)</td>
<td>Nonnecke and Smith, 1984a</td>
</tr>
<tr>
<td></td>
<td>0.83¹)</td>
<td>Sanchez et al., 1988</td>
</tr>
<tr>
<td></td>
<td>²³, 0.5⁵)</td>
<td>Tsuji et al., 1990</td>
</tr>
<tr>
<td></td>
<td>0.34¹)</td>
<td>Yoshida et al., 2000</td>
</tr>
<tr>
<td></td>
<td>0.25¹)</td>
<td>Puvogel et al., 2005</td>
</tr>
<tr>
<td>Normal milk during lactation</td>
<td>0.09</td>
<td>Senft and Klobasa, 1973</td>
</tr>
<tr>
<td></td>
<td>0.35</td>
<td>Harmon et al., 1975</td>
</tr>
<tr>
<td></td>
<td>0.04-0.25</td>
<td>Welty et al., 1976</td>
</tr>
<tr>
<td></td>
<td>0.01-0.35</td>
<td>Smith and Schanbacher, 1977</td>
</tr>
<tr>
<td></td>
<td>0.24</td>
<td>Gaunt et al., 1980</td>
</tr>
<tr>
<td></td>
<td>0.12</td>
<td>Nonnecke and Smith, 1984a</td>
</tr>
<tr>
<td></td>
<td>0.09</td>
<td>Sanchez et al., 1988</td>
</tr>
<tr>
<td></td>
<td>0.17</td>
<td>Kawai et al., 1999</td>
</tr>
<tr>
<td></td>
<td>0.17</td>
<td>Hagiwara et al., 2003</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>Puvogel et al., 2005</td>
</tr>
<tr>
<td></td>
<td>0.19³)</td>
<td>Soyeurt et al., 2007</td>
</tr>
<tr>
<td></td>
<td>0.14</td>
<td>Arnould et al., 2009</td>
</tr>
<tr>
<td></td>
<td>0.12</td>
<td>Cheng et al., 2008</td>
</tr>
<tr>
<td>Involution period (in relation to drying-off)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- day of drying-off</td>
<td>0.25</td>
<td>Welty et al., 1976</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>Gaunt et al., 1980</td>
</tr>
<tr>
<td></td>
<td>0.76</td>
<td>Nonnecke and Smith, 1984a</td>
</tr>
<tr>
<td></td>
<td>5.3</td>
<td>Kutila et al., 2003a</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>Puvogel et al., 2005</td>
</tr>
<tr>
<td></td>
<td>0.49</td>
<td>Newman et al., 2009</td>
</tr>
<tr>
<td>- 2 to 4 days later</td>
<td>1.5 – 2.8</td>
<td>Nonnecke and Smith, 1984a</td>
</tr>
<tr>
<td></td>
<td>8.09</td>
<td>Kutila et al., 2003a</td>
</tr>
<tr>
<td>- one week later</td>
<td>0.4 – 1.1</td>
<td>Bushe and Oliver, 1987</td>
</tr>
<tr>
<td></td>
<td>13.5</td>
<td>Nonnecke and Smith, 1984a</td>
</tr>
<tr>
<td>- 2 weeks later</td>
<td>20-30</td>
<td>Welty et al., 1976</td>
</tr>
<tr>
<td></td>
<td>13.5</td>
<td>Gaunt et al., 1980</td>
</tr>
<tr>
<td></td>
<td>119</td>
<td>Welty et al., 1976</td>
</tr>
<tr>
<td>- 3 to 4 weeks later</td>
<td>17</td>
<td>Persson et al., 1992</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>Puvogel et al., 2005</td>
</tr>
</tbody>
</table>

¹first milking, ²on day 2 after parturition, ³pLf, ⁴dairy breed, ⁵beef breed

Citrate is a normal constituent of milk, and represents one of the main buffer systems regulating the equilibrium between calcium and hydrogen ions (Faulkner and Peaker, 1982; Walstra, 2006).
Bicarbonate facilitates the binding of iron by Lf (Cheng et al., 2008). The ratio between bLf, bicarbonate and citrate varies during the lactation cycle. The antibacterial effect of Lf is most effective in the dry secretion when bicarbonate concentration is at its highest level and the bLf content of the secretion is also high. Citrate is absorbed from the udder to the blood at the same time as bicarbonate diffuses from the blood to the udder. The molar ratio of citrate to iron-free Lf decreases with udder involution and increases with lactogenesis (Kutila et al., 2003a).

Heritability of Lf in bovine milk has been investigated. According to Gaunt et al. (1980) the heritability for bLf was 0.44, which would be high enough to be used for selection, but is an unreliable indicator given the large standard error, 0.30. In more recent studies (Soyeurt et al., 2007; Arnould et al., 2009) the estimated heritabilities for milk bLf were 0.2.

3 Lactoferrin and intramammary infection

Mastitis is the most important disease of dairy cows, causing the most significant economic losses (Halasa et al., 2007). Mastitis is an inflammation of the mammary gland that is mostly a response to an intramammary bacterial infection (Schalm, 1977). *S. aureus*, streptococci and *E. coli* are respectively among the most prevalent species of Gram-positive and Gram-negative bacteria that cause bovine clinical mastitis. Disease severity depends on the interaction between the host, the environment and the infectious agent. Frequency of new IMI is greatest during early involution, decreases during mid-stages, and then increases prepartum. In mammary involution, the concentrations of antibacterial components, i.e. leucocytes, immunoglobulins, and lactoferrin increase while fluid volume decreases and thereupon the bovine mammary gland resists the IMI (Nickerson, 1989).

The causative agents in bovine clinical mastitis vary among different countries. In the Nordic countries staphylococci are isolated most commonly and less than 20% of clinical mastitis is caused by coliforms (Nevala et al., 2004; Sorensen et al., 2008; Ericsson Unnerstad et al., 2009). In the United Kingdom and Israel, the proportion of coliform bacteria is higher (Shpigel et al., 1998; Bradley and Green, 2001). IMI caused by *E. coli* typically results in acute clinical mastitis. It is mostly self-limiting and infection is eliminated within a few days, but can be associated with severe clinical signs (Burvenich et al., 2003). During the periparturient period and in early lactation the innate immune defense mechanisms of the cows are suppressed, which makes them more susceptible to IMIs (Pyorälä, 2008). During the dry period, the bovine mammary gland is particularly resistant to infections caused by coliform bacteria (Reiter et al., 1975; Cheng et al., 2008).

Coagulase-negative staphylococci have become the most commonly isolated bacteria in bovine IMIs in many countries (Pitkälä et al., 2004; Tenhagen et al., 2006; Bradley et al., 2007; Koivula et al., 2007). The most common CNS species isolated are *S. chromogenes* and *S. simulans* (Taponen et al., 2006). Differences in pathogenicity may exist among CNS species, but very
little is known about the virulence characteristics of CNS (Zhang and Maddox, 2000). CNS have been considered to be minor pathogens, but that term may not apply to all species (Pyorälä and Taponen, 2009). Some CNS can have similar virulence factors as *S. aureus* (Kuroishi et al., 2003; Anaya-Lopez et al., 2006; Oliveira et al., 2006). CNS infection is commonly seen as a moderately increased somatic cell count in the milk and slightly decreased milk production. They can also cause clinical mastitis with mild to moderate clinical signs (Jarp, 1991; Taponen et al., 2006; Taponen et al., 2007; Simojoki et al., 2009). CNS infections may persist in the mammary gland for several months or over the whole lactation period (Aarestrup and Jensen, 1997; Taponen et al., 2006).

Bacterial adherence seems to be an essential first stage for colonization of the mammary gland by pathogens (Frost, 1975). It enables bacteria to evade host defenses and invade deeper regions of the mammary gland (Finlay and Cossart, 1997). Several udder pathogens, for example *S. aureus*, CNS, *E. coli*, and *Streptococcus uberis*, are able to adhere to and induce their internalization by mammary epithelial cells (Frost, 1975). Persistent coliform mastitis may be a consequence of IMI with *E. coli* strains that are able to invade and survive within mammary epithelial cells, avoiding host defenses (Dogan et al., 2006).

3.1 Lactoferrin in milk of cows with intramammary infection

Concentration of bLf in the milk significantly increases during IMI, and the amount of the increase is related to the severity of the disease (Harmon et al., 1975; Harmon et al., 1976; Harmon and Newbould, 1980). Expression of bLf mRNA is relatively low in the lactating gland but increases markedly during IMI (Table 3) (Molenaar et al., 1996; Schmitz et al., 2004; Bruckmaier, 2005).

Zheng et al. (2005) isolated and characterized a fragment of the bLf gene as the promoter region responding to infection. Wellnitz and Kerr (2004) showed that bLf production in a bovine mammary cell culture system was stimulated by infection with *S. aureus* and exposure to LPS. Activity of Lf could be induced by LPS with a dose-dependent pattern in mammary epithelial cells, and the Lf promoter responding to the infection via the NF-κB pathway (Zheng et al., 2005). This finding provides a potential mechanism of how the Lf gene responds to infection.

The highest concentrations of bLf have been reported in acute coliform mastitis (Kawai et al., 1999; Komine et al., 2005). In clinical mastitis, mean bLf concentration was significantly higher (0.85 mg/ml) than in subclinical mastitis (0.50 mg/ml) (Kawai et al., 1999). Individual variation was high in both groups. The concentration of bLf in milk from quarters infected with *Mycoplasma bovis*, *S. aureus* or streptococci was significantly higher than that from quarters infected with CNS or *Corynebacterium bovis* (Kawai et al., 1999; Hagiwara et al., 2003).
Lf molecules in mastitic secretions from lactating and dry cows differed from those of healthy cows. The *in vitro* iron-binding and antibacterial activity of bLf originating from mastitic secretion was lower than those of bLf from normal milk. Lf molecules from diseased udder showed inflammation-inducing effects such as induction of production of TNF-α and other chemokines, and infiltration of leukocytes (Komine et al., 2005).

Table 3. Mean peak concentration of bLf in milk from cows with spontaneous or experimentally induced intramammary infection caused by different bacteria.

<table>
<thead>
<tr>
<th>Type of mastitis</th>
<th>bLf mg/ml</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spontaneous clinical mastitis (Day 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Coliform</td>
<td>2.74 ± 1.41</td>
<td>Harmon et al., 1975</td>
</tr>
<tr>
<td>- Gram-positive</td>
<td>1.06 ± 0.35</td>
<td></td>
</tr>
<tr>
<td>Experimental endotoxin mastitis</td>
<td></td>
<td>Harman and Newbould, 1980</td>
</tr>
<tr>
<td>- Day 1</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>- Day 2</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Spontaneous clinical mastitis</td>
<td>0.85 (0.32-2.27)</td>
<td>Kawai et al., 1999</td>
</tr>
<tr>
<td>- S. aureus</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>- E. coli</td>
<td>0.85^2)</td>
<td></td>
</tr>
<tr>
<td>- Str. uberis</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>Spontaneous clinical mastitis^1)</td>
<td></td>
<td>Chaneton et al., 2008</td>
</tr>
<tr>
<td>- S. aureus</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>- E. coli</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>- Str. uberis</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>Spontaneous subclinical mastitis</td>
<td>0.50 (0.20-1.23)</td>
<td>Kawai et al., 1999</td>
</tr>
<tr>
<td>Spontaneous subclinical mastitis</td>
<td>0.51 ± 0.0025</td>
<td>Hagiwara et al., 2003</td>
</tr>
<tr>
<td>- S. aureus</td>
<td>0.65 ± 0.0019</td>
<td></td>
</tr>
<tr>
<td>- Str. agalactiae</td>
<td>0.80 ± 0.0017</td>
<td></td>
</tr>
<tr>
<td>- other streptococci</td>
<td>0.61 ± 0.0025</td>
<td></td>
</tr>
<tr>
<td>- CNS</td>
<td>0.38 ± 0.0024</td>
<td></td>
</tr>
<tr>
<td>- Corynebacterium bovis</td>
<td>0.24 ± 0.0036</td>
<td></td>
</tr>
</tbody>
</table>

^1Concentrations measured from a figure, ^2acute *E. coli* mastitis

3.2 Interaction between lactoferrin and mastitis causing bacteria

Coliform bacteria are most susceptible to Lf. Growth of coliform bacteria isolated from mastitis were shown to decrease in media supplemented with more than 1 mg/ml of iron-deprived Lf.
Some isolates of *S. aureus* and *Str. agalactiae* were unaffected (Rainard, 1986b). *S. aureus* is able to grow in an environment with extremely low iron concentration (Trivier and Courcol, 1996) or in the presence of iron chelators such as EDTA (Diarra et al., 2002b). Chaneton et al. (2008) studied the susceptibility of *S. aureus*, *E. coli* and *Str. uberis* isolates from bovine mastitis, and *S. aureus* and *E. coli* strains were demonstrated to be susceptible to bLf (>2 mg/ml), whereas *Str. uberis* strains appeared to be resistant.

Lf-binding proteins have been found in Gram-positive bacteria, for example bLf- and hLf-binding proteins in staphylococci (Naidu et al., 1990; Naidu et al., 1991; Naidu et al., 1992). bLf receptors were distinct from staphylococcal cell surface receptors described for fibronectin and fibrinogen, which may play a role in the adhesion to and colonization of the epithelial surface (Naidu et al., 1991). Naidu et al. (1992) also identified a specific receptor for hLf in *S. aureus*. Lf-binding proteins have been found in *Str. dysgalactiae* subsp. *dysgalactiae* and *Str. agalactiae* isolated from IMI (Park et al., 2002a; Park et al., 2002b). An Lf-binding protein specific for bLf was identified in *Str. uberis* (Fang and Oliver, 1999) and Almeida et al. (2006) more recently reported on a novel *Str. uberis* adhesion molecule (SUAM). Lf seems to serve as a bridging molecule between SUAM and Lf receptors located on the surface of mammary epithelial cells, enhancing the internalization of *Str. uberis* into the host cells (Patel et al., 2009a), favoring intracellular survival and persistence of *Str. uberis* (Almeida et al., 2010).

In one *in vitro* study (Diarra et al., 2002a), bLf alone showed only weak inhibitory activity against some strains of *S. aureus*, but when combined with penicillin G a synergistic action was noted. In addition to iron chelation, the bLf-penicillin combination can induce alterations in morphology of *S. aureus*. Addition of iron to the medium had no effect on the inhibition of bacterial growth (Diarra et al., 2002b). Lacasse et al. (2007) showed that Lf and Lfcin reduced β-lactamase activity of *S. aureus* by affecting β-lactamase gene expression. Lf alone did not affect phagocytosis of *S. aureus* by PMN *in vitro*, but in combination with penicillin G it was increased. Invasion of mammary epithelial cells was reduced by Lf alone or in combination with penicillin (Diarra et al., 2003).

4 Practical applications for lactoferrin

4.1 General aspects

Milk proteins have many nutritional, functional and biological functions in humans and animals, and could also be used in practical applications. Lf is one such milk protein. The Lf-derived peptide Lfcin, which is released through proteolysis by pepsin (Korhonen and Pihlanto, 2006), has received much attention recently due to its various roles in host defense (Gifford et al., 2005). bLf is a by-product of the dairy process and as such is readily available. rhLf can be expressed in milk, rice or microorganisms and is also commercially available. Both can be added to foods and different health products (Lonnerdal, 2009). The suggested applications for Lf are...
for example from food preservatives to health-promoting foods and supplements, infant foods, iron supplements, pharmaceutica, sport foods, nutritional foods, chewing gums, healthcare products, such as toothpaste, mouthwashes, and cosmetics (Morinaga Milk Industry CO., Ltd., 2003; Marnila and Korhonen, 2009).

The Food and Drug Administration (FDA) of the United States has assessed Lf and considers it to be generally safe (U.S. Food and Drug Administration, 2001). In the meat industry, Lf can be used as spray applied to carcasses to decrease the growth of contaminant bacteria and to extend the shelf-life (Naidu, 2002). Lf could replace food and feed additives as a preservative, because it is a natural protein of milk. Lf has been used as a supplement in calf feed, to prevent neonatal diarrhea and to increase weight gain (Joslin et al., 2002; Robblee et al., 2003). Calves receiving supplemental bLf in colostrum and milk replacer had fewer days of diarrhea with less serious clinical signs than the control calves. Lf can also stimulate carbohydrate absorption and increase small intestine epithelial cell size (Zhang et al., 2001), resulting a faster growth rate of mice.

4.2 Lactoferrin in the treatment and prevention of bovine mastitis

Kai et al. (2002) compared the efficacy of bLf with antibiotic treatment as a dry-cow treatment in spontaneous staphylococcal mastitis. The cure rate was significantly higher in the bLf group. The locally infused bLf promoted migration of PMNs by inducing the expression of cytokines, and increased the C3 complement in the udder secretion. The authors suggested that bLf could be used as dry-cow therapy to increase cure rates in case of staphylococcal mastitis. In another study, a combination of bLf and cephalosporin was tested as a dry-cow treatment (Komine et al., 2006). The combination therapy inhibited pro-inflammatory cytokine and chemokine production causing an anti-inflammatory effect. Diarra et al. (2002a) showed in vitro that bLf acted synergistically with penicillin G and reduced growth of penicillin-sensitive and resistant strains of S. aureus. In experimentally induced penicillin-resistant S. aureus mastitis, the cure rate was higher for the bLf-penicillin G combination compared with penicillin alone (Petitclerc et al., 2007).

The treatment of spontaneous subclinical mastitis with lactoferrin hydrolysate (LfH) was studied by Kawai et al. (2003). Mastitis was caused by CNS, environmental streptococci, S. aureus or E. coli. The results of the study suggested that LfH might have therapeutic potential. Kutile et al. (2003b) compared the efficacy of bLf treatment with enrofloxacin in cows with experimentally induced E. coli mastitis. No significant differences were found in the outcome from the disease. The concentration of LPS compared with the number of bacteria in milk was significantly lower in Lf than in enrofloxacin-treated cows.

A new approach to prevention and therapy of IMI would be to enhance the immune response by gene manipulation (Bramley, 2002; Maga, 2005; Rainard, 2005; Wheeler, 2007; Laible, 2009). Zhang et al. (2008) used a plasmid-mediated gene transfer technique to enable mammary cells of goats to synthesize and secrete antibacterial peptides including bLfacin. The results showed that
the method enabled secretion of a bioactive form of the antibacterial peptide in the milk, which is a prerequisite for possible use in mastitis prevention.
AIMS OF THE STUDY

The general aim of the work reported in this thesis was to investigate the behavior and effects of lactoferrin in the bovine mammary gland for antibacterial and immunological activity. The studies included \textit{in vitro} experiments with bovine mammary epithelial cells, as well as \textit{in vivo} experiments using induced mastitis models with endotoxin and two different udder pathogens. The specific aims of the studies were as follows:

1. To investigate natural concentrations of bLf and citrate in milk of early- vs. late-lactating dairy cows in an experimental endotoxin mastitis model (I)
2. To investigate the effect of bLf \textit{in vitro} on the internalization of coagulase-negative staphylococci in a mammary epithelial cell model (II)
3. To determine concentrations of human and bovine Lfs in milk of rhLf-transgenic dairy cows during lactation (III)
4. To investigate the clinical course and outcome of experimentally induced mastitis in rhLf-transgenic dairy cows compared with normal dairy cows (IV, V).
MATERIALS AND METHODS

1 Experimentally induced mastitis (I, IV, V)

1.1 Animals

The cows used in the three experiments on induced mastitis are listed in Table 4. The seven Holstein-Friesian (HF) recombinant hLf-transgenic cows were produced and owned by Pharming Group NV, The Netherlands. The transgenic bull was generated through genomic insertion by microinjection of recombinant DNA into the pronucleus of a fertilized oocyte. The rhLf-cows were then produced using an embryo transfer technique (Krimpenfort et al., 1991).

Table 4. Cows used in the three experiments on induced mastitis.

<table>
<thead>
<tr>
<th>Study</th>
<th>Cows</th>
<th>Parity and lactation state</th>
<th>Udder status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endotoxin mastitis (I)</td>
<td>Nine Ay cows</td>
<td>Seven multiparous (two to four lactations) and two primiparous 6th to 15th d of lactation</td>
<td>SCC ≤150,000/ml</td>
</tr>
<tr>
<td>Early lactation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Late lactation</td>
<td>Nine Ay cows</td>
<td>Seven multiparous and two primiparous 137 to 77 day before next parturition</td>
<td>SCC ≤150,000/ml</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental E. coli mastitis (IV)</td>
<td>Seven rhLf-transgenic HF cows</td>
<td>Primiparous Median age 39 months Calved 12 days before the trial</td>
<td>SCC <100,000/ml</td>
</tr>
<tr>
<td></td>
<td>Six normal HF cows</td>
<td>Primiparous Median age 30 months Calved 18 days before the trial</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental CNS mastitis (V)</td>
<td>Six rhLf-transgenic HF cows</td>
<td>Primiparous Median age 40 months Calved 4 weeks before the trial</td>
<td>SCC <100,000/ml</td>
</tr>
<tr>
<td></td>
<td>Six normal HF cows</td>
<td>Primiparous Median age 30 months Calved 4 weeks before the trial</td>
<td></td>
</tr>
</tbody>
</table>

Seven primiparous, rhLf-transgenic cows were used as experimental animals in studies IV and V, and six normal primiparous HF dairy cows were included as control. Cows were used for experimental intramammary inductions with two different udder pathogens (E. coli, CNS). Nine
Finnish Ayrshire (Ay) cows were used in experimental endotoxin mastitis (I) in cross-over model.

The cows were kept in a tie-stall barn and fed according to their energy requirements with good quality hay, silage and concentrated grain. All cows were clinically healthy, had a low somatic cell count (SCC) in their milk (<100,000 cells/ml or ≤150,000 cells/ml) and no bacterial growth in their milk samples before the experiments.

1.2 Clinical observations (I, IV, V)

Cows were examined clinically at each sampling. Clinical status compromised general attitude of the cow, body temperature, rumen function, consistency of udder and milk appearance. Signs were monitored throughout the experiment and were divided into three groups: systemic signs, local signs and milk appearance (Pyörälä et al., 1994). Signs were scored on a three-point scale (1= no signs to 3= severe signs), using also half numbers. The udder was palpated for soreness, swelling, hardness and heat, and the appearance of the milk was assessed visually for clots and flakes, and changes in colour or composition every time the cows were milked. Cows with scores >1 but ≤1.5 were recorded as having mild mastitis, those with scores >1.5 but ≤2.5 as having moderate mastitis, and those with scores from >2.5 to 3 as having severe mastitis. The milk yield from the infected udder quarter and the total milk yield were measured.

1.3 Ethical considerations

The Ethics Committees of the University of Kuopio (IV, V) and the University of Helsinki (I, IV, V) approved the study protocol and The Board for Gene Technology in Finland approved the use of transgenic animals (III, IV, V).

2 Bacteria (II, IV, V)

E. coli mastitis (IV) was induced as described previously (Pyörälä et al., 1994; Kutila et al., 2004). On average 1700 CFU (range 1500-2300 CFU) of *E. coli* strain FT238 isolated from a cow with clinical mastitis were infused into a single udder quarter of each cow. The bacterial strain was sensitive to bLf *in vitro*, with complete inhibition of growth being achieved at concentrations >1.67 mg/ml (Kutila et al., 2003b). The sensitivity of the strain to hLf *in vitro* was also tested, and the growth was partly inhibited at 1.5 mg/ml.
S. chromogenes strain PAM37 used in experimental CNS mastitis (V) was isolated from bovine clinical mastitis (Taponen et al., 2006). The strain was sensitive to bLf (Kutila et al., 2003b) and hLf in vitro. The inoculate contained approximately 2.1x10⁶ CFU in 7 ml saline.

Table 5. Staphylococcal strains, their origin, clinical signs (scale 1-3) of mastitis of the cows from which the strains were isolated, results of California Mastitis Test (CMT) (scale 1-5) of the milk of the affected quarters, and type of the IMI (persistent/transient) (Taponen et al., 2006; Taponen et al., 2007).

<table>
<thead>
<tr>
<th>Strain</th>
<th>Origin</th>
<th>Clinical signs</th>
<th>CMT</th>
<th>Persistent/transient</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL STRAINS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. aureus 298, positive control</td>
<td>clinical mastitis</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>S. aureus ATCC 25923, positive control</td>
<td>clinical mastitis</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>S. epidermidis S808, negative control</td>
<td>cheese</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CNS STRAINS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. chromogenes 74</td>
<td>clinical mastitis</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>S. chromogenes PAM 37</td>
<td>clinical mastitis</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>S. simulans 15</td>
<td>clinical mastitis</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>S. chromogenes 117</td>
<td>clinical mastitis</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>S. simulans 2</td>
<td>clinical mastitis</td>
<td>1.5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>S. simulans 18</td>
<td>clinical mastitis</td>
<td>1.5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>S. simulans 19</td>
<td>clinical mastitis</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>S. chromogenes 22</td>
<td>clinical mastitis</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>S. chromogenes 52</td>
<td>clinical mastitis</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>S. chromogenes 72</td>
<td>clinical mastitis</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>S. epidermidis 221</td>
<td>subclinical mastitis</td>
<td>1</td>
<td>4</td>
<td>+</td>
</tr>
<tr>
<td>S. chromogenes 312</td>
<td>subclinical mastitis</td>
<td>1</td>
<td>4</td>
<td>+</td>
</tr>
<tr>
<td>S. simulans 198</td>
<td>subclinical mastitis</td>
<td>1</td>
<td>4</td>
<td>+</td>
</tr>
<tr>
<td>S. simulans 261</td>
<td>subclinical mastitis</td>
<td>1</td>
<td>4</td>
<td>+</td>
</tr>
<tr>
<td>S. chromogenes 93</td>
<td>subclinical mastitis</td>
<td>1</td>
<td>4</td>
<td>+</td>
</tr>
<tr>
<td>S. haemolyticus 252</td>
<td>subclinical mastitis</td>
<td>1</td>
<td>2</td>
<td>+</td>
</tr>
<tr>
<td>S. cohnii urealyticus 351</td>
<td>subclinical mastitis</td>
<td>1</td>
<td>2</td>
<td>+</td>
</tr>
<tr>
<td>S. epidermidis 163</td>
<td>subclinical mastitis</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>S. haemolyticus 94</td>
<td>subclinical mastitis</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>S. chromogenes 314</td>
<td>subclinical mastitis</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>S. chromogenes 98</td>
<td>subclinical mastitis</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>S. haemolyticus 224</td>
<td>subclinical mastitis</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
In the internalization assay (II), the 22 strains of CNS (Table 5) used in this study originated from field studies, where the clinical characteristics and outcome from CNS mastitis were investigated (Taponen et al., 2006; Taponen et al., 2007). Ten strains were isolated from clinical mastitis and twelve strains from subclinical mastitis. Of the subclinical samples, seven were from a persistent and five from a transient IMI. Infection was defined as persistent when a staphylococcal isolate with an identical amplified fragment length polymorphism (AFLP) pattern was detected from the same udder quarter in at least three consecutive milk samples taken at intervals of one month.

The strains comprised 10 *S. chromogenes*, 6 *S. simulans*, 3 *S. haemolyticus* and one *S. cohnii urealyticus*. *S. aureus* ATCC 25923, *S. aureus* 298 and *S. epidermidis* S808 were used as control strains in the assay. The positive control strain, *S. aureus* 298, was isolated from milk of a cow with acute clinical IMI (Saari Unit, Faculty of Veterinary Medicine, University of Helsinki) and the negative control strain *S. epidermidis* S808 from cheese (Finnish Food Safety Authority, Helsinki).

3 **Endotoxin (I)**

In the experimental endotoxin challenge, 100 μg *E. coli* 0111:B4 lipopolysaccharide B (Bacto, Difco Laboratories, Inc., Detroit, MI) diluted into 5 ml of sterile NaCl was infused into the experimental quarter. The same quarter was used at both the challenges during early- and late-lactation.

4 **Analytical methods**

4.1 **Analysis of bovine and human lactoferrin**

4.1.1 **ELISA (III, IV, V)**
Concentration of recombinant hLf was measured by rhLf-specific enzyme-linked immunosorbent assay, ELISA according to the procedure recommended by Pharming. Anti-hLf was absorbed with Sepharoses to remove cross-reacting antibodies (van Berkel et al., 1996). bLf levels were measured using Bovine Lactoferrin ELISA Quantitation KIT (Bethyl Laboratories, Inc. Montgomery, USA). Cross-reactivity of bLf with hLf was tested with bLf and hLf standards (Sigma, St. Louis, USA). The level of detection was 0.008 mg/ml.
4.1.2 DELFIA (I)
In the study I, bLf concentrations were determined using the DELFIA (dissociation-enhanced lanthanide fluoroimmunoassay) (Isomäki, 1999).

4.1.3 Purification of bovine lactoferrin (II)
bLf (Apo-lactoferrin, Biopole SA) was purified according to Karpulus et al. (1987). The concentration of endotoxin was determined with the Limulus Amebiosyte Lysate assay (BioWhittaker, Walkersville, MD). The LPS concentration before the purification was 4.0 ng/mg and after the purification 0.21 ng/mg.

4.1.4 In vitro susceptibility of CNS strains to bovine lactoferrin (II)
The antibacterial effect of bLf was determined using multichannel turbidometry (Bioscreen instrument, Labsystems, Helsinki, Finland). The final concentrations of bLf (Apo-lactoferrin) in the well of the instrument were 0.1, 0.5, 1.0 and 1.5 mg/ml. The sensitivity was estimated by comparing the growth curve of the strain without bLf with the growth curve of the strain with bLf. The CNS strain was considered sensitive (S) to bLf if the inhibitory effect was <50%, intermediate (I) if it was between 99.9 and 50%, and resistant (R) if it was >100% (the growth of the strain was the same or increased with bLf).

4.2 Analysis of citrate (I)
Citrate concentrations in the milk samples were determined using commercial kit method (Boehringer Mannheim). The molar ratios of citrate and bLf were calculated using the following formula: \(\frac{\text{average citrate concentration}}{\text{molecular weight of citrate 192 g/mol}} : \frac{\text{average Lf concentration}}{\text{molecular weight of Lf 77000 g/mol}} \).

4.3 Internalization assay (II)
A bovine mammary epithelial cell line (BME-UV1) described earlier (Van Oostveldt et al., 2002) was incubated at 37°C in a 5% CO₂ atmosphere. The culture medium was replaced every two to three days. Adhesion, invasion and replication were determined as described by Almeida and Oliver (2001), with some modifications. Analyses were carried out in triplicate for each strain tested including positive and negative controls. Co-cultures were incubated for 30 min (adhesion), 2 h (invasion) and 21 h (replication). Adhesion and invasion, values as percentages, were calculated using the number of adherent/invaded bacteria per original CFU/ml added on monolayers multiplied by one hundred. Replication rate (RR) is the staphylococcal CFU number after 21 h incubation divided by the CFU number of the invaded bacteria.
To test the effect of bLf on the adhesion, invasion and intracellular replication, a series of internalization assays, including bLf (2 mg/ml) in the wells, was also performed.

4.4 Bacterial count (IV, V) and LPS in milk (IV)

Bacterial counts in the milk in the experimentally infected quarters were determined by preparing 10-fold dilution series of the milk in sterile saline. Bacteria were cultured on blood agar at 37°C for 24 hours and counted. The concentrations of LPS in the milk samples at 12 h PC were determined by using the Limulus Amebocyte Lysate Test.

4.5 Indicators of inflammation in milk and blood (IV, V)

A modified ELISA method as described by Lehtolainen et al. (2004) was used for the quantification of bovine TNF-α in serum and milk. The detection limit of the ELISA was 0.5 ng/ml for serum and 1.0 ng/ml for milk. Serum cortisol was analyzed using a radioimmunoassay (Coat-A-Count Cortisol, Diagnostic Product Corporation, Helsinki, Finland).

The concentrations of serum amyloid A (SAA) in serum and milk were determined using a commercial ELISA test (Tridelta Development, Wicklow, Ireland). Milk and serum haptoglobin (Hp) concentrations were determined by a method based on the ability of Hp to bind to hemoglobin (Makimura and Suzuki, 1982) and using tetramethylbenzidine as substrate (Alsemgeest et al., 1994). The formed complex was determined photometrically (Labsystem Multiskan MS, Labsystems, Vantaa, Finland).

Milk SCC was measured in Valio Ltd Laboratories, Finland, by a fluoro-optical method using the Fossomatic-instrument (Foss Electric, Hillerød, Denmark). Milk N-acetyl-β-D-glucosaminidase (NAGase) activity was measured using the fluorogenic method of Kitchen and co-workers (1978) using a microplate modification developed by Mattila (1985).

4.6 Statistics (I, II, IV, V)

Differences in the concentrations of citrate and lactoferrin and citrate/lactoferrin molar ratios were analyzed using mixed linear model analysis. The cow was considered as a random effect. Interactions between lactation, milking time point and udder quarter were analyzed. All statistical analyses were performed with SPSS 17 for Windows (I).

The correlation of the exposure was analyzed using the Spearman test. For the analysis of the inhibitory effect of bLf on adhesion, invasion or intracellular replication, Student’s t-test was used: the data were log transformed and the variations in environmental circumstances were
eliminated using the percentage proportion of the strain with or without bLf. The tests were carried out with SPSS-software 14.0.1. for Windows (II).

In the experimental infections, the effects of time in relation to challenge on the concentrations of measured variables and clinical signs were analyzed statistically using mixed-model ANOVA (IV) (SPSS 11.0, SPSS Inc., Chicago, IL, USA).

Linear random-intercept models were used to compare time trend differences between transgenic and normal animals in milk production data and concentration of SAA in the serum. Differences between the groups were tested with generalized linear mixed models, in which a Poisson distribution was used for the response variables. The cow was included as a random factor. Overall differences in time changes between the groups were tested with an F-test. Logarithmic transformation was used for milk parameters (V).

In all statistical analyses, results were considered as significant when \(P < 0.05 \).
RESULTS

1 Lactoferrin in endotoxin mastitis in early- vs. late-lactating cows (I)

Intramammary infusion of endotoxin (LPS) resulted in mild to moderate clinical mastitis in both groups, but in the EL group clinical signs were more severe, and concentrations of indicators of inflammation in the milk were greater (Lehtolainen et al., 2003). Before the intramammary endotoxin challenge, the average bLf concentration of the milk was 0.1 mg/ml (EL) and 0.24 mg/ml (LL). The concentration of bLf in the milk of the experimental quarters started to increase at 8 hours post-challenge (PC) and was still significantly higher than the pre-challenge level on the third day. bLf concentrations in the milk greatly varied among cows, and were higher in LL cows than in EL cows during the whole experimental period (Fig. 2a). The average peak concentrations of bLf in the milk were 0.45 mg/ml (EL) and 1.44 mg/ml (LL). Concentrations of bLf in the milk of the control quarters remained unchanged over the whole experimental period.

Figure 2. Concentration of a) bLf (mg/ml) and b) citrate (mg/ml) in the milk of udder quarters infused with 100 µg endotoxin (LPS) in early lactating (♦) and late lactating (■) dairy cows (n=9). The significances of the pair-wise comparisons are shown in the figure. Dispersion bars represent SD.

Before challenge, the average citrate concentration was 2.3 mg/ml in the milk of both EL and LL cows. After infusion of endotoxin, concentrations of citrate were higher in the EL cows than in
the LL cows (Fig. 2b), but variation among the cows was high. Citrate concentrations in the milk of the challenged quarters significantly differed between EL and LL groups at 2 h, 8 h, 28 h, 56 h and 72 h PC. Citrate concentrations in the milk of control quarters were higher in EL cows than in LL cows (data not shown). During the first 8-12 h PC, citrate concentrations in the milk of the experimental quarters decreased, but from 24 h PC the differences remained stable.

The molar ratio of citrate to bLf was higher in the milk of the EL cows before the endotoxin challenge. Molar ratios of citrate to bLf in EL and LL cows after endotoxin challenge are shown in Fig. 3. The difference at 2 h PC was statistically highly significant, reflecting the difference prior to challenge.

![Molar ratio +/- SD](image)

Figure 3. Molar ratios of citrate to bLf in the milk of udder quarters infused with endotoxin (LPS) in early lactating (♦) and late lactating (■) dairy cows (n=9). The significances of the pair-wise comparisons are marked in the figure. Dispersion bars represent SD.

The cross-over model used was valid because no significant differences were found (P=0.242) in allocating the cows first to the EL group and then to the LL group and vice versa.

2 Internalization of coagulase-negative staphylococci in the BME cell model (II)

In the BME cell model, all CNS species examined had an adhesive ability equal to that of *S. aureus*, but the internalization capacity varied among staphylococcal strains (Table 6). Adhesion and invasion, as well as the replication rate, were strongly and positively correlated during the exposure. No differences in adhesion, invasion or replication rates were seen between the persistent and transient strains.
Table 6. Adhesion (Adh%), invasion (Inv%), and replication rate (RR) of the staphylococcal strains in bovine mammary epithelial cells BME-UV1 in the absence or presence of bLf (2 mg/ml), and the susceptibility level (S-I-R) of the test strains to bLf.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Adh% with bLf</th>
<th>Adh% with bLf</th>
<th>Inv% with bLf</th>
<th>Inv% with bLf</th>
<th>RR with bLf</th>
<th>RR with bLf</th>
<th>bLf (SIR)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control strains</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. aureus ATCC25923</td>
<td>0.60</td>
<td>0.69</td>
<td>0.52</td>
<td>0.060</td>
<td>86</td>
<td>77</td>
<td>R</td>
</tr>
<tr>
<td>S. aureus 298</td>
<td>1.45</td>
<td>0.84</td>
<td>1.30</td>
<td>1.50</td>
<td>15717</td>
<td>93733</td>
<td>I</td>
</tr>
<tr>
<td>S. epidermidis S808</td>
<td>0.86</td>
<td>0.39</td>
<td>0.025</td>
<td>0.0042</td>
<td>42</td>
<td>10</td>
<td>S</td>
</tr>
<tr>
<td>CNS strains from clinical mastitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. chromogenes PAM 37</td>
<td>0.49</td>
<td>0.56</td>
<td>0.14</td>
<td>0.014</td>
<td>16737</td>
<td>348</td>
<td>I</td>
</tr>
<tr>
<td>S. simulans 15</td>
<td>0.12</td>
<td>0.11</td>
<td>0.004</td>
<td>0.022</td>
<td>219</td>
<td>171</td>
<td>I</td>
</tr>
<tr>
<td>S. chromogenes 117</td>
<td>0.56</td>
<td>0.26</td>
<td>0.40</td>
<td>0.035</td>
<td>239</td>
<td>465</td>
<td>I</td>
</tr>
<tr>
<td>S. simulans 19</td>
<td>0.15</td>
<td>0.18</td>
<td>0.02</td>
<td>0.051</td>
<td>75</td>
<td>49</td>
<td>I</td>
</tr>
<tr>
<td>S. chromogenes 22</td>
<td>0.44</td>
<td>0.15</td>
<td>0.054</td>
<td>0.018</td>
<td>621</td>
<td>285</td>
<td>I</td>
</tr>
<tr>
<td>S. chromogenes 52</td>
<td>0.6</td>
<td>0.47</td>
<td>0.10</td>
<td>0.008</td>
<td>435</td>
<td>2456</td>
<td>I</td>
</tr>
<tr>
<td>S. chromogenes 72</td>
<td>0.09</td>
<td>0.12</td>
<td>0.006</td>
<td>0.011</td>
<td>295</td>
<td>71</td>
<td>I</td>
</tr>
<tr>
<td>CNS strains from subclinical mastitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persistent mastitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. epidermidis 221</td>
<td>0.89</td>
<td>0.90</td>
<td>0.019</td>
<td>0.029</td>
<td>113</td>
<td>84</td>
<td>R</td>
</tr>
<tr>
<td>S. chromogenes 312</td>
<td>0.52</td>
<td>0.28</td>
<td>0.023</td>
<td>0.032</td>
<td>102</td>
<td>59</td>
<td>I</td>
</tr>
<tr>
<td>S. simulans 198</td>
<td>2.2</td>
<td>2.2</td>
<td>0.020</td>
<td>0.033</td>
<td>77</td>
<td>71</td>
<td>I</td>
</tr>
<tr>
<td>S. simulans 261</td>
<td>0.19</td>
<td>0.048</td>
<td>0.001</td>
<td>0.001</td>
<td>706</td>
<td>485</td>
<td>I</td>
</tr>
<tr>
<td>S. chromogenes 93</td>
<td>0.44</td>
<td>0.61</td>
<td>0.15</td>
<td>0.011</td>
<td>46</td>
<td>46</td>
<td>I</td>
</tr>
<tr>
<td>S. haemolyticus 252</td>
<td>0.80</td>
<td>1.8</td>
<td>0.014</td>
<td>0.012</td>
<td>13</td>
<td>2</td>
<td>S</td>
</tr>
<tr>
<td>S. cohnnii urealyticus 351</td>
<td>0.59</td>
<td>0.53</td>
<td>0.013</td>
<td>0.067</td>
<td>160</td>
<td>103</td>
<td>S</td>
</tr>
<tr>
<td>Transient mastitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. epidermidis 163</td>
<td>0.23</td>
<td>0.10</td>
<td>0.004</td>
<td>0.006</td>
<td>1787</td>
<td>393</td>
<td>R</td>
</tr>
<tr>
<td>S. haemolyticus 94</td>
<td>3.4</td>
<td>2.6</td>
<td>0.15</td>
<td>0.015</td>
<td>13450</td>
<td>2339</td>
<td>I</td>
</tr>
<tr>
<td>S. chromogenes 314</td>
<td>0.89</td>
<td>0.15</td>
<td>0.10</td>
<td>0.005</td>
<td>337</td>
<td>1867</td>
<td>I</td>
</tr>
<tr>
<td>S. chromogenes 98</td>
<td>1.1</td>
<td>1.2</td>
<td>0.17</td>
<td>0.012</td>
<td>10</td>
<td>9</td>
<td>S</td>
</tr>
<tr>
<td>S. haemolyticus 224</td>
<td>3.6</td>
<td>1.7</td>
<td>0.06</td>
<td>0.0026</td>
<td>9</td>
<td>100</td>
<td>I</td>
</tr>
</tbody>
</table>

Sensitivity of the strains to bLf as SIR-classification: S=Sensitive, I=Intermediate and R=Resistant
2.1 Sensitivity of CNS to bovine lactoferrin

The effect of bLf (1.5 mg/ml) on the growth of CNS strains is shown in Table 6 as a percentage of the growth without bLf. The sensitivity was estimated by comparing the growth curve of the strain with and without bLf. The strain was considered to be sensitive to bLf, if the inhibitory effect was <50%, intermediate if it was between 99.9% and 50%, and resistant if it was >100%. Three CNS strains were sensitive to bLf and the inhibitory effect was intermediate for 17 CNS strains. Two strains were resistant.

2.2 Effect of bovine lactoferrin on the internalization

The antagonist effect of bLf on the adhesion and invasion of CNS strains was weak, but bLf significantly decreased intracellular replication and replication rates of CNS (Table 6). No correlation between the in vitro susceptibility of the strain to bLf or internalization among clinical signs of mastitis was recorded.

![Figure 4: Replication rates of staphylococcal strains in bovine mammary epithelial cells BME-UV1 in the absence (black columns) or presence (gray columns) of bLf (2 mg/ml).](image)

The effect of bLf on adhesion, invasion and intracellular replication was tested with all nineteen CNS strains at a concentration of bLf of 2 mg/ml. bLf did not have a significant effect on the number of adhered bacteria during the exposure. Degree of the adherence established in the
assay did not correlate with the susceptibility of the strain to bLf (Table 6). bLf significantly decreased the intracellular replication ($P=0.013$) and replication rates ($P=0.012$) of the CNS strains.

Susceptibility of the CNS strain to bLf had no significant effect on the intracellular survival of the strain (Fig. 4). For example, *S. aureus* ATCC 25923 resistant to bLf, *S. simulans* 198 party resistant to bLf and *S. cohnii urealyticus* 351 sensitive to bLf had almost equal replication rates with and without bLf in the *in vitro* BME cell assay.

3 Bovine and human lactoferrin (III, IV, V)

The mean bLf and rhLf concentrations of the milk of recombinant hLf-transgenic cows are shown in Figure 5. The level of rhLf was constant (about 2.9 mg/ml) throughout the three-month follow-up period and the differences in rhLf concentrations among the seven cows were not significant (range 2.7 to 3.2 mg/ml). During the first two or three days after calving, rhLf concentrations were slightly lower than later: on average 2.5 mg/ml (from 1.7 to 2.8 mg/ml). The concentration of bLf in colostrum from day 2 was higher, but decreased rapidly during the first days of lactation. The concentration varied among cows (from 0.07 to 0.26 mg/ml). The mean value of bLf during lactation was 0.15 mg/ml (0.01 – 0.45 mg/ml).

![Figure 5. The mean (±SEM) concentrations of rhLf (♦) and bLf (■) (mg/ml) in seven transgenic dairy cows during the first three months of lactation](image)

Total Lf concentrations in the milk of the transgenic and control cows during experimentally induced *E. coli* intramammary infection (IV) are presented in Fig. 6. The mean concentrations of rhLf in the milk ranged from 2.35 to 2.89 mg/ml. No statistically significant differences between concentrations in bLf of the challenged and control quarters were found.
Figure 6. Mean concentrations of rhLf (♦) and bLf (◊) (mg/ml) in milk of challenged quarter of the transgenic cows and bLf (■) (mg/ml) in the control cows after an intramammary infusion of 1700 CFU of E. coli into a single udder quarter during the experiment. Data are presented as the means (±SEM) of the six transgenic and five control cows.

In the experimentally induced S. chromogenes infection model (V), the concentration of bLf in the milk peaked in both groups at 48 h PC; the mean concentration of Lf was 0.27 mg/ml (0.17-0.40 mg/ml) in the transgenic group and 0.36 mg/ml (0.09-0.47 mg/ml) in the control cows. No statistical differences were seen between the groups. The concentration of rhLf in the milk of the transgenic cows remained constant throughout the experimental period (mean 2.6 mg/ml; 2.4-2.8 mg/ml).

The concentrations of bLf in the experimental endotoxin model are shown in chapter 1, Figure 2a.
Response of the rhLf-transgenic cows in experimentally induced intramammary infection (IV, V)

In experimentally induced *E. coli* and *S. chromogenes* intramammary infections, all cows in transgenic and control groups became infected and developed mastitis; i.e. expression of recombinant hLf in the milk did not protect the quarters from infection. In general, the clinical response was milder in the transgenic group. In the *E. coli* model, clinical signs became visible 4 hours earlier in the control group (*P*=0.006). In the transgenic group, clinical signs appeared later, within 8-12 hours PC. All transgenic cows and five cows in the control group showed mild to moderate systemic signs; only one cow in the control group exhibited a severe reaction. Mean temperature was lower in the transgenic cows compared with the control cows (*P*=0.031). The transgenic cows suffered significantly less severe systemic clinical signs compared with the control cows (*P*=0.020) and recovered faster (*P*=0.008). Systemic signs in all cows in the transgenic group returned to normal by 24 hours, while the recovery of the control cows lasted over 48 hours. The local signs of the infected quarters and changes in the appearance of milk disappeared within 7 days PC in both groups. No statistically significant differences between the local signs of the groups were found. The daily total milk yield during the experiment did not differ statistically between the groups.

In experimental *S. chromogenes* mastitis, both transgenic and control cows became infected, i.e. hLf present in the milk did not prevent staphylococcal infection. The normal cows showed signs of mild clinical mastitis, but in the transgenic cows, mastitis remained subclinical. Expression of hLf in the milk thus resulted in milder mastitis. None of the cows had a temperature over 39.0°C, and overall, the local signs were scored from 1 to 2. In the control group, slight hardness of the infected quarter and some changes in the milk appearance such as clots in the milk were observed. No differences in quarter milk yield or total milk yield were found between groups. No changes were found in the control quarters at any time points.

In both experiments, bacterial counts in the milk of the challenged quarters peaked in both groups at 8 hours PC. *E. coli* bacteria were eliminated within 3.5 days PC, and no significant differences were observed in the elimination time of bacteria between the transgenic and control cows. In *S. chromogenes* infection, the transgenic cows eliminated bacteria more rapidly (*P*<0.05), and infection remained persistent in one cow in the control group (Fig. 7a).

In *E. coli* and *S. chromogenes* infections, the milk SCC of the challenged quarters increased during the first twelve hours PC, but no significant differences between transgenic and control groups were seen in either of the experimental challenges. In experimental *E. coli* infection, no significant differences were seen in milk NAGase activities between the groups. In *S. chromogenes* infection, NAGase activity of the milk was higher in the control group as
compared with the transgenic group ($P<0.001$) (Fig. 7b): in the transgenic cows, it remained unchanged throughout the study period.

![Graph showing bacterial count and NAGase activity](image)

Figure 7. The mean (±SEM) concentrations of milk a) bacterial count (log CFU/ml) and b) NAGase activity (MU/min per µl) of six transgenic cows (◊) and five control cows (♦) after an intramammary infusion of S. chromogenes into a single udder quarter. Statistical significant difference recorded between groups for milk bacterial count and NAGase activity.

The experimental *E. coli* IMI induced both local and systemic TNF-α responses in the cows. Higher TNF-α concentrations were found in the milk of the transgenic group at hours 16 and 20 PC (220.4 ± 50.3 ng/ml) compared with the control group (130.5 ± 24.2 12 PC and ±14.9 ng/ml 16 PC) but the difference was not significant. In serum, the TNF-α concentration peaked at 12 hours PC, and returned to the baseline level by 24 hours PC. One of the control cows with severe systemic signs had the highest concentration of serum TNF-α at 12 hours PC, but the mean concentrations of serum TNF-α did not statistically differ between groups.

In *E. coli* mastitis, the serum cortisol concentrations of the transgenic group returned to normal by 36 hours, but in the control group they stayed elevated and did not return to baseline levels by 7 days PC (Fig. 8a). Concentrations of the milk SAA and Hp in the milk did not differ statistically between the groups. In both groups serum SAA peaked at 60 hours PC; the maximum concentration was on average 282.4 mg/l in the transgenic group and 376.9 mg/l in the control group during the *E. coli* experiment. The same pattern was recorded for serum Hp concentrations, but the difference was significant at 8 hours and 168 hours PC (Fig. 8b).
Figure 8. Mean (±SEM) serum a) cortisol (nmol/l) and b) Hp (g/l) concentrations in the transgenic (■) and control (♦) cows after an intramammary infusion of 1700 CFU of E. coli into a single udder quarter during the experiment. Data are presented as the means ±SEM of the six transgenic and five control cows. The P values in a) were 0.003 (*), 0.031 (**) and 0.048 (***) in cortisol and in b) 0.035 (*) and 0.029 (**) in serum Hp.

Figure 9. The mean (±SEM) concentrations of acute phase protein a) MAA (mg/l) in milk and b) SAA (mg/l) in serum with six transgenic cows (◊) and five control cows (♦) after an intramammary infusion of S. chromogenes into a single udder quarter. Statistical difference occurred between groups with MAA.
The concentration of milk amyloid A (MAA) during experimental staphylococcal infection was lower in the rhLf group (p<0.01), but began to increase earlier (Fig. 9a). In the transgenic cows, SAA peaked at 34 h PC and in the control cows at 46 h PC (Fig. 9b). In three cows of the control group, concentration of SAA rose to 90 mg/l, indicating a clear systemic response. The difference between the groups was not statistically significant, probably due to the large variation among the individual cows. Mean SAA was lower throughout the study period and never exceeded 20 mg/l in the experimental group.
DISCUSSION

1 Lactoferrin in bovine intramammary infection

Lf in milk is expressed and secreted by mammary epithelial cells and is found in the secondary granules of neutrophils (Masson et al., 1969). Numerous biological functions are known for Lf that relate to bovine intramammary infections, as described in the literature review included in this thesis. Lf is one of the key elements of the innate immune system of the mammary gland. Concentration of Lf in milk varies according to with lactation period, being high in colostrum and dry-period secretion. Concentration of Lf also depends on the infection status of the mammary gland; the concentration increases during mastitis, varying according to the causal bacteria and the severity of the infection (Harmon et al., 1975; Kawai et al., 1999; Hagiwara et al., 2003; Lee et al., 2004; Chaneton et al., 2008). There is substantial variation on Lf levels among individual cows, as was also demonstrated in our studies.

Previous studies have shown that the susceptibility of bacteria to Lf varies according to bacterial species and strains. Most bacteria require iron for growth, but the iron content of normal mammary milk is low. Iron is largely bound to bLf (Bishop et al., 1976). Consequently, the amount of free iron in normal milk is too low to support the growth of bacteria. During mastitis, in the presence of bicarbonate leaking from blood following increased permeability, Lf sequesters free ferric ions present in milk (Sordillo and Streicher, 2002). bLf in its apo form shows marked bacteriostatic activity in vitro against mastitic bacteria, the most susceptible species being *E. coli* (Nonnecke and Smith, 1984b; Rainard, 1986a). However, Dionysius et al. (1993) reported that the inhibition of growth of enteric *E. coli* was strain-dependent, and Sanchez and Watts (Sanchez and Watts, 1999) did not report an inhibitory effect of bLf alone on *E. coli* strains isolated from bovine mastitis. Bacteriostatic activity of bLf is not necessarily seen in vivo, although in vitro the strains were apparently susceptible to Lf. This indicates that mechanisms other than simple iron sequestration may be involved in the antibacterial action of Lf.

2 Behavior of lactoferrin and citrate in endotoxin mastitis (I)

Concentrations and dynamics of bLf and citrate in the milk were studied in the same cows during early and late lactation periods using an endotoxin mastitis model (study 1). The concentration of bLf was 0.3 mg/ml at 24 hours PC and 0.5 mg/ml one day later in EL cows, and significantly higher, 0.7 and 1.4 mg/ml, respectively, in the late lactating cows. The response to endotoxin was significantly more severe in EL than in LL cows (Lehtolainen et al., 2003). A more severe response in newly calved cows was also observed in an experimental *E. coli* mastitis model (Hill et al., 1979; Shuster et al., 1996; Mehrzad et al., 2002). In our study, a slightly lower initial
number of blood and milk PMN were recorded in the EL cows, but they increased faster and reached higher levels in EL cows than in LL cows. Neutrophils are the predominant cell type found in mammary tissues and secretions during the early stage of inflammation. bLf is produced by mammary epithelial cells and leukocytes. Besides the iron-binding ability, Lf binds to lipid A of LPS and thus inhibits the effect of endotoxin (Appelmelk et al., 1994; Elass-Rochard et al., 1995). Here, the concentration of bLf was higher in LL than that in EL cows, despite the higher PMN numbers in the milk of EL cows. In the endotoxin model, inflammation in the quarter is often of short duration and epithelial damage is transient, if it occurs at all. The inflammation was more severe in the EL cows and perhaps the lower concentration of Lf in the milk in them could be due to decreased synthesis of Lf by the epithelial cells. The involution that developed very probably was the basic reason for the higher concentrations of bLf in LL cows. At that time the milk yield also decreased, diminishing the dilution effect of milk on the soluble components. The higher bLf concentration in the milk may have been the major contributor to the milder inflammatory response seen in the LL cows.

In one earlier study of endotoxin-induced mastitis, the concentration of bLf was 0.20 mg/ml before induction and 1.0 mg/ml on the next day, but the period of lactation was not defined (Harmon and Newbould, 1980). Comparison of the concentrations of bLf among various studies differs substantially, as do the methods, sampling times, and lactation periods. Furthermore, analyzing Lf concentration is more difficult in mastitic milk than in normal milk because the consistency of the milk is abnormal and samples need to be diluted, which reduces the accuracy of analysis.

Schmitz et al. (2004) studied short-term changes in mRNA expression of various inflammatory factors and milk proteins, including Lf using a LPS-induced mastitis model. Lf mRNA expression increased within 3 hours after LPS infusion and peaked at 6 hours PC. In a cell culture model, Lf mRNA expression of LPS-treated milk PMNs increased 1-2 hours after the induction (Préglomet et al., 2005). In a study using BME cells, mRNA expression of Lf differed between heat-inactivated S. aureus and E. coli bacteria; one hour after the challenge expression of Lf mRNA was significantly higher in the E. coli infected cells than in the cells infected with S. aureus (Griesbeck-Zilch et al., 2008). In our study, concentration of bLf in the milk increased in a linear fashion during the first 12 hours PC, but was lower than record in our E. coli infection model (study IV).

In our study, the concentration of citrate in the milk first increased after the endotoxin challenge, then decreased and was at its lowest 8 hours PC in EL cows. Decrease in the concentration of citrate in the milk was more apparent in LL cows, and was at its lowest 12 hours PC. Our results agree with those of a previous study (Guidry et al., 1983) using an endotoxin mastitis model and ten EL or LL cows, in which the concentration of citrate in milk decreased significantly in the EL cows and was at its lowest 7 to 10 hours PC. The results on the effect of mastitis on the
concentrations of citrate are controversial. Sloth et al. (2003) did not establish any differences between cows with healthy or infected quarters. Garnsworthy et al. (2006) came to the conclusion that the variation in concentration of citrate in the milk was not associated with health status of the udder. The concentration of citrate in milk has been found to vary significantly throughout lactation (Banks et al., 1984). The main conclusion to be drawn from our results was that lactation stage affected the trend of decreasing citrate concentration in the milk after endotoxin challenge, but that no large changes in relation to time were noted in either group.

The molar ratio of citrate to Lf is more important than the absolute concentration of either component (Bishop et al., 1976). The molar ratio decreases towards the involution of the udder (Kutila et al., 2003a) and during mastitis (Bishop et al., 1976), and increases along with lactogenesis (Peaker and Linzell, 1975). In principle, the lower the ratio, the more resistant the udder should be against coliform infections and the faster bacteria should be eliminated from the udder. In our study, before the endotoxin challenge the molar ratio of citrate to bLf in the milk was significantly higher in the EL group than in the LL group because of the higher concentration of bLf in the milk of LL cows. The difference remained significant, but decreased during the first 24 hours PC. The higher molar ratio in newly-calved cows may expose them to IMI, and may be one explanation for the well-documented susceptibility and high proportion of mastitis in cows post partum and during early lactation (Burton and Erskine, 2003; Pyörälä, 2008). A tendency towards higher concentrations of bLf in the milk in late-lactating cows, compared with early or mid-lactating cows, was reported earlier (Hagiwara et al., 2003). In our study, molar ratios among cows varied greatly during the first hours PC, but the concentration of citrate in the milk was always higher in EL cows compared with LL cows. It can be concluded that the concentration of bLf and molar ratio of citrate to bLf in the milk probably affect the susceptibility of the bovine udder to IMI during different lactation periods.

3 The effect of bovine lactoferrin on staphylococcal internalization in the BME cell model (II)

Bacterial infection in vivo is a complex process, the first step being an intimate colonization of epithelial cells through non-specific physical interactions, and development of specific ligands to host receptors (Van Belkum et al., 2002). The development of CNS intramammary infection and potential virulence factors of CNS are poorly understood. CNS mastitis is generally mild but can persist in the udder for long periods, and the factors promoting persistence of infection are not known (Aarestrup and Jensen, 1997; Taponen et al., 2006). Several pathogens of the bovine mammary gland are capable of adhering to and inducing their internalization by mammary epithelial cells (Matthews et al., 1994; Almeida et al., 1996; Almeida and Oliver, 2001; Anaya-Lopez et al., 2006; Dogan et al., 2006). Studies on CNS adhesion have focused on bacterial aggregation and binding to biomaterials, as well as on the role of specific adhesins and slime production (Kloos and Bannerman, 1994). Production of capsular polysaccharide adhesin and
slime has been suggested essentially to determine the persistence of bacteria in biofilms in *S. aureus* infection (Cucarella et al., 2004). The interaction between CNS and BME cells was explored in the study of Almeida and Oliver (2001). The results for three different CNS species isolated from the milk of cows with mastitis showed that they were able to adhere to and be internalized in bovine mammary cells.

In our study, the antagonistic effect of bLf on the adhesion and invasion of CNS strains was weak, but bLf significantly decreased intracellular replication and replication rates of CNS. As do all bacteria, staphylococci need iron for growth, and bLf has an ability to bind iron, which is then not available to the bacteria. However, our results showed that the limitation of iron by bLf was not relevant to the adhesion and invasion processes of CNS because the degree of adherence did not correlate with *in vitro* inhibition of bLf during bacterial growth. Diarra et al. (2003) reported that bLf alone, or in combination with penicillin, reduced the invasion of mammary epithelial cells by *S. aureus*, but the mechanism remained unclear. In contrast, the *Str. uberis* adhesion molecule (SUAM) has an affinity for Lf, and bLf serves as a molecular bridge for internalization of *Str. uberis* in BME cells (Patel et al., 2009b). Lf may enhance phagocytosis of *S. aureus* by bovine PMNs and decrease the invasion of BME cells (Diarra et al., 2003). The other possible mechanism suggested by Naidu et al. (1990) is that Lf-binding to staphylococci could interfere with its capacity to adhere to the extracellular matrix protein. Sequestrering of iron by Lf not only inhibits microbial growth but also reduces oxidative stress resulting from inflammation (Kruzel et al., 2006). Kruzel et al. (2007) showed that Lf significantly decreased intracellular reactive oxygen species (ROS) concentrations in a dose-dependent manner. This immunomodulatory function of Lf may explain the decreased intracellular replication of CNS strains.

All CNS species studied here (study II) had an adhesive ability equal to that of *S. aureus* isolated from clinical mastitis, but the capacity for internalization varied among the strains. Biofilm formation is involved in bacterial adherence to host epithelial cells and considered as the most important virulence trait of staphylococci, and essential for the persistence of staphylococcal infection (Aguilar et al., 2001; Cucarella et al., 2004). Oliveira et al. (2006) suggested that biofilm formation might constitute an important selective advantage for bacterial persistence in the udder, but not for the severity of mastitis. According to the present results, CNS strains originating from subclinical mastitis had an enhanced ability to adhere to BME cells in comparison with strains isolated from clinical mastitis. This finding supports the suggestion that bacterial adhesion and biofilm formation are associated with development of subclinical intramammary infection. CNS strains from persistent IMI had a lower adhesion capacity than the strains isolated from transient infections, which does not promote the idea that persistent strains adhere more intensively than transient strains. No differences were found between the persistent and transient CNS strains regarding invasion and replication rates. Our material was limited to only seven persistent and five transient strains, and the variation among strains was high. The
results are thus not conclusive, and more studies are needed to explore the association between persistence of infection and internalization capacity of CNS. Dogan et al. (2006) studied *E. coli* strains from persistent and transient IMI, and suggested that the invasion of mammary epithelial cells and intracellular survival play an important role. Possibly the replication time of 24 hours in our study was too short for representative replication to take place. The pathogenesis of *E. coli* and staphylococcal intramammary infections probably also differs. In addition to bacterial characteristics, the host response may be significant or even decisive in determining the persistence of the intramammary infection. This is, however, an aspect that is very difficult to study with *in vitro* models. Extrapolation of *in vitro* findings directly to *in vivo* circumstances should be done cautiously (Van Belkum et al., 2002). Expression of adhesins is strongly affected by the environment, including the chemical composition of the growth medium. Staphylococci may show stronger adhesion to damaged udder tissue cells than to cultured host cells used in the *in vitro* models. The cultured cells may, for instance, express different receptors to cells in the mammary gland (Cifrian et al., 1994).

4 The effect of expression of rhLf in the milk on experimentally induced intramammary infection (IV, V)

To the best of our knowledge, our studies (IV, V) were the first to explore the possible resistance of rhLf-transgenic dairy cows to mastitis. The high content of Lf in the milk of the transgenic cows was a good starting point to study the possible protective effects of indigenous Lf on the progress of intramammary infection. The concentration of rhLf in milk of the transgenic cows was constant (about 2.9 mg/ml) throughout the first trimester of the lactation period. The differences in rhLf concentrations between the seven cows were not significant. According to van Berkel et al. (2002), in hormone-induced lactation of various transgenic animal lines, rhLf concentrations in the milk were between 0.3 and 2.8 mg/ml. The expression pattern seen here probably reflected the fact that the cows used were of the same transgenic line, resulting in smaller variation. The molecules of hLf and bLf are structurally very similar when viewed at the tertiary level, and they share 69% sequence homology (Pierce et al., 1991). Recombinant and natural hLf are of similar structure and functional properties *in vitro* (van Berkel et al., 2002; Thomassen et al., 2005). However, rhLf glycans may possess specific features that must be taken into account when interpreting results from *in vitro* and *in vivo* experiments (Legrand et al., 1997). For the induced mastitis experiments, *E. coli* and CNS were selected, representing two very different types of mastitic bacteria. They are respectively a major pathogen causing severe disease, and a so-called minor pathogen.

The concentration of bLf in the milk of the transgenic cows was higher after calving, but decreased rapidly during the first days of lactation. The mean concentration of bLf during the lactation period was 0.15 mg/ml, but the variation among cows was quite high. Before experimental infection, the mean concentrations of bLf in the milk of transgenic and control
cows were equal (0.05 mg/ml). These results agree with those of previous studies on normal cows (Harmon et al., 1975; Welty et al., 1976; Smith and Schanbacher, 1977; Sanchez et al., 1988). Mean rhLf concentrations in the milk were similar in experimentally induced \textit{E. coli} and CNS mastitis. Concentrations of bLf in the milk substantially differed according to the bacterial species, and were almost ten times as high in \textit{E. coli} mastitis as in CNS mastitis. Concentration of bLf in \textit{E. coli} mastitis peaked at 36 to 60 hours PC and the mean maximum concentration was from 1.8 to 2.0 mg/ml. In CNS mastitis, concentration of bLf peaked at 48 hours PC and the mean peak concentration was 0.27 mg/ml.

Both strains of \textit{E. coli} and \textit{S. chromogenes} used in experimentally induced infections were susceptible to bLf \textit{in vitro} (Kutila et al., 2003b). The \textit{E. coli} strain was intermediately sensitive and the \textit{S. chromogenes} strain completely sensitive to rhLf (1.5 mg/ml) \textit{in vitro}. The CNS strain used, \textit{S. chromogenes} PAM37, was also tested in an internalization assay (study II), and had the highest replication rate and adhesion and invasion percentages among the CNS strains. This strain originates from clinical mastitis with moderate clinical signs and a high milk SCC. The results of the internalization assay revealed the potential virulence of this CNS strain, which was capable of replicating in bovine mammary epithelial cells. The experimental model confirmed the capacity of this strain to induce intramammary infection and in normal cows even clinical mastitis. The results from the two models thus supported each other.

No significant differences were observed in the elimination times of bacteria between the transgenic and normal cows in experimentally induced \textit{E. coli} IMI, but in the CNS infection the transgenic cows eliminated bacteria more rapidly than the control cows. In experimentally induced \textit{S. chromogenes} IMI, the rhLf-transgenic cows showed no clinical signs, unlike the control cows, which developed mild clinical mastitis. As previously stated, \textit{S. chromogenes} was fully sensitive to hLf, which could partly explain the differences in the elimination rates of bacteria. In the \textit{E. coli} model, NAGase activity of the milk was not statistically different between the groups, whereas in the CNS model NAGase activity was lower in the transgenic group. NAGase is released from neutrophils and injured epithelial cells, and NAGase activity of milk reflects the inflammatory reaction and tissue damage in the mammary gland (Kitchen et al., 1978). It is known that Lf inhibits the secretion of some bacterial exoproteins, which cause tissue damage (Diarra et al., 2002b). This could be one potential advantageous effect of indigenous Lf, but the difference was only seen in the CNS infection. Inflammatory reaction in the \textit{E. coli} infection may have been too strong to see any differences in milk NAGase activities, as they were high in both groups.

The antibacterial effect of Lf against Gram-positive bacteria is based on binding to the staphylococcal membrane, decreasing its negative charge and making it more vulnerable to lysozyme, the bactericidal protein present in milk, which then cleaves peptidoglycans from the cell wall (Leitch and Willcox, 1999a). Another mechanism for Lf activity against staphylococci
could be its ability to inhibit biofilm formation, because to form biofilm some bacteria require higher levels of iron than for the vegetative growth phase (Weinberg, 2004). The inhibition of biofilm formation would support the elimination of bacteria by the host, or make it more suitable for antimicrobial treatment (Flanagan and Willcox, 2009).

The systemic inflammatory response in *E. coli* mastitis is mediated mainly by LPS (Carroll et al., 1964; Bannerman et al., 2003), which is the initiating factor of acute phase response (APR) that results in the observed systemic and local signs (Hirvonen et al., 1999; Burvenich et al., 2003). The ability of Lf to bind LPS and down-regulate LPS-induced cytokines has been considered to be one of the immunomodulatory functions of Lf (Legrand et al., 2004). Lf is one of the proteins with high-affinity for LPS, but it does not completely neutralize LPS activity. Lipid A can still be active even after the Lf-LPS-complex has been formed (Na et al., 2004). Our findings of reduced clinical signs in the transgenic animals in the *E. coli* model may indicate that elevated concentration of total Lf inhibited the activity of LPS to some extent, but not completely. The mean concentration of LPS in the milk of cows in the transgenic group was lower than in the milk of those in the control group, but the difference was not significant. Lf competes with LPS-binding protein (LBP) for binding to LPS and might interfere with interaction of LPS and CD14 (Legrand et al., 2005). Lf is also believed to act like LBP during the inflammatory activation of macrophages (Na et al., 2004). The LPS-neutralizing activity of Lf in the milk may depend on the presence and concentration of other LPS-binding proteins, and not solely on the concentration of Lf.

When searching for possible reasons for the failure of the expressed rhLf in the milk to prevent intramammary infections, some issues need to be considered. Komine et al. (2005) found that bLf molecules in mastitic secretions differ from those in milk of healthy cows: Lf originating from healthy secretions had better iron-binding ability and antibacterial activity *in vitro* than Lf from mastitic secretions, but the latter showed inflammation-inducing effects such as induction of pro-inflammatory cytokines and chemokines. These results may explain why the antibacterial effect of Lf *in vitro* is not necessarily similar to that *in vivo*. Expression of rhLf was almost constant during both experimentally induced IMIs, and rhLf molecules apparently did not change like bLf from the mastitic secretions in the cited study. The rhLf gene is under the control of bovine αS1-casein promoter and the expression of rhLf occurs in the mammary gland (Brink et al., 2000). The concentration of αS1-casein decreases in milk during IMI (Schanbacher et al., 1993), but the expression of casein did not decrease significantly during LPS-induced mastitis (Schmitz et al., 2004). Concentrations of bLf and casein in the milk during mammary development, lactation and involution are reciprocal (Schanbacher et al., 1993). Consequently, rhLf did not respond to experimentally induced IMI. bLf is released from the specific granules of neutrophils, and thus the concentration of bLf in milk is also related to the number of neutrophils present in the milk (Hagiwara et al., 2003), and increases depending on the causal agent of IMI.
In studies on experimentally induced LPS and *E. coli* mastitis, the increase of systemic cortisol concentrations in mildly and moderately affected cows was transient (Jackson et al., 1990; Hirvonen et al., 1999), but in the most severely affected cows cortisol concentrations remained elevated for a long time (Hirvonen et al., 1999). In our study, all cows responded to the challenge with increased concentrations of cortisol in the serum, but in the control cows the concentration rose significantly earlier and remained elevated for a longer time than in the transgenic cows, indicating a stronger inflammatory reaction. This may be explained through the binding of rhLf to LPS and the partial inhibition of the effects of LPS.

Lf down-regulates the secretion of pro-inflammatory cytokines that stimulate host response, which is reflected by an increase in the concentrations of acute phase proteins (APP) like SAA, MAA and Hp. Cytokines such as TNF-α and acute phase proteins SAA, MAA and Hp, can be measured from milk and blood, and they reflect the severity of the cow’s response (Alsemgeest et al., 1994; Appelmelk et al., 1994; Hirvonen et al., 1999; Blum et al., 2000). In our *E. coli* experiment, SAA and Hp concentrations in serum started to increase shortly after the challenge and remained lower in the transgenic cows than in the control cows. SAA and Hp peaked earlier in the milk than in the serum in both groups. This was probably a result of the rapid local production of these proteins in the mammary gland, as described previously (Hiss et al., 2004). Hp binds harmful molecules such as hemoglobin as well as debris produced after tissue damage (Baumann and Gauldie, 1994), and thus can help restrict the spread of infection by limiting the free iron, and perhaps other nutrients, available for *E. coli*. This is also a function of Lf and Hp may complement the actions of Lf.

A rise in the serum TNF-α level reflects the severity of systemic signs (Hirvonen et al., 1999; Blum et al., 2000). Here, mean peak concentration of TNF-α in the milk was somewhat higher in the transgenic group, but the difference between groups was not significant. Local production of TNF-α in the udder was strong, in particular in the transgenic cows, and higher concentrations of TNF-α than in serum were noted in the milk in both groups. Blum et al. (2000) observed that peak plasma TNF-α concentrations were up to 20-fold lower than maximal concentrations reached in milk in *E. coli* induced mastitis, in agreement with our study. In our study, the serum TNF-α concentration in the transgenic group was almost 100-fold lower and in the control group 30-fold lower than the maximal concentrations in the milk. The differences in the ratios can be explained by the higher TNF-α concentrations in the milk of rhLf-transgenic cows, which showed less severe systemic signs.

In the *S. chromogenes* model, the significantly lower concentrations of MAA in the milk in transgenic cows support observation of reduced tissue damage, which was also reflected in the lower NAGase activities in the milk. The SAA concentrations were remarkably high in three cows of the control group, indicating a clear systemic response that was not seen in the transgenic group. The relevance of the anti-inflammatory effect of Lf is of less clinical
importance in mild CNS mastitis than in more severe *E. coli* mastitis (Burvenich et al., 2004). As regards pathogenesis research, it is perhaps easier to detect possible differences between different treatment groups in a mild model such as CNS infection, where the inflammatory reaction is not so extreme.

The model using rhLf-transgenic cows did not provide protection against *E. coli* or CNS infection, in contrast to the case of experimentally induced *S. aureus* infection in lysostaphin-transgenic cows (Wall et al., 2005). That study, the first using transgenic cows in mastitis research, used three transgenic cows expressing lysostaphin in their milk. Of the udder quarters challenged, only 14% in the transgenic cows became infected, whereas for the non-transgenic cows 71% of the quarters were infected. Increased milk somatic cell counts, elevated body temperatures and induced acute phase proteins were found in all control cows but not in the transgenic cows. On our study with hLf, the only significant effects seen were reductions in the severity of the inflammatory reaction and the faster elimination of bacteria in the staphylococcal model. Lactoferrin has broad and non-specific antimicrobial activity, unlike lysostaphin, that is targeted against staphylococci. Lf would thus have an advantage over lysostaphin as a molecule for use in genetic engineering. Our results on rhLf-transgenic cows hold some promise but are not unequivocal. Only one strain of each bacterial species per time can be tested in experimental mastitis models, and further experiments would be needed for more comprehensive results to be generated. Although even the more successful lysostaphin experiments have not resulted in any breakthroughs in the use of genetic engineering in mastitis control, it could be one means among others to combat mastitis successfully. Further studies in this field are needed.

According to the former and our results the role of Lf in the course of intramammary infection in dairy cows is multifunctional and provides protection against infections. Lf decreased *in vitro* intracellular replication of mastitis-causing bacteria. Low Lf concentrations in milk were associated with increased susceptibility to mastitis in early lactation. Recombinant hLf in milk exhibited some positive effects, such as less severe clinical signs and faster recovery of the cows, milder inflammation and more efficient elimination of bacteria in experimental infections with *E. coli* and CNS.
CONCLUSIONS

1. The concentration of bLf in the milk is low during early lactation, and consequently the molar ratio of citrate to bLf is lower than during late lactation. These indigenous factors may contribute to the greater susceptibility of the udder to intramammary infections during early lactation, particular to infections by coliform bacteria.

2. The antagonistic effect of bLf on the adhesion and internalization of CNS strains in BME cells was weak and strain-dependent, but bLf significantly decreased intracellular replication. All CNS species had an adhesive ability equal to that of *S. aureus*, but the capacity for internalization varied among CNS species and strains.

3. The susceptibility of the staphylococcal strains to bLf *in vitro* was not correlated with the ability of the strains to adhere to, invade or replicate intracellularly in BME cells. However, the limited number of strains tested must be taken into consideration when interpreting the results.

4. The concentration of rhLf in the milk of rhLf-transgenic dairy cows was constant during the first trimester of lactation. It remained at a constant level during the experimentally induced infections with *E. coli* and *S. chromogenes*. The concentration of bLf in the milk of rhLf-transgenic cows was the same as that in the milk of normal dairy cows.

5. The high total concentration of Lf, mostly consisting of recombinant hLf, in the milk of rhLf-transgenic cows, did not protect them from experimentally induced intramammary infections. In experimentally induced *E. coli* infection, the transgenic cows suffered from significantly less severe systemic clinical signs compared with the control cows, and they recovered faster. In experimentally induced *S. chromogenes* intramammary infection, the transgenic cows showed a significantly milder inflammatory response than the normal cows, which was reflected as lower concentrations of indicators of inflammation in the milk. They also eliminated the bacteria more rapidly. These positive but limited effects in the two infection models observed in the rhLf-transgenic dairy cows are not likely to lead to further practical applications of this type of genetic engineering.
ACKNOWLEDGEMENTS

This study was carried out in co-ordination with the University of Eastern Finland, Department of Biosciences and the University of Helsinki, Faculty of Veterinary Medicine. Basic financial support for this work was provided by the Walter Ehrström Foundation, the Finnish Veterinary Foundation, the Research Foundation of Veterinary Medicine and the grant of the rector of University of Helsinki. The two unique experiments with transgenic dairy cows were made possible by Pharming Group NV, Holland. I thank Pharming Group NV and especially the great help of Frans de Loos in the practical arrangements.

After twenty five years as a municipal veterinarian working as a cattle practitioner and food hygienist, it was liberating and fascinating to start working as a university teacher, learning new things and especially working with young people. Professor Atte von Wright proved to be open-minded by accepting me as a teacher in his unit of Nutrition and Food Biotechnology. Professor Satu Pyörälä had the courage to accept me into her mastitis group as a PhD student. I owe my deepest gratitude to my supervisors Satu and Atte for their trust in me. I have been fortunate to have two supervisors complementing each other. Satu is a super-supervisor with her endless support, guidance, criticism, positive push and interest in my work. I am grateful to Satu for her kindness and friendship. Atte has encouraged me to work independently, while being available for support when I needed it. Atte is an inspirational conversationalist and philosopher in all fields, and it has been a pleasure to have a person like Atte as my boss.

I express my sincere gratitude to referees Professor Stephen C. Nickerson and Professor Weihuan Fang, for their kind and constructive criticism. Professor Hannu Korhonen is thanked for agreeing to serve as my opponent. Thanks also to Jonathan Robbinson for his valuable and prompt language revision of my manuscripts.

I owe my sincere thanks to all of those who contributed to this work, and especially those who had the courage and confidence in this work from the very beginning. The original idea to “save” the transgenic cows came from my colleague Pekka Halonen working as a veterinarian in Pharming. The group who made possible the unique experimentally induced mastitis model with rhLf-transgenic cows consisted of Satu, Atte, Professor Hannu Saloniemi, Frans de Loos and especially my husband Pekka, who believed in my crazy idea and was the contact person with Pharming. A number of people made the two experiments with transgenic cows in Vehmersalmi and control cows in Helsinki possible. I owe my thanks to all of you, among others to Jyri Mehring, Kaarina Hoffren and Juha-Matti Aalto from Pharming, to Paavo Hujanen in Vehmersalmi and the staff at the Helsinki University for the care of the cows and for technical support, and to Toomas Orro, Christine Røntved, Satu Sankari, Ritva Isomäki and the laboratory
staff in Helsinki, Saari and Kuopio for the laboratory analysis, to Jouni Heikkinen for statistical analysis and PC advisor, and last but not least to my colleagues Taina Haarahiltunen and Tanja Lehtolainen. During this project, a lot of highly skilled students have participated in sampling and laboratory work. I am grateful to Isa Kivelä, Heidi Määttä, Outi Simola, Sari Käyhkö, Joel Jukka and especially Johanna Haaranen, the cover-girl of this book. This project has taught me the demands of scientific research and scientific writing, and has helped me, as a supervisor, to understand better the difficulties which students encounter with their own thesis.

My warmest gratitude goes to all my friends and colleagues, especially the members of the mastitis group, Leena Suojala, Heli Simojoki, Suvi Taponen, and Mari Hovinen, who have given irreplaceable support to this scientific work, and also valuable support during the hard times in my personal life. Heli Lindeberg has been my safety valve in our department in all fields from science to private life. My old friend since student days, Professor Tuula Honkanen-Buzalski, has always been available when needed and helped me. It has been encouraging and fruitful to share the anguish and enjoyment to writing and finishing this project almost at the same schedule with Anna-Liisa Välimaa and Leena Suojala. Thank you for your friendship. My special thanks go to Jenni Korhonen, Carme Plumed Ferrer, Kristiina Kinnunen, Ilona Ikonen, Piia Pajarinen, Ulla Honkalampi and Kaisu Riihinen for your friendship, support and inspiring discussions. I would like to thank members of our subunit “Nutrition and Food Biotechnology” Mirja Rekola, Elvi Mäkirinne, Eeva-Liisa Palkispää and Riitta Venäläinen for supportive work community.

My late parents, Anja and Veikko have always encouraged me in my studies and trust me and my decisions. Unfortunately, they are no longer with us, but they are in my thoughts. I am deeply grateful to my parents, my sister Nupu, the girlfriends of our sons and all my friends.

My “therapy” dog Netta has kept me going, alive and in good condition. It would have been a great joy to celebrate this thesis with my late husband Pekka, who was the most helpful, loving and unselfish person I know. After Pekka’s death I often say “Pekka would delighted in sharing this…” Finally, I want to thank our boys, Ville, Kalle and Miika, without you I would not have survived after Pekka’s unforeseeable death. Pekka and the boys are the best thing that ever happened to me. Thanks to all of you for being with me.
REFERENCES

Khan, J. A., P. Kumar, M. Paramasivam, R. S. Yadav, M. S. Sahani, S. Sharma, A. Srinivasan and T. P. Singh. 2001. Camel lactoferrin, a transferrin-cum-lactoferrin: Crystal structure of
camel apolactoferrin at 2.6 A resolution and structural basis of its dual role. J. Mol. Biol. 309:751-761.

Reiter, B., J. H. Brock and E. D. Steel. 1975. Inhibition of *Escherichia coli* by bovine colostrum and post-colostral milk. II. The bacteriostatic effect of lactoferrin on a serum susceptible and serum resistant strain of *E. coli*. Immunology. 28:83-95.

U.S. Food and Drug Administration. 2001. GRAS notice no. GRN 000077.

