Highly functionalized organic nitrates in the southeast United States

Lee, Ben H.

2016-02-09

http://hdl.handle.net/10138/195380
https://doi.org/10.1073/pnas.1508108113

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.
Highly functionalized organic nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive nitrogen budgets

*Department of Atmospheric Science, University of Washington, Seattle, WA 98195; 1Department of Chemistry and Molecular Biology, Atmospheric Chemistry, University of Gothenburg, SE-41296 Gothenburg, Sweden; 2Department of Chemistry, University of California, Berkeley, CA 94720; 3Department of Chemistry, Laboratory of Physical Chemistry, University of Helsinki, Helsinki FIN-00014, Finland; 4Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO 80309; 5Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309; 6School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332; 7School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332; 8Chemical Sciences Division, National Oceanic and Atmospheric Administration, Boulder, CO 80305; 9Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720; 10Department of Earth System Science, School of Physical Sciences, University of California, Irvine, CA 92697; 11Departments of Chemistry and Earth, Atmospheric and Planetary Sciences and Purdue Climate Change Research Center, Purdue University, West Lafayette, IN 47907; 12Department of Chemistry, West Chester University, West Chester, PA 19383; 13Atmospheric Research and Analysis, Inc., Cary, NC 27513; 14Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA 99352; 15Department of Meteorology, Pennsylvania State University, University Park, PA 16802; and 16Department of Chemistry, University of Washington, Seattle, WA 98195

Edited by John H. Seinfeld, California Institute of Technology, Pasadena, CA, and approved December 16, 2015 (received for review April 24, 2015)

Speciated particle-phase organic nitrates (pONs) were quantified using online chemical ionization MS during June and July of 2013 in rural Alabama as part of the Southern Oxidant and Aerosol Study. A large fraction of pONs is highly functionalized, possessing between six and eight oxygen atoms within each carbon number group, and is not the common first generation alkyl nitrates previously reported. Using calibrations for isoprene hydroxynitrates and the measured molecular compositions, we estimate that pONs account for 3% and 8% of total submicrometer organic aerosol mass, on average, during the day and night, respectively. Each of the isoprene- and monoterpenes-derived groups exhibited a strong diel trend consistent with the emission patterns of likely biogenic hydrocarbon precursors. An observationally constrained diel box model can replicate the observed pON assuming that pONs (i) are produced in the gas phase and rapidly establish gas–particle equilibrium and (ii) have a short particle-phase lifetime (~2–4 h). This dynamic behavior has significant implications for the production and phase partitioning of pONs, organic aerosol mass, and reactive nitrogen speciation in a forested environment.

particulate organic nitrates | online measurement | lifetime calculation | high-resolution time-of-flight chemical ionization mass spectrometer | biogenic volatile organic compound oxidation

Organic nitrates (ONs; ON = RONO2 + RO2NO) are an important reservoir, if not sink, of atmospheric nitrogen oxides (NOy = NO + NO2). ONs formed from isoprene oxidation alone are responsible for the export of ~80–90% of anthropogenic NOx out of the US continental boundary layer (1, 2). Regional NOx budgets and tropospheric ozone (O3) production are, therefore, particularly sensitive to uncertainties in the yields and fates of ON (3–6). The yields implemented in modeling studies are determined from laboratory experiments, in which only a few of the first generation gaseous ONs or the total gas-phase ONs and particle-phase organic nitrates (pONs) have been quantified, whereas production of highly functionalized ONs capable of strongly partitioning to the particle phase have been inferred (7–11) or directly measured in the gas phase (12). Addition of a nitrate (−ONO2) functional group to a hydrocarbon is estimated to lower the equilibrium saturation vapor pressure by 2.5–3 orders of magnitude (13). Thus, ON formation can enhance particle-phase partitioning of semivolatile species in regions with elevated levels of nitrogen oxides, contributing to secondary organic aerosol (SOA) growth (8). However, highly time-resolved measurements of speciated ON in the particle phase have been lacking.

We use a recently developed high-resolution time-of-flight chemical ionization mass spectrometer (HRTOF-CIMS) using iodide-adduct ionization (14) with a filter inlet for gases and aerosols (FIGAERO) (15) that allows alternating in situ measurements of the molecular

Significance

We present online field observations of the speciated molecular composition of organic nitrates in ambient atmospheric particles utilizing recently developed high-resolution MS-based instrumentation. We find that never-before-identified low-volatility organic species, which are highly functionalized, explain a major fraction of the total particle nitrate mass measured by the traditional aerosol mass spectrometer. An observationally constrained box model shows that these organic nitrates are likely derived from oxidation of biogenic hydrocarbons and persist in the particle phase for only a few hours. Given their high rate of loss, their fates have significant implications for the budgets of secondary organic aerosol particles and nitrogen oxides but are currently unknown.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

1B.H.L. and C.M. contributed equally to this work.
2Present address: Institute of Meteorology and Climate Research, Atmospheric Aerosol Research, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany.
3Present address: Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.
4Present address: Department of Earth System Science, School of Earth and Atmospheric Sciences, Purdue University, University Park, PA 16802.
5To whom correspondence should be addressed. Email: thornton@atmos.washington.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1508108113/-/DCSupplemental.
composition of gas and particle phases. We present observations of speciated ON in the particle phase obtained during the 2013 Southern Oxidant and Aerosol Study (SOAS) in the southeast United States. We analyze the diel cycles of individual components using a 3D box model to elucidate differential source and sink terms. Biogenic volatile organic compounds (BVOCs), including isoprene and monoterpenes, seem to dominate the ON sources during the SOAS. We show that the molecular compositions that dominate the particle phase are significantly more oxygenated than the most abundant gas-phase counterparts, consistent with volatility and solubility-driven partitioning requirements. Although the detailed chemical mechanisms by which these atmospheric ONs form are not explicitly derived here, we observed compounds possessing the same molecular compositions with similar relative distributions in controlled chamber experiments simulating BVOC oxidation under both daytime and nighttime conditions (shown in SI Appendix, Figs. S1 and S2). Such speciated ON measurements in both the field and the laboratory (i) put a strong constraint on the extent to which ONs directly contribute to SOA in regions with high-biogenic hydrocarbon emissions, (ii) illustrate that the fate of particulate ONs can have significant implications for SOA and the reactive nitrogen budget, and (iii) provide guidance for the types of ON formation mechanisms needing elucidation.

Methods

The FIGAERO HRToF-CIMS instrument was housed in an air-conditioned trailer located in a clearing near Centreville, Alabama (33.18 °N, 86.78 °W) during June and July of 2013 as part of the SOAS. Site description and instruments involved during the SOAS campaign are detailed elsewhere (8, 16–18). Ambient air was continuously drawn with mechanical pumps through two inlets. One inlet was a 2.7-m long, 2.5-cm o.d. (−2.2-cm i.d.) stainless steel tube fitted with a custom inertial impactor to remove particles upstream of the normal particle filter on every fourth desorption. This approach was used to reduce the temperature-programmed thermal desorption in 2.5 slpm ultrahigh-purity (UHP) N2. The UHP N2 during the desorption was gradually heated at 10 °C/min from ambient temperature to 200 °C and then, held at 200 °C for 25 min, which was sufficiently long for signals to return to background levels, ensuring complete desorption. A second particle filter was programmatically placed upstream of the normal particle filter every fourth desorption. This approach provided a way to correct for any interfering background signal that may arise from semi- and nonvolatile gases that can collect on filters as well as artifacts originating from the ionization source (19).

The HRToF-CIMS allows for the determination of molecular ion composition but not molecular structure. Thus, aside from some basic rules, we cannot distinguish between peroxy nitrates and multifunctional alkyl nitrates. We rule out oxygenated amines as contributing to our signals, which are dominated by C5 and C6 compounds, because there is no evidence of C7 and C8 amine precursors. We include in our analysis only nitrogen-containing organic compounds with chemical formulas consistent with an ON (one N atom, an odd number of H atoms, and three or more O atoms) or in the case of a dinitrate, two N atoms, an even number of H atoms, and at least six O atoms) that are attached to an iodide ion and have mass concentrations >0.1 ng m−3 over the 20-min collection period.

The HRToF-CIMS was calibrated for three isomers of isoprene hydroxynitrate (C9H13NO2) (20). The iodide-adduct ionization is most sensitive to polar organics with hydroxyl groups (14), and the dominant ON signal in the particle phase observed during the SOAS was of highly oxygenated compounds. As such, we apply the highest sensitivity value obtained (8.5 counts second−1 per part per trillion per million total reagent ion) from these calibrations—that of the β-4,3 isomer of C9H13NO2 with structure that presumably allows the iodide ion to interact most stably with the hydroxyl functional group—to all observed ONs to calculate the mass concentration (micrograms meter−3) of each. The two other isomers (trans and cis) of isoprene hydroxynitrate were detected less sensitively by this technique likely because of the location of the hydroxyl functional group relative to that of the nitrate, which can increase the polarity of the hydroxyl group and therefore, the stability of the iodide-hydroxynitrate adduct (21). Sensitivity generally increases with increasing functionality and increasing number of atoms on the molecule but not indefinitely (14). Our reported mass concentrations will be higher by a factor of 3 if we applied the mean sensitivity of the cis and trans isomers and lower by a factor of ∼2.5 if we applied the highest sensitivity to any compound tested thus far using iodide-adduct HRToF-CIMS.

Simple alkyl or keto nitrates are underestimated or not detected at all. Indeed, the technique is nearly an order of magnitude less sensitive to peroxy acyl nitrate than to the isoprene hydroxynitrate, and thus, any peroxy acyl nitrate (five or more O atoms) would be greatly underestimated unless it had at least one or more hydroxy groups in addition to the nitrate moiety. Such multifunctional peroxy acyl nitrates have not been reported, although their presence in the atmosphere cannot be ruled out. Our focus herein is on pONs measured after thermal desorption. Thus, it is unlikely that peroxy nitrates are a large fraction of the detected pON, even if they are present in the particle, because of their propensity to thermally dissociate into nitrogen dioxide (NO2), which we do not detect, and an organic fragment. The bulk of detected pON compounds desorbed between 60 °C and 100 °C, where thermal loss of a nitrate moiety from alkyl nitrates should be negligible but where thermal decomposition of peroxy nitrates could be substantial (21). Aside from the peroxy nitrates, we expect thermal decomposition of most other organic functional groups at these temperatures to be minor (15), but perturbation of oligomer-like compounds in dynamic equilibrium with monomers is still a possibility. Unexpectedly large signals from particle desorption during the SOAS campaign often led to elevated backgrounds in the gas-phase detection mode, which in some cases, precluded quantitative comparisons between our gas-phase ON and pON measurements.

Multiple instruments probed the chemical composition of submicrometer atmospheric particles during the SOAS. Particle-phase alkyl nitrates were measured as gaseous NO2 after thermal dissociation of pONs using the thermal dissociation laser-induced fluorescence instrument (TD-LIF) (22, 23). Total pONs (sum of alkyl, acyl, peroxy, and peroxy acyl nitrates) were measured using two high-resolution time-of-flight aerosol mass spectrometers (HRTofAMSs) using different ON calculation techniques. The University of Colorado Boulder group used the measured ratios of NO2 to NO+ ions in the mass spectra to distinguish ON from inorganic nitrate (7, 24), whereas the Georgia Institute of Technology group calculated ON as the difference between the HRTof-AMS and TD-LIF measured total nitrate (25). Both the TD-LIF and HRToF-AMS methods are expected to quantitatively measure the total of all ON molecules in the particle phase. Sulfated organonitrates (26), presumably detected as particle nitrates by both the HRTof-AMS and TD-LIF techniques, were likely not strong contributors during the SOAS.

Results and Discussion

We identified 88 molecular compositions (SI Appendix, Fig. S3 and Table S1) consistent with an ON during the SOAS campaign. Fig. 14 shows a subset of the time series of total pONs as measured by two HRTof-AMSs, the FIGAERO HRTof-CIMS, and the TD-LIF when there was adequate data overlap between all techniques. A diurnal pattern with higher mass loadings at night compared with day was typically observed by all instruments (Fig. 1B) listed in SI Appendix, Table S2. We observed good correlation between the nitrate mass equivalent (NO−3; m/z 61.988 Th) of the sum of speciated pON measured by the FIGAERO HRTof-CIMS and that of total pON reported by the two HRTof-AMSs (SI Appendix, Table S2). The slight underestimation by the FIGAERO HRTof-CIMS relative to the HRTof-AMS technique may be because of the lower sensitivity to certain nitrates and/or thermal decomposition of undetected products. Nevertheless, these findings suggest that a significant fraction (at least 58%) of the pON budget as defined by the HRTof-AMS techniques is explained by the sum of the speciated pON as measured by the FIGAERO HRTof-CIMS to within the calibration uncertainty of the iodide-adduct ionization technique.

In general, the various measures of pON were well-correlated. The TD-LIF measurements exhibited reasonable correlation to the mass spectrometric methods but were, on average, higher by a factor of ∼5 compared with those of the FIGAERO HRTof-CIMS (SI Appendix, Table S2). Measurements by the TD-LIF and the HRTof-AMS provide a reasonable range of pONs present during the SOAS, whereas the FIGAERO HRTof-CIMS provides molecular identification of individual species that are dominated by C5–10 hydroxylated multifunctional organics containing >2 hydroxy groups in addition to the nitrates. The slight underestimation by the FIGAERO HRTof-CIMS relative to the HRTof-AMS technique may be because of the lower sensitivity to certain nitrates and/or thermal decomposition of undetected products. Nevertheless, these findings suggest that a significant fraction (at least 58%) of the pON budget as defined by the HRTof-AMS techniques is explained by the sum of the speciated pON as measured by the FIGAERO HRTof-CIMS to within the calibration uncertainty of the iodide-adduct ionization technique.
make up pONs. Although the reason for the discrepancy in absolute pON values between the multiple techniques is still under investigation, the main conclusions presented here are not strongly affected by this discrepancy. We focus on the lifetime of ON in the particle phase given the diurnal variability of pON, which is similarly observed by all of the techniques (Fig. 1B). We stress that the impacts of pON on SOA and reactive nitrogen budgets that we derive here, based on our FIGAERO HRTof-CIMS estimates (and those of the HRTof-AMS), will be even larger and thus, more important if the amount of pON is higher as reported by the TD-LIF. We also show that similar pON lifetimes are inferred, regardless of which dataset is used (SI Appendix).

Converting the sum of all 88 pON compounds measured by the FIGAERO HRTof-CIMS into an organic aerosol (OA) mass concentration using the molecular composition information, we find that pON contributed, on average, 3% and 8% at day (1200–1600 h local time) and night (2200–0500 h), respectively, to the total submicrometer OA mass as measured by the HRTof-AMS (Fig. 1C). This contribution is comparable with that reported recently for the Centreville, Alabama site, where unspecified pONs were 6–10% of OA (27). To investigate further the nature of this diurnal cycle in the pON contribution to OA, we separated the pON species into those having 5 or 10 carbon atoms. In Fig. 1D, we show the contributions of the C_5 and C_10 pON groups relative to the sum of the two as a function of time of day. The C_10 pONs accounted for more mass during nighttime than during daytime, whereas the C_5 pONs exhibited the opposite trend, consistent with the typical levels of their assigned gaseous parent compounds—monoterpenes and isoprene (and/or 2-methyl-3-buten-2-ol), respectively (SI Appendix, Fig. S4).

The facts that the simple carbon number-based classes exhibit such clear and distinct diel trends relative to one another and that they are also consistent with the corresponding diel cycles of the biogenic hydrocarbon precursors strongly suggest that pON abundance is governed by processes occurring on a timescale of a few hours. Gas-phase production with dynamic gas–particle partitioning followed by rapid loss, such as by photolysis (28, 29), heterogeneous reaction with the hydroxyl radical (OH) (34, 35), could potentially operate on such timescales and have different patterns as a function of time of day between the C_5 and C_10 groups. We note that the volatile organic compound + NO_3 and RO_2 + NO reactions produce varying levels of primary/secondary vs. tertiary ONs, all of which having different hydrolysis rates (30, 32, 33). Thus, the overall contribution of the various loss pathways to pON lifetime warrants additional studies.

We also note that the dominant molecular compositions of the pON are not consistent with commonly reported first generation ON produced from these BVOCs. Each pON possessed at least 4 and as many as 11 oxygen atoms. Within a group of pON having the same carbon number, a bell-shaped distribution was exhibited in the mole fraction of the total pON as a function of oxygen atom content. The highest contribution typically came from ON having between six and eight O atoms as illustrated in Fig. 2B, where the SOAS mean contribution of C_5 and C_10 ON groups is plotted as a function of the detected m/z. Such a distribution is consistent with the combined effects of gas-phase abundance, which exhibits a decreasing trend with increasing oxygen atom number (Fig. 2B), and volatility/solubility trends with increasing functional groups. That is, compounds with fewer O atoms but similar numbers of C and H atoms may be more abundant in the gas phase but are less likely to partition to the condensed phase. As noted above, the chemical compositions of the observed pON have generally not been reported in previous laboratory studies. The first evidence for such ON in the gas phase was reported by Ehn et al. (12, 36) from studies of α-pinene oxidation. We find the same highly oxygenated ON (SI Appendix, Figs. S1 and S2) in chamber studies of both monoterpenes and isoprene oxidation in the presence of nitrogen oxides. Recent work with a similar methodology also shows highly oxygenated ON from other monoterpenes (37). Moreover, the fact that the relative abundances of species within each carbon number group differ between the particle (Fig. 2A) and gas (Fig. 2B) phases strongly suggests that the observed distributions are not the sole result of instrument sensitivity.

Therefore, it is reasonable to expect that most of the pON observed during the SOAS arises from first or second generation gas-phase byproducts of biogenic hydrocarbons with oxidation that is initiated by the nitrate radical (NO_3) or by O_3 or OH in the presence of NO_2. For example, C_{10}H_{16}NO_2 contributed the most to pON mass during the early morning hours (Fig. 3) immediately after sunrise (~0530 h local time) when the level of NO is highest because of NO_2 photolysis in the surface layer (38, 39). The gas-phase abundances of a number of C_{10} ONs also exhibit sharp increases during this period when the level of monoterpenes is...
Fig. 2. Mole fractions of C5 (gold) and C20 (blue) to total pON as defined by the FIGAERO HRT-of-CIMS as a function of m/z (includes mass of 1+ ion; m/z 126.905 Th). (A) Each carbon number group in the particle phase exhibits a bell-shaped distribution, with the dominant contribution from ON typically comprising between six and eight oxygen atoms. (B) Signal strength of the same ON in A but in the gas phase and normalized by the signal of C6H5NO2. Inset is the same spectrum as in A at m/z 404, 406, and 408 Th, showing that, for each oxygen number, there are three ONs consisting of 15, 17, and 19 H atoms, respectively. C5 ON species tend to possess 7, 9, or 11 H atoms. The gas phase shows a decreasing trend with increasing oxygen number. The exceptions are the low signals associated with C5H7NO2 (m/z 271.943 Th) and C5H5NO2 (m/z 340.005 Th), likely aldehyde or keto nitrates, which are not sensitively detected by iodide-adduct ionization (14).

rapidly decreasing (SI Appendix, Fig. S5). Reaction between a functionalized monoterpene-derived RO2 radical (such as C10H17O3•) and NO could provide an explanation of such a diel pattern.

To test the likely sources and loss rates of the above pON groups, we constructed a box model constrained extensively by observations. For simplicity, we assumed that all C5 pONs are derived from isoprene oxidation and that all C10 pONs are derived from oxidation of monoterpene. The pONs are produced at a rate proportional to isoprene-RO2 or monoterpene-RO2 reacting with NO and isoprene and monoterpene reacting with NO2. The proportionality constant is, therefore, an effective yield of pON formation that incorporates the branching ratios for gas-phase ON formation across the distribution of monoterpenes and isoprene oxidation products correlated with the BVOC precursors as well as Raoult’s or Henry’s law-driven gas–particle partitioning coefficients. A suite of model runs was conducted, varying the effective yields of the RO2 + NO (α1) and NO2 (α2) reaction pathways, their temperature dependence, and the diurnally constant loss coefficient for each pON group. The presumed precursor BVOC and oxidant concentrations are constrained to their SOAS mean diurnal profiles (SI Appendix, Fig. S4). The differential equations governing production and loss are solved for multiple model days with diurnally repeating constraints until the diurnal profiles of the mass concentrations of C5 and C10 pONs each establish steady state. The influence of boundary-layer height changes is implicitly accounted for by using diel profiles of observed mixing ratios of gaseous precursors and oxidants. Comparing the diel profiles of C5 and C10 pONs with those of black carbon and the sulfate content in aerosol particles, both of which are comparatively longer lived, show that these trends are not driven by boundary-layer dynamics (SI Appendix, Fig. S6). However, because we cannot easily account for boundary layer dynamics because of unknown vertical profiles, we optimize the model–observation comparison excluding these transition periods and instead, focus on periods when the measurements represent a reasonably consistent layer height (2200–0500 and 1200–1600 h local time). Additional details of the box model are included in SI Appendix.

Observed (black in Fig. 4 A and B) and modeled (red in Fig. 4 A and B) C5 and C10 pON mass concentrations are shown in Fig. 4 A and B plotted as a function of time of day. As the effective mole yields increase, so must the loss rates for the observation–model slope to be near one (SI Appendix, Fig. S7 A and B). A similar relationship is observed between pON loss rates and temperature dependence of the effective yields (SI Appendix, Fig. S8). Varying the effective mole yields or its temperature dependence alone or together but not the pON loss rates cannot reproduce the observations. Although we applied a temperature dependence, such that the effective yields are higher at night than at day, with a diurnally constant loss rate, a faster loss rate during the day than at night with diurnally constant effective yields can give the same results. Applying effective yields for the NO2 and RO2 + NO reaction pathways as illustrated in Fig. 4 C and D, with loss rates for both C10 and C5 pONs of (1.0 ± 0.3) × 10−3 s−1 (2.1- to 4.0-h lifetime), resulted in optimal model–observation agreement with respect to slope and correlation (C10: R2 = 0.85 and slope = 0.86; C5: R2 = 0.63 and slope = 0.96). The fact that the effective yields for C10 pONs are greater than those determined for C5 pON is consistent with higher mass compounds being less volatile and alkyl nitrate branching ratios being greater for larger compounds (40, 41). Moreover, the effective yield for the monoterpene + NO3 pathway is greater than that of monoterpene-RO2 + NO, which is also expected given the high molar ON yields for most monoterpens + NO3 pathways found in the literature (42). The isoprene + NO3 effective yield only weakly influences the modeled C5 pON mass concentration, because the level of NO3 radical is low when that of isoprene is high and as such, could not be robustly optimized. The good agreement between predictions
from a simple observationally constrained box model and measured pON mass concentrations provides support for the basic mechanistic components: (i) there is rapid pON formation from gas-phase oxidation of BVOCs with temperature-dependent effective yields, and (ii) the rate of pON loss is faster than the typical loss rate of atmospheric submicrometer particles because of dry and wet deposition (43). A similar pON lifetime (3.6 h) is obtained by comparing the instantaneous production rate—using 125 hourly averaged data points when there was overlap between all necessary measurements—with the observed sum pON (SI Appendix, Fig. S9).

There are several potentially important implications for regional atmospheric chemistry that would arise from pON having lifetimes of the order of a few hours. First, although the pON to OA ratio measured during the SOAS was typically low, at around 3–8% (Fig. 1B), it remains to be determined how much of the measured OA was the result of pON chemistry. If pON loss occurs by cleavage of the nitrate functional group from the carbon chain, while the bulk of the carbon mass remains in the particle phase, then the flux of ON through the particle phase could represent a substantial SOA source. For example, assuming molecular weights equivalent to C$_{9}$H$_{12}$O$_{2}$ and C$_{10}$H$_{18}$O$_{4}$ after the loss of an −ONO$_{2}$ group from the most abundant ON, we calculate that a total (net not) of 14.3 μg m$^{-3}$ d$^{-1}$ C$_{9}$ and C$_{10}$ ON passes through the particle phase. Second, pON loss could represent a sink of atmospheric NO$_{x}$ if the nitrate group is converted, presumably by hydrolysis, to nitric acid (HONO) (4, 33, 44, 45). Alternatively, if the nitroxy group is converted to nitric acid (HONO) (46), the formation and subsequent loss of pON would be an NO$_{2}$ null cycle but a source of HO$_{4}$ after HONO photolysis. The production of HNO$_{3}$ (or HONO) because of total pON loss at a rate of 1×10$^{-5}$ s$^{-1}$ would be ~0.2 ppb d$^{-1}$ compared with 0.5 ppb d$^{-1}$ HNO$_{3}$ production rate from the reaction of NO$_{2}$ with OH.

Although this simple modeling framework explains the average behavior of groups of speciated ON, determining the governing chemical pathways for each pON remains a challenge. Even pONs of the same carbon atom number (for example, C$_{9}$H$_{12}$NO$_{2}$ and C$_{10}$H$_{18}$NO$_{4}$) exhibit similar but not identical diel trends (Fig. 3). The fraction of C$_{10}$H$_{12}$NO$_{2}$ to total pON continues to increase from sunset to sunrise, whereas that of C$_{9}$H$_{12}$NO$_{2}$ remains relatively flat after its initial evening increase, pointing to different chemical mechanism (RO$_{2}$ + NO derived vs. NO$_{3}$ derived), differing rates of gas-phase oxidation by OH and NO$_{3}$, varying particle-phase lifetimes that depend on molecular structure (32, 44, 47), and/or different BVOC precursors (e.g., α-pinene vs. limonene, isoprene nitrate dimers, etc.). The C$_{9}$ pONs are generally greater during the daytime than the nighttime, and likewise, species within this carbon atom number group can exhibit slightly different diel trends, as shown in Fig. 3 for C$_{9}$H$_{12}$NO$_{2}$ and C$_{10}$H$_{18}$NO$_{4}$ (both observed products of isoprene oxidation) (SI Appendix, Fig. S2).

As noted at the outset, our sum of speciated pON mass concentrations is on the lower end of other pON measurements made at the same location using different techniques. We selected a subset of detected ON species for analysis using a set of conservative criteria for identifying ON compositions that could be easily linked to isoprene and monoterpenes oxidation products. If we included all compounds in our spectra assigned to be ON, including dinitrates, then our total pON values would be about a factor of 1.5 greater. We potentially underestimate pON for that reason alone. Therefore, the above direct contributions of pON to SOA budget and NO$_{x}$ cycling are likely underestimated. For example, we apply the model described above to the pON values reported by the TD-LIF. Good agreement between model and observation requires the same loss rate in the particle phase but with greater pON yields (SI Appendix, Fig. S10). The same loss rate and higher average abundance would imply a much higher contribution to SOA and impact on the NO$_{x}$ budget than we discuss above.

Conclusions

We present observations of speciated pONs made on an hourly timescale in a region strongly impacted by BVOC using an iodide-adduct ionization HRTof-CIMS coupled to an FIGAERO inlet during the SOAS campaign. Highly functionalized pONs containing between six and eight oxygen atoms dominated the mole fraction in each carbon atom number group. The molecular speciation provides unique insights into the sources and evolution of pON and specifically, a strong connection to BVOC precursors. Diel profiles of the speciated pON were consistent with that of the presumed gaseous BVOC. We can simulate the
diel behavior of absolute and relative contributions of C5 and C10 nitrates assuming gas-phase production of the highly functionalized pONs as early generation products of BVOC oxidation that rapidly establish gas–particle equilibrium together with a relatively fast pON loss rate corresponding to a lifetime of 2–4 h. Given the observed pON loadings during the SOAS, such a short lifetime of pON suggests a flux of organic carbon through aerosol particles catalyzed by reactions of NO or NO2 with a catalyst of organic material and a cycling of NOx that is on the order of the HNO3 production rate from OH + NO2. Thus, the chemical fates of pON need to be elucidated to accurately quantify the associated impacts.

ACKNOWLEDGMENTS. We thank all of the Southern Oxidant and Aerosol Study (SOAS) team members, in particular Annmarie G. Carlton (Rutgers University) and Steve B. Bertman (Western Michigan University). We thank Paul O. Wennberg (California Institute of Technology) for helpful suggestions on analysis. We also thank Matthieu Riva and Jason Surratt (University of North Carolina, Chapel Hill) for allowing us access to their sulfated ON dataset. The FIGAERO HRTof-CIMS was developed with funding from the US Department of Energy Small Business Innovation and Research Program Grant DE-SC0004577 (to J.A.T.) and Atmospheric System Research Program Grant DE-SC0006867 (to J.A.T.) and SOON-1170117 (to J.A.T.). The implementation of the SOAS campaign was supported by National Science Foundation (NSF) CAREER Award ATM-0846183 (to J.A.T.). The University of Gothenburg group was supported by Swedish Research Council Formas Grant 214–2010–1756. The University of Helsinki group was supported by the Academy of Finland. Funding for B.H.L. was provided by the National Oceanic and Atmospheric Administration Climate (NOAA) and Global Change Postdoctoral Fellowship Program. The University of California, Berkeley group was supported by NSF Grants AGS-1120076 (to R.C.C.) and AGS-1352972 (to R.C.C.). The Pacific Institute of the Technology group was supported by NSF Grant 1242258 (to R.J. Weber) and US Environmental Protection Agency (EPA) STAR Grants RD-8350301 (early career; to N.L.N.) and RB85410 (to N.L.N.). The University of Colorado Boulder group was supported by NSF Grant AGS 1243354 (to R.C.C) and NOAA Grant NA13CARB310063 (to J.L.J.). The University of California, Irvine group was supported by US EPA STAR Research Grant RB854000 (S.K.). The Pacific Northwest National Laboratory group was supported by the US Department of Energy Atmospheric System Research Program (I.E.S.). The Purdue University group was supported by NSF Grant AGS-1228996 (to J.A.T.). The University of California, Berkeley group was supported by NSF Grant AGS-1250569 (to A.H.G.) and EPA STAR Grant 835407 (to A.H.G.). Funding for the SOAS ground site was provided by Southern Company and the Electric Power Research Institute.