LIVING ON THE EDGE

POPULATION GENETICS OF FINNO-UGRIC-SPEAKING HUMANS IN NORTH EURASIA

Ville Nikolai Pimenoff

Department of Forensic Medicine
University of Helsinki
Helsinki, Finland

Departament de Ciències de la Salut i de la Vida
Unitat de Biologia Evolutiva
Universitat Pompeu Fabra
Barcelona, Spain

Academic dissertation

To be publicly presented with the permission of the Medical Faculty of the University of Helsinki, in the lecture hall of the Department of Forensic Medicine on October 31st 2008 at 12 o’clock noon.

Helsinki 2008
Supervisors
Professor Antti Sajantila
University of Helsinki
Helsinki, Finland

Professor David Comas
Universitat Pompeu Fabra
Barcelona, Spain

Reviewers
Professor Ulf Gyllensten
University of Uppsala
Uppsala, Sweden

Professor Pekka Pamilo
University of Helsinki
Helsinki, Finland

Opponent
Doctor Lluís Quintana-Murci
Institut Pasteur
Paris, France

ISBN 978-952-92-4331-0 (paperback)
http://ethesis.helsinki.fi

Yliopistopaino
Helsinki 2008
“We’ll never deal with the devils in the details unless we see the big picture.”

Paul R. Ehrlich

Human Natures—Genes, Cultures, and the Human Prospect
LIST OF ORIGINAL PUBLICATIONS

This thesis is based on the following original articles, which are referred to in the text by their Roman numerals. Study III has also been included in Enattah NS (2005) Molecular Genetics of Lactase Persistence, PhD thesis. University of Helsinki, Finland.

Additional unpublished data and supplementary material have also been included in this thesis.

The original publications have been reproduced with the permission of the copyright holders.
ABBREVIATIONS

- **CEPH**: Centre d’Étude du Polymorphisme Humain
- **cM**: centimorgan
- **CYP**: cytochrome P450
- **CYP2C19**: cytochrome P450 2C19 gene
- **CYP2C9**: cytochrome P450 2C9 gene
- **CYP2D6**: cytochrome P450 2D6 gene
- **DMEs**: drug-metabolizing enzymes
- **HGDP**: Human Genome Diversity Project
- **HGP**: Human Genome Project
- **HVS**: Hypervariable segment of mtDNA
- **indel**: insertion/deletion
- **LD**: linkage disequilibrium
- **LNP**: lactase non-persistence
- **LP**: lactase persistence
- **LPH**: lactase-phlorizin hydrolase
- **MAF**: minor allele frequency
- **mtDNA**: mitochondrial DNA
- **NCBI**: National Center for Biotechnology Information
- **N**: effective population size
- **NRY**: non-recombining part of the Y chromosome
- **OMIM**: Online Mendelian Inheritance in Man
- **SNP**: single nucleotide polymorphism
- **STR**: short tandem repeat polymorphism
- **tagSNP**: tagging SNP
In this thesis, I have explored the origins and distributions of genetic variation among the Finno-Ugric-speaking human populations living in remote areas of North Eurasia; it aims to disentangle the underlying molecular and population genetic factors which have shaped the genetic diversity of these human populations.

To determine the genetic variation within and between these human populations I have used mitochondrial, Y-chromosomal and autosomal genetic markers. In mitochondrial DNA analysis, we sequenced the HVS-I and HVS-II parts of the hypervariable control region along with phylogenetically informative SNP from the coding region of the mitochondrial genome. Multiple STR and SNP markers were also genotyped from the non-recombining part of the Y chromosome to assess the paternal variation among the particular North Eurasian populations. Moreover, multiple SNPs were genotyped across the LCT, CYP2C and CYP2D gene regions for the autosomal genetic diversity analysis of biomedical relevance. The obtained genotypes were further analyzed using various population genetic methods.

Our results revealed unique patterns of genetic diversity among the Finno-Ugric-speaking populations. Uniparental genetic diversity suggested that some of the Finno-Ugric-speaking populations in North Eurasia have resided in the contact zone of western and eastern Eurasian gene pools. This fact, along with the reduced uniparental and biparental genetic diversity found, emphasize the complex genetic background of these Finno-Ugric-speaking populations shaped by recurrent founder effects, admixture and genetic drift. Moreover, the high frequency of lactase persistence T-13910 allele among the Finno-Ugric-speaking populations and the haplotype background shaped by recent positive selection suggests a local adaptive response to a lactose rich diet in North Eurasia. The Finno-Ugric-speaking Saami show a significant difference in haplotype structure and LD within the cytochrome P450 CYP2C and CYP2D gene subfamily region mainly due to genetic drift, although the role of selection on these genes responsible for xenobiotic metabolism can not be excluded.

Based on our observations, the Finno-Ugric-speaking human populations show unique genetic features due to the complex background of genetic diversity shaped by molecular and population genetic processes and adaptation to remote areas of Boreal and Arctic North Eurasia.

SUMMARY
1 REVIEW OF THE LITERATURE

1.1 INTRODUCTION

Since the discovery of numerous polymorphic markers in the human genome (Landsteiner 1931) and a well established population genetic theory pioneered by Haldane (1924), Fisher (1930) and Wright (1931), a great interest has focused on studies of genetic variation in natural human populations (Collins 2003, Jobling et al. 2003, Kidd et al. 2004). Similarly, the recent publication of the entire map of the human genome along with the vast number of available genetic markers and new computational tools have enabled the analysis of whole genomes (Lander et al. 2001, Venter et al. 2001, Collins et al. 2003, International Human Genome Sequencing Consortium 2004). The observed genomic diversity within and among human individuals, groups and closely related species has challenged us to understand the comprehensive heritable variation in humans (Carroll 2003, Collins 2003, Kidd et al. 2004). How much does the variation have any functional significance? How rare or common is a particular fraction of the variation? What is the distribution of the variation within humans and what molecular or population level factors caused the distribution of variation that we see today? In this thesis, I have examined the origin and distribution of genetic variation among the North Eurasian Finno-Ugric-speaking populations by using mitochondrial, Y-chromosomal and autosomal molecular markers.

1.1.1 Genetic characteristics of the Finno-Ugric-speaking populations

It has been suggested that some of the North Eurasian Finno-Ugric-speaking populations (e.g. the Finns, Saami, Khanty and Mansi) may hold genetic traces of early Upper Paleolithic people, who first colonized the North Eurasian regions c. 12,000 BP (Cavalli-Sforza et al. 1994, Derbeneva et al. 2002, Norio 2003b, Ross et al. 2006). The Finno-Ugric speakers represent populations, which can be clearly classified into linguistic groups (Figure 1A) and which inhabit relatively large and geographically remote areas in North Eurasia (Figure 1B).

It has been shown that the anatomically modern human (i.e. Homo sapiens) colonized the ice-free Eurasia including some areas north of the Arctic Circle already during the Upper Paleolithic (<40,000 BP) (Pavlov et al. 2001, Vasil’ev et al. 2002, Goebel et al. 1993). The Last Glacial Maximum (23,000–14,000 BP) unquestionably limited the northward spread of modern humans, until a rapid global warming around 12,000 BP initiated the melting of the continental ice sheet revealing novel areas for colonization (Hewitt 1999). Indeed, the permanent arrival of modern humans into North Eurasia (Nordqvist 2000, Vasil’ev et al. 2002, Bergman et al. 2004) is dated to the early Boreal period (<12,000 BP), although the geographical origin of these settlements is not entirely clear (Nordqvist 2000, Dolukhanov et al. 2002, Kuzmin and Keates 2004).

The Finnish population is one of the genetically well-studied Finno-Ugric-speaking human population (Nevanlinna 1972, Kere 2001, Norio 2003a; 2003b; 2003c). A particular reason for this has been the Finnish Disease Heritage, a highly specific spectrum of more than 30 inherited, mostly recessive diseases with high prevalence in the Finnish population but rare or absent in
REVIEW OF THE LITERATURE

other populations (Perheentupa 1995, Norio 2003c). Finns are also considered an ethnically more homogenous than several other European populations (Nevanlinna 1972, Kere 2001). However, already based on classical protein markers the Finnish population was shown to share genetic roots not only with the West European populations but also with more eastern populations (Nevanlinna 1972; 1984, Guglielmino et al. 1990). These observations attracted studies of mitochondrial (mtDNA) and Y-chromosomal markers to characterize the maternal and paternal Finnish gene pool, respectively (Vilkki et al. 1988, Pult et al. 1994, Sajantila et al. 1994; 1995; 1996, Lahermo et al. 1996; 1999, Zerjal et al. 1997; 2001, Kittles et al. 1998; 1999, Finnilä et al. 2001, Meinilä et al. 2001, Raitio et al. 2001, Lahermo et al. 2006, Palo et al. 2007). A clear eastern component (haplogroup N3; Rootsi et al. 2007) in the Finnish Y-chromosome gene pool (> 50%) has been observed (Zerjal et al. 1997, Lappalainen et al. 2006). Recent accumulation of the autosomal genetic data has clarified Finns as part of the western cluster of the Eurasian genetic landscape, although Finns are outliers among the general European populations (Cavalli-Sforza et al. 1994, Kidd et al. 2004, Lao et al. 2008).

The Saami is another relatively well-studied European Finno-Ugric speaking ethnic group populating the northernmost parts of Norway, Sweden, Finland and Kola Peninsula of Russia (Ross et al. 2006). Sev-

Figure 1. A) Human populations speaking Finno-Ugric languages belong to a specific branch of the Uralic language family which is distinct from the Samoyed-speaking branch also within the Uralic group (Greenberg 2000). The Finno-Ugric language group is further divided into four subclusters within the Finnic group, i) Baltic languages of Finnish, Estonian and Karellean, ii) Saami languages, iii) Volgaic languages of Erza, Moksha and Mari, iv) Permic languages of Komi and Udmurt, while the Ugric group consists of the Khanty, Mansi and Hungarian languages (Abondolo 1998). B) A map showing the geographic locations of the North Eurasian Finno-Ugric-speaking populations used in this study (I–IV).
eral studies have shown the Western European genetic affinity of the Saami people, although their origin is still controversial (Cavalli-Sforza et al. 1994, Sajantila et al. 1995, Tambets et al. 2004, Ross et al. 2006, Ingman and Gyllensten. 2007, Johansson et al. 2008). However, it has been demonstrated that Saami are genetically extreme outliers within Europe (Cavalli-Sforza et al. 1994), with strikingly low mtDNA diversity (Sajantila et al. 1995; Lahermo et al. 1996, Tambets et al. 2004). The Saami mtDNA lineages are mainly of Western Eurasian origin while two East Eurasian lineages (i.e. haplogroup D5 and Z) indicate minor (≤6%) Asian contribution as well (Torrioni et al. 1998, Meimilä et al. 2001, Tambets et al. 2004, Ingman and Gyllensten 2007). Similarly, the Y-chromosome variation separates the Saami from other North Eurasian populations, and shows low genetic diversity (Sajantila et al. 1996, Lahermo et al. 1999, Tambets et al. 2004). Two West Eurasian lineages (i.e. haplogroup I and R1a) together and one East Eurasian N3 lineage account for ~40% of the Saami Y chromosomes, respectively (Wells et al. 2001, Tambets et al. 2004). Uniparental and autosomal marker studies suggest that the origin of the Saami gene pool is an admixture of Western and Eastern Eurasian genetic components (Cavalli-Sforza et al. 1994, Tambets et al. 2004, Ross et al. 2006, Ingman and Gyllensten 2007, Johansson et al. 2008). Based on the unique genetic diversity of Saami it is interpreted that the Saami population has remained in small and constant size since its origin (Sajantila et al. 1995, Laan and Pääbo 1997, Ross et al. 2006).

The Ugric-speaking Khanty and Mansi ethnic groups originate from a common Ob-Ugric population on the western side of the Ural mountains (Kolga et al. 2001, Derbeneva et al. 2002). Currently, they populate mainly the Ob-river valley region in East Eurasia (Kolga et al. 2001, Derbeneva et al. 2002, Karafet et al. 2002). The Mansi mtDNA variation has shown a high frequency of Western Eurasian lineages, which has been interpreted as a genetic continuum of the early Upper Paleolithic populations expanding from Near East/Southeast Europe to North Eurasia (Derbeneva et al. 2002). However, a clear East Eurasian derived mtDNA component (~38%) is present in the Mansi (Derbeneva et al. 2002). Therefore, it is proposed that the present day Mansi may also contain genetic traces of the early Upper Paleolithic people originating from Central Asia/South Siberia (Wells et al. 2001, Derbeneva et al. 2002, Karafet et al. 2002, Derenko et al. 2007). Interestingly, the Y-chromosome variation has shown some specificity (i.e. N2 lineage) among the Siberian populations speaking Uralic languages, including the Khanty (Karafet et al. 2002). However, these Uralic-speaking populations as a whole are not characterized by a discrete set of founder Y-chromosome lineages (Karafet et al. 2002). The uniparental genetic composition of the Khanty and Mansi has been interpreted to represent a recurrent amalgamation of small Eurasian population groups along with the spread of humans into North Eurasia (Derbeneva et al. 2002, Karafet et al. 2002).

The genetic diversity of the other North Eurasian Finno-Ugric-speaking populations (i.e. Estonian, Karelian, Erza, Moksha, Mari, Komi and Udmurt) has been studied less comprehensively. The main interpretation among these Finno-Ugric-speaking populations is that they have closer genetic affinities with each other than with the non-Finno-Ugric speakers (except the Latvians and Lithuanians) living in North Eurasia (Zerjal et al. 1997; 2001, Khusnutdianova et al. 1999, Rosser et al. 2000, Raitio...

1.1.2 Sampling in human genetic studies and the concept of a population

The sampling of individuals and the criteria for defining a population are fundamental issues in genetic studies of natural populations (Waples and Gaggiotti 2006). In biological terms a population is defined as a group of organisms of the same species that interbreed and occupy a particular space at a particular time (Krebs 1994). In practice, however, population boundaries are often notoriously difficult to define, and humans make no exception. It is thus apparent that there is no single consensus to define a population but instead it depends on the context and objectives of the study (reviewed by Waples and Gaggiotti 2006). In practical terms, one definition of a population in humans is often a group of individuals that can be clustered according to some shared social or physical characteristic; e.g. geography, ethnicity, linguistic affiliation, culture, subsistence pattern and self-identity are often taken as proxies to define a population (Jobling et al. 2003). Consequently, several important ethical issues associated with genetic variation, ethnicity and race have been brought up (Greely 2001b, Tishkoff and Kidd 2004). Especially the indigenous peoples have been concerned about the consequences as genetic studies of human populations are of potential social and legal impact (Greely 2001ab, Collins et al. 2003, Jobling et al. 2003). It is important to note that in humans racial definitions are not based on biology. Up to 95% of the genetic variation in humans resides within populations and only 5–13% between populations (Lewontin 1972, Barbujani et al. 1997, Jorde et al. 2000, Romualdi et al. 2002, Rosenberg et al. 2002). These results clearly show that human races do not have any biological basis and should rather be considered within a complex historical and social context (Lewontin 1972, Collins et al. 2003).

Due to the sensitive issues concerning human population genetic studies, ethical guidelines have been enforced since the reports of World Health Organization (1964), World Medical Association (1964) and North American Regional Committee of the Human Genome Diversity Project (1997) (reviewed by Greely 2001b). In general, these guidelines aim to inform individuals and groups of people who want to participate actively in such population genetic studies, having access to the genetic data created, and also having a possibility to influence the concept of the study. Currently, the most important ethical requirement for human population genetic studies is an informed consent from each individual sampled and, if possible, a group consent obtained from the appropriate cultural authorities of the particular population or ethnic group (Greely 2001b). In addition, guidelines for giving scientific feedback and for explaining the obtained results to the volunteers of the particular study have been proposed (Greely 2001b).

1.2 ORGANIZATION OF THE HUMAN GENOME

1.2.1 General structure

A single haploid human genome is estimated to contain about 3.2 billion nucleotides with an average of 22,000 genes (Lander et al. 2001, International Human Sequencing Consortium 2004, Jobling et al. 2003). Less than 2% of the human genome is as-
assumed to encode proteins (Lander et al. 2001, International Human Sequencing Consortium 2004). This means that the number of genes in humans is greatly less than earlier estimates of 100,000 and even less than identified in the nematode worm Caenorhabditis elegans (23,000), the fruit fly Drosophila melanogaster (26,000) and the rice Oryza sativa (45,000). Moreover, the non-coding repeat elements showed to comprise more than 50% of the human genome, outnumbering that seen in the Caenorhabditis elegans (7%) and in the Drosophila melanogaster (3%) (Lander et al. 2001). Human and chimpanzee genomes only diverge by 1.2%, and human and Neanderthal genomes are estimated to diverge only by 0.5% (Chimpanzee sequencing and analysis consortium 2005, Green et al. 2006). Moreover, compared to the great apes, humans as a species show low genetic diversity and low genetic structure, which indicates a demographic bottleneck in the early history of humans (Kaessmann and Pääbo 2002). Consequently, human genomes are between 99.5–99.9% similar to each other (Kidd et al. 2004, Goldstein and Cavalleri 2005, International HapMap Consortium 2005; 2007). However, even 0.1% difference between two human genomes denotes over 3 million differing bases, and around 12 million possible variants (Kruglyak and Nickerson 2001, Kidd et al. 2004). This variation is enough to ensure a unique genome for every human individual (Kidd et al. 2004).

1.2.2 Variation in the Human Genome

Genome variation occurs in various forms, such as single-base substitutions (single nucleotide polymorphisms, SNPs), insertions or deletions of tandem (short tandem repeats, STRs; variable number of tandem repeats, VNTRs) or dispersed elements (short interspersed elements, SINEs; long interspersed elements, LINEs), rearrangements (copy number variants, CNVs) and other more complex variables (Figure 2; Denoeud et al. 2003, Watkins et al. 2003, Jobling et al. 2003, Kidd et al. 2004, Redon et al. 2006).

These genomic variations can also be categorized into short (<10bp), interme-

Figure 2. Classes of typical human genome variants.
diate (10bp–10kb) or long size (1kb–1Mb) genomic variants (Figure 2; Jobling et al. 2003). For practical purposes, a variant in a DNA sequence is defined as a polymorphism when at least two alleles are present in a population, and the frequency of the minor allele is MAF ≥0.01. The polymorphisms may be within coding, non-coding or regulatory regions. Within a coding region a polymorphism may alter the amino-acid composition or terminate the translation of the corresponding protein, while variation within a regulatory region may change the level of expression of the particular protein. As the majority of the human genome is non-coding, most of the variants do not affect the amino acids. However, there is a fraction of polymorphisms that do affect the amino-acid composition (0.7% of SNPs, dbSNP128) or gene expression (1.5% of SNPs, dbSNP128). The variants created by mutation can also be rearranged by recombination, which further increases diversity. Both non-homologous recombination between chromosomes and homologous recombination within a chromosome are fundamental genomic processes exchanging genetic material and increasing the genetic variation initially caused by mutations (Nachman 2001). The rate of recombination is typically estimated in centimorgans (cM), which describe the genetic distance in units of recombination frequency (1cM = 1% recombination). The whole genome average recombination rate is 1cM/Mb. However, the recombination rate is shown to vary extensively along the genome from 0.1cM/Mb to more than 3cM/Mb (Kong et al. 2002). More importantly, Jeffreys et al. (2001) estimated that recombination rates are organized into sharp local peaks and valleys (i.e. hotspots and coldspots, respectively) along the genome. These recombination hotspots are defined as small fractions of genome in which the recombination rate is ten or more times higher than in surrounding regions, although regions up to several Mb have also been observed with high recombination rates (Arnheim et al. 2003). The overall existence of the hotspots has been confirmed by larger analysis estimating between 30,000 and 50,000 hotspots along the entire genome (Myers et al. 2006). However, very little is known about the underlying biological mechanisms creating hotspots (reviewed by Arnheim et al. 2003). Based on allele-specific hotspots, it is suggested that the main factor causing hotspots is the distribution of recombination initiation sites along the genome (Jeffreys and Neumann 2002, Arnheim et al. 2003). However, most hotspots have been shown to lack these motifs, indicating multiple causes for the recombination hotspots in the human genome (Myers et al. 2005).

1.2.3 Population processes shaping genetic variation

Genetic diversity created by molecular mechanisms (i.e. mutation and recombination) is further modified by population-level processes of genetic drift, migration and natural selection (Jobling et al. 2003, Kidd et al. 2004). These evolutionary forces may affect the variation differently within and among the populations or genomic regions. Hence, although humans are genetically ~99.9% identical, evolutionary mechanisms have created a substantial amount of genetic variation, observed 95% within and 5–13% among human populations (Kidd et al. 2004, McVean et al. 2005).

In a given population, each generation represents a finite sample from the previous generation. This random sampling of gametes known as genetic drift changes allele and haplotype frequencies between generations until the variant becomes ei-
ther fixed or lost (Wright 1931). Under neutral evolution, the number of new alleles generated by mutation is mainly shaped by random genetic drift (Kimura 1968, Ohta 2002). Drift is modeled through the ideal population model and measured as the effective population size \((N_e) \). In this context, \(N_e \) is the size of an idealized Wright-Fisher population, i.e., population with infinite size, equal sex ratio, non-overlapping generations and random mating that experiences the same amount of genetic drift as the one under study (Wright 1931). The smaller the \(N_e \), the greater the genetic drift and vice versa. Therefore, reductions in population size (i.e., bottleneck/ founder effect) increasing genetic drift can dramatically change the allele frequencies in populations. An example of genetic drift in humans is the reduced genetic diversity of modern human populations whose ancestors migrated out of Africa and experienced a bottleneck, and lower effective population sizes compared to most sub-Saharan populations (Cann et al. 1987, Armour et al. 1996, Reich et al. 2001).

Migration and subsequent gene flow homogenizes allele frequencies between populations, which reduces the effect of random genetic drift (Jobling et al. 2003). The extreme scenario of a gene flow is an admixture of two populations into an admixed population. The extent of admixture is often inferred using a predefined set of parental populations from which the admixed population is assumed to have derived (Bertorelle and Excoffier 1998). Indeed, estimates of the global admixture of human populations inferred purely from the genetic structure have also been reported (Pritchard et al. 2000, Rosenberg et al. 2002).

Natural selection, originally set by Darwin (1859) and later refined by Fisher (1930), defines the differential survival of phenotypes in succeeding generations. In other words, individuals with allele combinations better adapted to the prevailing conditions are more likely to have higher chances to survive and reproduce. Alleles that reduce the survival are subject to negative (i.e., purifying) selection and reduce in frequency, while variants that increase survival undergo positive selection and increase in frequency. Moreover, other selective forces, such as balancing selection, may prefer heterozygote loci or maintain alleles at low frequency, creating high genetic diversity, as observed at the HLA loci responsible for immune response (Beck and Trowsdale 2000, Jobling et al. 2003). Recently, several studies have used molecular data to estimate the departures of allele frequency distributions from neutral expectations and thus to detect natural selection in humans (Akey et al. 2002, Bustamante et al. 2005, Sabeti et al. 2006; 2007, Wang et al. 2006, Williamson et al. 2007). Based on current observations, it is evident that selection has a strong role in shaping human genetic variation, although the relative contribution of the positive, negative and balancing selection to human genetic variation is still unclear (Kelley et al. 2006, Kryukov et al. 2007, Nielsen et al. 2007).

It is estimated that the majority of the natural selection acting on genomes is of negative selection removing new deleterious mutations (Nielsen et al. 2007). But most of the genetic surveys have focused on detecting positive selection to disentangle the molecular-level traces of evolutionary adaptations and subsequent factors relating humans to their environment (Nielsen et al. 2007).

Even a weak selective benefit might cause substantial changes in allele frequencies over generations. However, in natural populations different evolutionary forces overlap with one another. Consequent-
ly, genetic drift affects the same alleles subjected to natural selection, and thus it may be difficult to identify loci subject to natural selection (Kelley et al. 2006). It is known that in populations of small \(N_e \) stronger selection is needed to influence allele frequencies, whereas allele frequencies of larger populations might be shaped by weaker selective forces (Nielsen et al. 2007).

1.2.4 Visualizing genomic variation

1.2.4.1 Molecular markers used in human genetic studies

DNA sequencing is the ultimate tool for detecting all different genetic variants in any particular genomic region (Sanger et al. 1977), but the method is often technically limited and more expensive to conduct than genotyping individual SNP or STR loci (Mir and Southern 2000, Syvänen 2001). Moreover, the vast number of identified SNP and STR loci in humans and new high-throughput methods enable efficient and simultaneous genotyping of these markers (Mir and Southern 2000, Syvänen 2001, Collins et al. 2003).

It is estimated that SNP markers account for most of all human genetic variation, and are also likely to play a crucial role in how humans respond to exogenous pathogens, chemicals, drugs and other therapies (Collins et al. 2004, Kidd et al. 2004, International Human Genome Sequencing Consortium 2004, International HapMap Consortium 2007, McVean et al. 2005).

SNPs are mostly biallelic with an estimated average mutation rate of \(2.3 \times 10^{-8} \) per site per generation (Nachman and Crowell 2000). On average, there is one SNP within every 200bp along the human genome, as currently there are more than 18 million SNPs listed in the human genome, from which more than 6.6 million are validated and 7.5 million are found within genes (Build 129, April 2008). Therefore, SNPs are well-suited for several genetic and evolutionary studies including candidate gene or causal variant mapping, for assessing genetic diversity and divergence, and recently for disentangling whole genome associations of complex traits and risk factors such as cancer, diabetes and vascular diseases (Collins et al. 2004, Kidd et al. 2004, McVean et al. 2005).

STRs (i.e. microsatellites) are tandem repeat markers of 1–6 nucleotides (e.g. …CACACA… dinucleotide repeats) which are the most variable types of DNA sequences in humans (Weber 1990). The STR loci have typically a high number of different alleles per locus, each with different number of repeat motifs (reviewed by Ellegren 2004). Moreover, STRs are found in all chromosomes, and with a high repeat number variability between individuals. Most of the known STRs are most likely neutral, although some are involved in human diseases. In the disease causing microsatellites, the causal factor is often the increase of the repeat number over some threshold level (e.g. >30 and up to 2000 repeats in myotonic dystrophy; Mahadevan et al. 1992). Estimations using human pedigree and sperm sample analysis have shown that the STR mutation rate is between \(10^{-3}–10^{-4} \) per locus per generation (Heyer et al. 1997, Brinkmann et al. 1998, Sajantila et al. 1999, Kayser et al. 2000, Xu et al. 2000). The STR mutation is mainly modeled by the stepwise mutation model (SMM), which postulates that the mutations, i.e. gain or loss of one repeat, occur at fixed rate independent of repeat length (Ohta and Kimura 1973). However, this is not totally true as the rate and direction of the STR mutations are shown to be length-dependent (reviewed by El-
Microsatellites, due to their informativeness, Mendelian inheritance and relative ease of genotyping, have proven extremely powerful for linkage analysis of Mendelian disorders (Jorde et al. 1997, Zhivotovsky et al. 2003) and for studies of evolution and population genetic structure (Rosenberg et al. 2002, Ellegren et al. 2004) as well as for genetic identification and paternity testing relevant in forensic medicine (Jobling et al. 1997).

Due to the high number of SNP and STR markers identified in the human genome, some of the markers in the same chromosome are close to each other. Often alleles of markers in close physical proximity are passed on from parents to offspring together. These allele combinations, called haplotypes, either directly from haploid mtDNA and Y-chromosome loci or from diploid chromosomes can be considered as single alleles from a gamete. Haplotypes, compared to single markers, provide a greater statistical power for analysis and reduce the sample size needed for analysis of significant association (Clark 2004). However, the deduction of haplotypes from diploid marker data is not always straightforward. To illustrate the problem we may assume three different cases (Figure 3), where two SNPs in a same chromosome a) are homozygous, b) only one SNP is heterozygous and c) both SNPs are heterozygous. Homozygous SNPs will produce two identical haplotypes, whereas two different haplotypes are observed when only one site is heterozygous. However, in the case of two heterozygous SNPs, the allele combinations are often shuffled by recombination making it more difficult to determine the true haplotypes. To overcome these limitations, genealogical, molecular and statistical methods have been used. In principle, using pedigree data from parents and grandparents often enables accurate haplotype estimations. Molecular methods include amplification of a single cell genome (Ruano et al. 1990), allele specific amplification (Michalatos-Beloin et al. 1996) or construction of mouse-human hybrid cells with haploid human genome (Patil et al. 2001). Statistical approaches are based on the assumption of a common ancestor homozygous at all sites. The steps from the observed variation to this common ancestor within a population are then estimated (Clark 1990). These statistical methods have shown to be powerful for accurate estimation of the haplotypes from diploid genotypes (Excoffier and Slatkin 1995, Stephens et al. 2001).

1.2.4.2 Special characteristics of the uniparental markers

In human cells, there are hundreds to thousands copies of cytoplasmic organelles called mitochondria. Each mitochondria
contain at least a single copy of mitochondrial DNA (mtDNA), organized in a small (~16.6kb) circular double-stranded DNA molecule, which is transmitted without recombination only through the mother. The mtDNA genome contains 37 genes and a non-coding control region including three known hypervariable segments (HVS-I, HVS-II and HVS-III) (Anderson et al. 1981, Andrews et al. 1999, Bandelt et al. 2006). The mtDNA has a much greater average mutation rate (3.4 × 10^-7 – 3.6 × 10^-6) than nuclear genome (2.5 × 10^-8) (Ingman et al. 2000, Nachman and Crowell 2000, Richards et al. 2000). As a haploid non-recombining molecule the variation within mtDNA results only from the accumulation of mutations. The mtDNA haplotypes are often further clustered into mtDNA lineages or haplogroups (Torroni et al. 2006), which possess a molecular record of the maternal genealogical history. In humans, analysis of mitochondrial genomic diversity and phylogeography, an analysis of geographical distribution of the variation, were initially studied merely with the HVS-I (360bp) and HVS-II (268bp) regions and more recently using complete mtDNA genomes. The mtDNA has proven powerful for assessing both the micro-geographic female population histories and reconstructing broader prehistoric human dispersal (Cann et al. 1987, Ingman et al. 2000, Torroni et al. 2006). In addition, the high copy number of this small circular genome has enabled several successful ancient DNA analyses (Pääbo 1989, Cooper and Poinar 2000, Pimenoff and Korpisaari 2004). Only two pseudoautosomal telomeric segments recombine with the X chromosome, but these amount to less than 5% of the total length of the chromosome (Jobling and Tyler-Smith 2003). The NRY part of the Y chromosome is extremely gene poor, coding for only 27 proteins but enriched with many types of DNA repeats and variants. To date, more than 200 binary polymorphisms (i.e. SNPs), over 200 microsatellites and several other repeat polymorphisms within the NRY have been characterized (Jobling and Tyler-Smith 2003, Kayser et al. 2004). These two marker classes have differing mutation rates; the slow evolving SNP markers allow construction of common Y-chromosome clusters (i.e. haplogroups) and their phylogeny, whereas STRs within these haplogroups enable a more detailed haplotype resolution (Knijff 2000, YCC 2002). The differing resolution obtained with these markers has allowed a detailed phylogeographic analysis of the human male populations (Underhill et al. 2000, Wells et al. 2001, also reviewed by Jobling and Tyler-Smith 2003).

Both mtDNA and Y chromosome loci possess only one quarter of an effective population size compared to the nuclear DNA. Therefore the genetic diversity and phylogenetic structure of uniparental loci are more sensitive to changes in the demography (e.g. bottlenecks) and generally show greater genetic differences between different groups or populations. All these evolutionary characteristics combined with the well-defined phylogeny and unified nomenclature system (YCC 2002, Torroni et al. 2006), make uniparental markers ideal tools for investigating the recent human evolution, with additional important applications in medical and forensic genetics (Jobling et al. 1997, Howell et al. 2003, Jobling and Tyler-Smith 2003).
1.2.5 Linkage Disequilibrium

1.2.5.1 Processes shaping LD

Linkage disequilibrium (LD) defined as a non-random association of alleles at linked loci may be broken by recombination during meiosis. Alleles at loci lying in close proximity in a chromatid recombine less frequently than those far apart and are more likely to be in LD. Thus, a new mutation arising in the genome is initially in complete LD with the adjacent marker alleles, which is indicated by only three of the four possible haplotypes between the two loci within a population (Figure 4, reviewed by Ardlie et al. 2002).

The most commonly used measures of pairwise linkage disequilibrium are $|D'|$ (Lewontin 1964) and r^2 (Hill and Weir 1994), which both vary between complete (1.0) and no (0.0) association between loci. Moreover, a recently developed Bayesian method to estimate the population recombination parameter $\theta = 4Ne$ from genotypes has proven to be an efficient way to quantify LD differences between populations (Li and Stephens 2003, Crawford et al. 2004, Evans and Cardon 2005). However, there is no consensus on what is the best statistic for LD as LD measures are known for several stochastic limitations e.g. differing sensibility to sampling and population genetic processes, although the θ estimate seems to be more robust to fluctuations of ascertainment bias and marker density than the pairwise LD estimates (Lewontin 1988, Weiss and Clark 2002, Phillips et al. 2003, Evans and Cardon 2005).

The strength of LD between a pair of markers depends on both molecular and population genetic factors, which have shown to generate varying patterns of LD across the human genome and populations (Ardlie et al. 2002, Wang et al. 2002, Bertranpetit et al. 2003, Tishkoff and Verel-
li 2003, Wall and Pritchard 2003, Slatkin 2008). Mutations generally create LD, but locus with a high mutation rate or a high number of alleles (e.g. STRs) tend to erode LD (Ardlie et al. 2002), although recombination and gene conversion are the main molecular factors reducing LD. The population genetic factors (drift, migration and selection) have more diverse effects on LD. Consequently, the increased drift of small populations tends to increase LD as haplotypes are lost from the population (Terwilliger et al. 1998). Thus, small isolate populations have been shown to possess higher extended LD compared to populations of a larger size (reviewed in Ardlie et al. 2002). It is noteworthy that inbreeding as a phenomenon inseparable from drift can produce similar results of reduced heterozygosity as random genetic drift in small populations (Slatkin et al. 2008). Therefore, the combined effect of drift and inbreeding in some human population have been proposed to have caused the extended tracts of genomic homozygosity (Gibson et al. 2006). Interestingly, gene flow between populations also enhances the LD. Immediately after two populations have admixed, LD is proportional to the allele frequency differences between the parental populations and not related to the distances between markers. In the following genera-

![Figure 4. A new mutation G* associated with A allele at nearby locus.](image-url)
tions, this artificial LD between unlinked markers fades, while LD between nearby markers is often slowly dissipated by recombination. Strong positive selection increases the frequency of an advantageous allele but also alleles closely linked to it, creating unusually strong LD between the causal and neutral alleles. This phenomenon is called genetic hitch-hiking (Smith and Haigh 1974), in which an entire segment of DNA (i.e. haplotype) flanking an advantageous variant can rapidly rise to high frequency or even fixation. The selective sweeps have shown significantly elevated LD and reduce heterozygosity among the closely linked neutral markers within particular regions (Smith and Haigh 1974, Kim and Stephan 2002, Nielsen et al. 2005). Similarly, although the overall effect is generally not so strong, negative selection against a deleterious variant may increase LD as the deleterious haplotypes are deleted from the population.

1.2.5.2 Block structured genome, tagSNPs and LD mapping

Based on simulation studies it was assumed that genomic LD rarely extends over 3kb (Kruglyak 1999). However, recent studies have shown that a great fraction of LD in the human genome is organized into discrete sets of loci of low haplotype diversity and high LD between markers (i.e. haplotype or LD blocks) separated by short regions (1–2kb) of intense hotspots of recombination (Jeffreys et al. 2000, Jeffreys et al. 2001, Daly et al. 2001, Gabriel et al. 2002, Goldstein 2001, Patil et al. 2001, May et al. 2002). This led to the hypothesis that most of the human genome has a block-like structure with an average LD block between few kb and 100kb (Wall and Pritchard 2001). Hence, it was proposed that only few SNPs at each block would be successful for mapping most of the common genomic variation (Carlson et al. 2004). The structure and distribution of LD blocks along the genome has been shown to be shared by diverse human populations and would indicate a common feature in the human genome (Daly et al. 2001, Gabriel et al. 2002). But the quest for common haplotypes of the human genome has shown to be more difficult a task than expected with no clear current consensus (Daly et al. 20001, Gabriel et al. 2002, Zhang et al. 2002, Phillips et al. 2003, Stumpf and Goldstein 2003, Ding et al. 2005, Zeggini et al. 2005, International HapMap Consortium 2007). However, some common features can be deduced in agreement with most LD studies. The sub-Saharan African populations tend to have shorter LD blocks compared to non-African populations. This is explained by the interplay of more recent recombination and a bottleneck leading to genetic drift experienced by modern humans since the expansion out of Africa as opposed to the present-day sub-Saharan Africans (Tishkoff et al. 1996, Jorde 2000, Gabriel et al. 2002, Wall and Pritchard 2003, Conrad et al. 2006). Moreover, in a whole genome analysis Hinds et al. (2005) estimated that non-African and African-American populations have around 95,000 and 236,000 LD blocks with an average block size of 23.0kb and 8.8kb, respectively. Therefore, it was proposed that further studies with larger sets of human populations are needed to establish more reliable definitions of the block boundaries along the human genome.

Regardless of the block criteria, certain SNPs along the genome show complete LD with each other even with longer distances (>5kb) (Johnson et al. 2001). These tightly correlating SNPs are often called haplotype tagging SNPs (tagSNPs) as it is shown
that typing a few such tagSNPs allows to predict most other variants within the same LD block (Johnson et al. 2001). Currently there are several approaches with congruent results to identify tagSNPs (Chi et al. 2006). These include: i) the identification of LD blocks within the genomic region of interest, ii) the estimation of pairwise LD values within the LD block, and iii) the selection of a few SNPs that capture most of the variation within the LD block (Carlson et al. 2004). However, alternative methods to define tagSNPs without LD block criteria are also currently used (Halldorsson et al. 2004). More importantly, it has been shown that tagSNPs are often well-transferable across populations at least within continental regions (Gonzalez-Neira et al. 2006, Mueller et al. 2005).

In practice, if a marker (e.g. tagSNP) is in LD with a disease-causing allele, the strength of LD between the marker and the disease variants can be used to predict the causal allele (Johnson et al. 2001). This population-based LD mapping rests on the assumption that the disease causing mutation stays linked with markers in its physical vicinity for a certain amount of time due to the slower decay of LD with tightly linked markers (Lewontin and Kojima 1960, reviewed by Slatkin 2008). Moreover, recent observations have led to the hypothesis that populations of small and constant size are ideal for LD mapping due to the drift-enhanced disease and allele frequency differences within a population between the case and control samples (Terwilliger et al. 1998). Similarly, admixture may offer another efficient approach for LD-mapping using hybrid populations compared to non-admixed populations (Chakraborty and Weiss 1988). However, the success of the admixture mapping depends heavily on the time since the admixture and the frequency differences of the disease and associated alleles in parental populations (Chakraborty and Weiss 1988). Based on these observations and unique demographic histories of the Finns and Saami, these populations have often shown markedly higher levels of extended LD compared to other European populations (Varilo et al. 1996; 2000; 2003, Laan et al. 1997; 2005, Kaessmann et al. 2002, May et al. 2002, Kauppi 2003, Johansson et al. 2005; 2007, Service et al. 2006). In this context, LD has been successfully used for mapping monogenic diseases prevalent in the Finnish population (Hästbacka et al. 1992, de la Chapelle and Wright 1998, Peltonen et al. 2000). The Saami have also been proposed as a promising target population for LD drift mapping of complex traits (Terwilliger et al. 1998, Kaessmann et al. 2002, Ross et al. 2006).

1.3. HUMAN GENOME DIVERSITY AND THE HAPMAP PROJECT

Shortly after the announcement of the Human Genome Project (HGP), Cavalli-Sforza et al. (1991) proposed for a worldwide survey of the human genome variation known as the Human Genome Diversity Project (HGDP). The aim of this project was to disentangle the structure and distribution of the genetic diversity in humans. Despite the difficulties in ethical issues and criticism from scientists and indigenous people (Greely 2001a), the HGDP successfully collected and announced a worldwide sample set of 1064 individuals representing 52 populations from all continents (HGDP CEPH cell line panel, Cann et al. 2002). These samples have since been used in a number of population genetic studies and the results are continuously collected into a publicly available database (Cavalli-Sforza 2005).
The discovery of the punctuate LD along the human genome (Ardlie et al. 2002, Gabriel et al. 2002) combined with the previous hypothesis of common disease/ common variant (Lander 1996, Reich and Lander 2001) and the available high-throughput genotyping methods boosted the foundation of the International HapMap Project (The International HapMap Consortium 2003). The primary aims of the HapMap were i) to discover new ascertained SNPs across human genome, ii) to characterize a genome-wide set of SNPs validated in four human populations and iii) to produce a common haplotype map of the entire human genome using 269 DNA samples from four ethnic human groups (i.e. of African, European, Japanese and Han Chinese origin). The primary use of the common haplotype map is in whole genome association studies of complex traits (The International HapMap Consortium 2003). So far, as a phase I result the HapMap has characterized more than 4 million SNPs along the human genome, and recently completed phase II has identified additional 6 million SNPs (The International HapMap Consortium 2005; 2007). Currently the project has been improved by the addition of more populations (HapMap phase 3 data, www.hapmap.org). Moreover, numerous fine-scale genomic analysis and genome-wide association studies have benefitted from HapMap data (Deloukas and Bentley 2004, McVean et al. 2005). Despite recent criticism (Terwilliger and Hiekkalinna 2006), the HapMap project has already strongly contributed to our quest for understanding the significance of the heritable genetic variation in modern humans and to disentangle the genetic variants relevant in complex traits of human health and disease (Deloukas and Bentley 2004, McVean et al. 2005, The International HapMap Consortium 2007).
2 AIMS OF THE PRESENT STUDY

In this thesis and the articles within I have explored the underlying molecular and population genetic factors and processes shaping genetic variation. The main focus of this thesis has been the Finno-Ugric-speaking populations living in remote and relatively extreme geographic locations in North Eurasia.

Specifically I have focused on the following themes:

1) To study the genetic history and diversity of the Finno-Ugric-speaking populations by using uniparental markers (I, II).

2) To determine the prevalence and haplotype background of lactase persistence variant C/T-13910 in North Eurasian populations (III)

3) To assess the recombination rate variation, haplotype structure and LD pattern within clinically significant cytochrome P450 CYP2C and CYP2D gene subfamily regions in European populations including the North Eurasian Finno-Ugric-speaking Saami and Finns (IV)
3 MATERIALS AND METHODS

3.1 SAMPLES

DNA samples consisted in total of 3119 healthy unrelated individuals of 53 human populations with informed consent. Moreover, a total of 5697 reference samples of 42 Eurasian populations were obtained from the literature. All these samples were used in the analysis but with differing sets as described in the original publications (I–IV). It is noteworthy that our main interest concentrates on the North Eurasian Finno-Ugric-speaking population shown in detail in Table 1 and also described in Pimenoff and Sajantila (2002).

3.2 MOLECULAR DATA

To study the maternal neutral genetic diversity and evolutionary relationships of different North Eurasian human populations, we assessed the mtDNA HVS-I and HVS-II region sequences between positions 16024–16383 and 72–340, respectively. In addition, we analyzed seven mtDNA coding region SNP markers to confirm the observed mtDNA control region lineages (II). To assess the paternal neutral genetic diversity and dispersal among the North Eurasian populations, we used 17 Y-chromosome-specific SNP markers describing

Table 1. Finno-Ugric-speaking populations used in each study (I-IV)

<table>
<thead>
<tr>
<th>Population</th>
<th>n<sup>a</sup></th>
<th>Linguistic affiliation</th>
<th>Geographic affiliation</th>
<th>Subsistence</th>
<th>Population size<sup>b</sup></th>
<th>References within</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finns</td>
<td>400</td>
<td>Finnic (Finno-Ugric)</td>
<td>Northeast Europe</td>
<td>Agriculture</td>
<td>5,000,000</td>
<td>I, II,III,IV</td>
</tr>
<tr>
<td>Saami</td>
<td>114</td>
<td>Finnic (Finno-Ugric)</td>
<td>Northeast Europe</td>
<td>Reindeer breeding</td>
<td>80,000</td>
<td>II,III,IV</td>
</tr>
<tr>
<td>Estonians</td>
<td>28</td>
<td>Finnic (Finno-Ugric)</td>
<td>Northeast Europe</td>
<td>Agriculture</td>
<td>1,300,000</td>
<td>II</td>
</tr>
<tr>
<td>Karelians</td>
<td>83</td>
<td>Finnic (Finno-Ugric)</td>
<td>Northeast Europe</td>
<td>Agriculture</td>
<td>140,000</td>
<td>II</td>
</tr>
<tr>
<td>Moksha</td>
<td>30</td>
<td>Volgaic (Finno-Ugric)</td>
<td>Northeast Europe</td>
<td>Agriculture</td>
<td>380,000</td>
<td>II,III</td>
</tr>
<tr>
<td>Erza</td>
<td>30</td>
<td>Volgaic (Finno-Ugric)</td>
<td>Northeast Europe</td>
<td>Agriculture</td>
<td>760,000</td>
<td>II,III</td>
</tr>
<tr>
<td>Udmurt</td>
<td>30</td>
<td>Permic (Finno-Ugric)</td>
<td>Northeast Europe</td>
<td>Agriculture</td>
<td>640,000</td>
<td>II,III</td>
</tr>
<tr>
<td>Komi</td>
<td>28</td>
<td>Permic (Finno-Ugric)</td>
<td>Northeast Europe</td>
<td>Agriculture</td>
<td>340,000</td>
<td>II,III</td>
</tr>
<tr>
<td>Khanty</td>
<td>106</td>
<td>Ugric (Finno-Ugric)</td>
<td>Northwest Siberia</td>
<td>Reindeer breeding</td>
<td>21,000</td>
<td>II,III</td>
</tr>
<tr>
<td>Mansi</td>
<td>161</td>
<td>Ugric (Finno-Ugric)</td>
<td>Northwest Siberia</td>
<td>Reindeer breeding</td>
<td>8,000</td>
<td>II,III</td>
</tr>
</tbody>
</table>

^a Total amount of unrelated DNA samples used in this study
^b Laakso 1991, Kolga et al. 2001, Karafet et al. 2002
the paternal haplogroup distribution along with 12 Y-chromosome specific microsatellite markers, with four additional Y STRs analysed in the Finnish population (I, II). For the haplotype analysis of lactase persistence T\textsubscript{13910} allele among populations, eight SNPs and one indel polymorphism with minor allele frequencies MAF > 0.07 distributed across a 30kb region of LCT gene was used with additional sequences (~ 700kb) flanking the whole LCT gene region in particular individuals (III). To disentangle the allele and haplotype distribution of clinically significant cytochrome P450 CYP2C and CYP2D gene subfamily regions we used 55 and 97 SNP markers with MAF > 0.05 in dbSNP with a mean spacing of 7.8kb and 7.6kb, respectively (IV). All the genotyping methods are described in detail in the original publications (I–IV).

3.3 DATA ANALYSIS

Population diversity indices, allele frequencies, Hardy-Weinberg (HW) equilibrium, and population pairwise F\textsubscript{ST}- or R\textsubscript{ST}-values along with the exact test of population differentiation and the analysis of molecular variance (AMOVA) were estimated using Arlequin software v3.0 (Excoffier at al. 2005) (I–IV). Phylogenetic median-joining networks were constructed using program package Network 4.5.0.0 (www.fluxus-teclology.com) and when required locus weights described by Bandelt et al (2002) or Bosch et al (2006) were used (II, IV). To estimate the coalescence age of specific lineages within a uniparental network, the ρ-statistic along with mutation rates from Forster et al. (1996) and Saillard et al. (2000) were implemented (II). To define and test the uniparental phylogeographic structures both spatial analysis of molecular variance (SAMOVA; Dupanloup et al. 2002) and autocorrelation indices for DNA analysis (AIDA; Bertorelle and Barbujani 1995) were performed (II). Importantly, correlations between mtDNA and Y chromosome distance matrices (II) as well as between F\textsubscript{ST} and population recombination rate delta distances (IV) were estimated using the Mantel test (Excoffier et al. 2005). Allele frequencies and uniparental lineages were also geographically visualized using the MapView 6.0 program (StatSoftTM) (II). Moreover, pairwise F\textsubscript{ST} and R\textsubscript{ST} values were visualized using multidimensional-scaling (MDS) procedure implemented in the STATISTICA software package (StatSoftTM) (II, IV). For each population, autosomal haplotypes were inferred separately either using the Arlequin software (Excoffier et al. 2005, III) or PHASE v.2.1 software package with 1000 iterations (Stephens et al. 2001, III–IV). Moreover, recombination rate parameter ρ was inferred separately for each population and genomic region using software PHASE v.2.1 with 1000 iterations (Stephens et al. 2001, IV). Non-parametric Spearman correlations between population recombination estimates and Wilcoxon test for adjacent SNP r2-values between populations were performed with SPSS 7.0 (IV). In addition, most of the autosomal genotype data modifications were performed prior analysis with Perl scripts and Perl 5.8.7 (IV).
4 RESULTS AND DISCUSSION

4.1 UNIPARENTAL GENETIC LANDSCAPE IN NORTH EURASIA (I, II)

Mitochondrial and Y-chromosome studies suggest that not only the Southwestern Europe (Semino et al. 2000, Torroni et al. 2001) but also Central Asia (Wells et al. 2001, Zerjal et al. 2002, Comas et al. 2004, Quintana-Murci et al. 2004) and South Siberia (Derenko et al. 2003; 2007ab) have had an important role in the early settlement of the modern humans into North Eurasia. However, the genetic roots and dispersals of the North Eurasian Finno-Ugric-speaking populations are not entirely clear (Cavalli-Sforza et al. 1994, Derbeneva et al. 2002, Karafet et al. 2002, Norio 2003b, Ross et al. 2006).

To explore uniparental neutral variation among the North Eurasian Finno-Ugric-speaking populations and situate them into the North Eurasian genetic landscape, 42 ad 33 Eurasian mtDNA and Y chromosome population samples were analyzed, respectively. In addition, Y chromosome STR haplotypes from 15 Eurasian populations were used in further comparisons (Pimenoff et al. unpublished data of 85 Finno-Ugric-speaking Erza, Moksha and Udmurt individuals were also included).

In our analysis, geographically associated uniparental haplotypes showed statistically significant frequency trends along the East-West axis of North Eurasia (study II, Figure 1AB, 2). This is congruent with the current view of the clinal distribution of West and East Eurasian uniparental lineages (Richards et al. 2000, Semino et al. 2000, Underhill et al. 2000, Wells et al. 2001, Kivisild et al. 2002, Metspalu et al. 2004, Rootsi et al. 2007). Correspondence analysis also revealed east-west patterns of North Eurasian maternal lineages (study II, Figure 4A), where Finno-Ugric-speaking populations form distinct clusters at an edge of the mtDNA haplogroup distribution. However, the geographical pattern is not so clear within the Y-chromosome, except the clustering of Finno-Ugric and Samojedic populations together along with the Yakut population (study II, Figure 4B). Similarly (study II, Figure 3AB), mtDNA pairwise FST distances identify Finno-Ugric-speakers as distinct clusters between Northeast Europe and South Siberia/Central Asia, while the Y-chromosome RST distances appeared less structured. Even, when the Erza, Moksha and Udmurt Y-chromosomes (Pimenoff et al. unpublished) are added, the RST distances show the Finno-Ugric population totally dispersed with no clear structure. A mantel test between mtDNA and Y-chromosome pairwise distances showed nonsignificant correlation.

Indeed, most of the Finno-Ugric-speaking populations showed to possess both West and East Eurasian associated uniparental lineages (Figure 5AB, see also study II, Figure 1AB). This unique amalgamation of West and East Eurasian gene pools may indicate either mixed origin of these populations from genetically distinguishable Eastern and Western Eurasia or that North Eurasia was initially colonized by humans carrying both West and East Eurasian lineages. Previous studies of the Saami and Finns support the idea of mixed origin in these populations (Norio et al. 2003b, Ross et al. 2006, Johansson et al. 2006, Ingman and Gyllensten 2007). However, the Central Asian (Karafet et al. 2002, Comas et al. 2004), Southwest Asian (Quintana-Murci et al. 2004) and South Siberian (Kar-
Figure 5. Distribution of the geographically associated A) mtDNA and B) Y-chromosome lineages among the Finno-Ugric-speaking Finns (fin), Khanty (kha), Komi (kom), Mansi (man) and Saami (saa) populations. Colors for the associated haplogroups are the following: white, West Eurasian; gray, East Eurasian; black, South Asian (geographical classification based on study II). Population abbreviations refer to the same samples and abbreviations used in study II (Figure 1A), except in 5B (saa2; Pimenoff et al. unpublished data).
RESULTS AND DISCUSSION

fet et al. 2002, Derenko et al. 2003; 2006; 2007b) populations have shown an admixture of West and East Eurasian lineages with higher overall genetic diversity compared to Finno-Ugric-speakers. This supports the idea that the edge of North Eurasia was colonized through Central Asia/South Siberia by human groups already carrying West and East Eurasian lineages. Moreover, the observed mitochondrial U7 and Y-chromosome N2 sublineages indicate a more recent gene flow probably from Central Asia to North Eurasia (Rootsi et al. 2007). In this context it could be explained that the geographical region from Central Asia to Northeast Europe and Northwest Siberia has been a contact zone of genetically distinguishable Western and Eastern Eurasian lineages formed by recurring migrations and admixture of distinct population groups. This unique admixture is currently seen in North Eurasian Finno-Ugric-speaking populations.

When the number of observed Y-chromosome STR haplotypes was divided by the number of sampled individuals within a population, a lower fraction of heterogeneity was observed in the Finns (43%), Khanty (43%), Mansi (52%) and Saami (52%) compared to Finno-Ugric Erza (81%), Komi (69%), Moksha (86%) and Udmurt (67%) or most other more southern populations. The difference in heterogeneity could be explained by the at least four times smaller population size (Table 1) and thus the greater sensitivity to genetic drift in the Khanty, Mansi and Saami compared to the Erza, Moksha, Komi and Udmurt populations. However, in the Finns it is not the population size but a probable population bottleneck in the founding of the Finnish population (Sajantila et al. 1996, Lahermo et al. 1999), which explains the reduced Y-chromosome heterogeneity (Figure 6). Moreover, when the samples were divided into six geographical subpopulations a clear local reduced heterogeneity in Eastern Finland and a significant genetic difference between Western and Eastern Finland was observed (Figure 6; see also study I, Table 3, Lappalainen et al. 2006, Palo et al. 2007).

Apart from the unique genetic amalgamation and clinal distribution of western and eastern uniparental lineages, the North Eurasian Finno-Ugric-speaking populations are genetically a heterogeneous group, mostly showing lower haplotype diversities among and within uniparental haplogroups compared to other populations (see also Karafet et al. 2002, Derenko et al. 2003; 2006; 2007b, Comas et al. 2004). In a broader perspective, the ensuing loss of genetic diversity in populations living in Arctic and Boreal regions compared to more southern areas has been clearly demonstrated in a range of other species as well (Hewitt 2001). It is explained by the presence of southern refuges through the Last Glacial Maximum (c. 13,000 years ago) and subsequent founder effects, gene flow and genetic drift shaping the genetic diversity of small population groups migrating to the North Eurasia.

4.2 DISTRIBUTION OF LACTASE PERSISTENCE ALLELE IN NORTH EURASIA (III)

Most humans cannot digest lactose, i.e. the main milk carbohydrate, after weaning due to the natural reduced activity of the lactase-phlorizin hydrolase (LPH) enzyme in intestinal cells (Sahi et al. 1973, reviewed by Swallow 2003). These individuals are considered as lactase non-persistent (LNP) [MIM223100]. However, some people maintain the LPH activity throughout life, i.e. are lactase persistent.
RESULTS AND DISCUSSION

Figure 6. Distribution of the most common Y-chromosome 16-loci STR haplotypes within six subpopulations of Finland (study I, Figure 3B).

(LP) [MIM223100], and thus can use milk products without metabolic difficulty. Interestingly, among the North Eurasian and some sub-Saharan African populations, often with high dairy product consumption, the lactase persistence is relatively common (>80%), whereas the lactase non-persistence is predominant among the rest of populations worldwide (Swallow 2003). Previously a single SNP C/T.13910 was shown to correlate completely with the LP/LNP phenotype among the North Europeans (Enattah et al. 2002). This T.13910 variant correlating with LP is located 14kb upstream of the LCT gene, which encodes for LPH (Enattah et al. 2002). Previous haplotype analysis showed that all LP alleles among Finns originated from one common ancestor indicating a single introduction of lactase persistence allele into North
Europe (Enattah et al. 2002). It was also confirmed that the LNP is the ancestral state in humans like in most mammals and mutations causing LP have arisen probably due to a recent positive selection as an adaptation to energy need in lactose rich diet coincident with the animal domestication (Hollox et al. 2001, Enattah et al. 2002, Beja-Pereira et al. 2003, Bersaglieri et al. 2004, Myles et al. 2005, Tishkoff et al. 2007).

To investigate the allelic background of LP variant T-13910 in North Eurasia, we genotyped eight SNPs and one indel polymorphism, including C/T-13910 variant, covering the ~30kb of the LCT region in 37 worldwide populations (study III, Figure 1). Our results showed a high frequency of LP T-13910 allele especially among the Finno-Ugric-speaking Finns (58%), Udmurt (33%), Moksha (28%) and Erza (27%) (study III, Table 3). Interestingly, the reindeer breeding Khanty (Ob-Ugric, 3%), Mansi (Ob-Ugric, 3%) and Saami (17%) exhibit the lowest LP T-13910 allele frequencies among the Finno-Ugrics compared to the agriculturalists with the exception of the Komi (15%; N=10) (Table 1).

Furthermore, we identified nine different haplotypes carrying the T-13910 LP variant and 14 haplotypes with alleles carrying the C-13910 LNP variant, each with a frequency of >4% in at least one of the populations (study III, Table 5). One of the nine LP haplotypes dominate in LP alleles in most populations including the Finno-Ugrics, in which the highest frequencies are among the agriculturalists. Six other LP haplotypes were also observed at the reasonably frequency (between 2% and 11%) in the Finno-Ugric-speaking populations mostly among the agriculturalists.

A median-joining network constructed from these common haplotypes (MAF >4%) revealed two distinct clusters of LP haplotypes carrying the T-13910 allele (Figure 7). The first cluster was observed only among the Finno-Ugric Udmurts (15%), Mokshas (11%) and Erzas (5%) along with Iranians (5%), while the second cluster of LP haplotypes including the dominant H98 LP haplotype was observed in almost all populations (Figure 7; study III, Table 5). This observation of multiple LP haplotype clusters among the Finno-Ugric-speaking populations indicate two independent origins of the LP T-13910 allele in North Eurasia. We also identified a probable single LNP haplotype responsible for the background on which the most common major LP haplotype was derived. This LNP background haplotype shows the highest frequency among the Finno-Ugric-speaking populations (between 33 and 35%) along with Han Chinese (36%), which might indicate an East Eurasian origin of the particular ancestral haplotype. However, the molecular and demographic factors may bias interpretation based purely on population frequencies. The age estimates showed that the common LP T-13910 haplotype cluster (12,000–5,000 BP) is older than the LP T-13910 haplotype cluster (3,000–1,400 BP) mainly observed among the North Eurasian Finno-Ugric-speaking agriculturalist populations. This LP T-13910 allele and haplotype frequency distribution in Finno-Ugric-speaking populations along with previous reports among the sub-Saharan populations (Tishkoff et al. 2007, Ingram et al. 2007) strongly imply that the LP T-13910 variant has been introduced independently more than once into North Eurasia. Moreover, the observed results support the role of still-ongoing convergent evolution of the lactase persistence among the Finno-Ugrics in response to adult milk consumption coincident with the change in subsistence at the edge of North Eurasia (Table 1).
Figure 7. MJ-network of common (MAF>4%) LNP/LP haplotypes constructed from eight SNPs and one indel marker across the 30kb LCT gene region among 37 worldwide populations (study IV, Figure 5). Arrow denotes the root of the network. LNP haplotypes are shown with yellow and LP haplotypes with green color. The size of the circles are proportional to the estimated haplotype frequencies. Haplotype frequencies for the Finno-Ugric-speaking populations discussed in the text are shown. The positions of the C/T_13910 and G/A_22018 alleles within the haplotype are shown in the box. The SNPs have been coded for each site as 1 for the ancestral SNP and 2 for the derived SNP.
4.3 PATTERNS OF LD IN CYP2C AND CYP2D GENE SUBFAMILY REGIONS IN EUROPE (IV)

The cytochrome P450 oxidase gene family comprises a set of evolutionary-related genes that code for xenobiotic metabolism enzymes (Ingelman-Sundberg 2004). In humans, genes within the CYP2C and CYP2D regions of the cytochrome P450 gene subfamily code for CYP2C8, CYP2C9, CYP2C18, CYP2C19 and CYP2D6 drug-metabolizing enzymes (DMEs) (Wilkinson 2005). These genes are highly polymorphic with several known genetic variants associated to variable drug reactions of significant clinical relevance (Lewis 2004). To characterize the recombination rate variation, LD distribution and haplotype structure in the CYP2C and CYP2D regions we genotyped 144 SNPs across these two regions in Finno-Ugric-speaking Saami and Finns along with nine other European and one African population (study IV). A further aim was to disentangle the past molecular and population genetic processes responsible for the observed LD distribution, inferring from known differences in demographic history of Saami and Finns compared to other European populations. In agreement with results obtained from other marker analysis (Cavalli-Sforza et al. 1994, Ross et al. 2006, Lao et al. 2008), the Finno-Ugric-speaking Saami and Finns showed significantly different CYP2C and
CYP2D allele frequencies from other European populations (Figure 8). For the rest of the European populations including the CEPH sample representing the general European population as such in the HapMap project, the observed locus-specific and population pairwise FST-values indicate low degree of allele frequency differentiation for the two cytochrome P450 regions. Regardless of the allele frequency differences and recombination rate heterogeneity among the studied populations, the location and magnitude of de-
Figure 10. The haplotype blocks identified at CYP2C (A) and CYP2D (B) loci based on Gabriel et al. (2002) are shown in bars. Bars containing diagonal lines are those identified within the extended LD region at both loci. Empty bars are LD blocks characterized outside the extended LD region. The position of genes is shown as horizontal black bars (only CYP2 genes identified) below the depicted chromosome. Vertical arrows denote estimated recombination hotspots of R1-R3.
Decay of r^2 against the distance (kb) between marker pairs within the extended LD region defined as logarithmic best-fit curves along A) CYP2C and B) CYP2D regions. Population abbreviations are as reported in study IV (Table 1).

Protected recombination hotspots R1–R3 are conserved in all 11 European populations (Figure 9) and the African Mandenka population. Interestingly, the CEPH European reference sample shows a very similar recombination profile with other European populations suggesting that a fine-scale recombination map inferred from the HapMap CEPH data would be applicable for other European populations. However, the loci with lower recombination rate exhibit more variation in the rates between populations indicating differences either in recombination histories or in past demography. In
more detail, the Saami shows the lowest recombination rate profile for CYP2D but not for CYP2C region, suggesting that recombination rate estimates are also shaped by other evolutionary factors than population history alone (Figure 9).

In previous studies the extended LD within the CYP2C region has shown to be conserved across populations, although the particular LD block structure is still under debate (Ahmadi et al. 2005, Walton et al. 2005, Vormfelde et al. 2007). Similarly, our data show a clear extended LD across the CYP2C region (Figure 10A) but with a varying pattern of adjacent marker \(r^2 \) values across the populations. Moreover, the LD block structure is consistent across populations within CYP2C region with few exceptions (Figure 10A). Firstly, the sub-Saharan Mandenka population shows significantly the shortest LD blocks (Figure 10A) with lowest proportion of high LD (study IV, Table 1), which is due to the longer period of recombination compared to European populations who migrated out of Africa and experienced a demographic bottleneck. Secondly, the CEPH sample shows a different pattern of LD block distribution (Figure 10A) and the lowest proportion of high LD among Europeans (study IV, Table 1), while the Saami exhibit the highest proportion of high LD, significantly different adjacent marker \(r^2 \) values and the longest single LD block among all populations (study IV, Table 1). Moreover, the decay of high LD within the CYP2C extended LD region is slowest in the Saami and fastest in the Mandenka sample (or CEPH sample within Europe) (Figure 11A).

Within the CYP2D region also a clear extended LD region is observed (Figure 10B), although the adjacent marker \(r^2 \) values and the LD block distribution are more heterogenous compared to CYP2C region. The sub-Saharan Mandenka show significantly the shortest LD blocks and the lowest proportion of high LD while the Saami show again the highest proportion of high LD (study IV, Table 1), significantly different pattern of adjacent marker \(r^2 \) values and the longest single LD block (Figure 10B). The decay of LD within CYP2D region shows the slowest decay in the Saami, but this is only seen in distances below 50kb as thereafter the decay is much faster in the Saami and Finns compared to other population. It is also noteworthy that the Saami possess also the lowest number of CYP2C and CYP2D haplotypes but higher CYP2D haplotype diversity compared to most other Europeans (study IV, Table 1).

The Saami population has remained small and constant in size throughout its history and is considered to have an admixed West and East Eurasian genetic origin (Ross et al. 2006). The high and extended LD with fluctuating haplotype diversity in the Finno-Ugric-speaking Saami could be linked to the small and constant effective population size with admixture and/or subsequent long-term genetic drift shaping the genetic diversity and LD compared to other European populations (Ross et al. 2006). Both admixture and drift are shown to generate enhanced but random patterns of genetic diversity and LD (Terwilliger et al. 1998, Ardlie et al. 2002).

Moreover, a CYP2C19*2 A-19154 mutation causing reduced activity for the CYP2C19 DME shows significantly higher allele frequency in Saami (95% CI: 28.1–47.4%) compared to other European populations (95% CI: 13.4–16.0%; Xie et al. 1999). Interestingly, similar high frequencies (≥0.30) of the altered activity allele are observed in Central and East Asia (Xiao et al. 1997, Kimura et al. 1998, Wedlund et al. 2000, Niu et al. 2004). This, assuming an East Eurasian origin of the CYP2C19*2 A-19154 mutation indicates significant Asia
contribution to the Saami gene pool similarly as observed in HLA markers (Johansson et al. 2008), although the combined effect of selection and drift may have enhanced the level of A_{19154} allele frequency.

The Finno-Ugric-speaking Saami, based on the lower level recombination and higher extended LD within the CYP2C and CYP2D regions exhibit an optimal genetic structure to tag haplotypes more efficiently with larger genomic coverage compared to other populations analyzed. This strategy of LD-based drift mapping originally proposed by Terwilliger et al (1998) may offer a great advantage for further identification of alleles associated to common complex pharmacogenetic traits.
The major aim of this thesis was to examine the origins and distribution of uniparental and autosomal genetic variation among the Finno-Ugric-speaking human populations living in Boreal and Arctic regions of North Eurasia. In more detail, I aimed to disentangle the underlying molecular and population genetic factors which have produced the patterns of uniparental and autosomal genetic diversity in these populations. Among Finno-Ugrics the genetic amalgamation and clinal distribution of West and East Eurasian gene pools were observed within uniparental markers. This admixture indicates that North Eurasia was colonized through Central Asia/ South Siberia by human groups already carrying both West and East Eurasian lineages. The complex combination of founder effects, gene flow and genetic drift underlying the genetic diversity of the Finno-Ugric-speaking populations were emphasized by low haplotype diversity within and among uniparental and biparental markers. A high prevalence of lactase persistence allele among the North Eurasian Finno-Ugric agriculturalist populations was also shown indicating a local adaptation to subsistence change with lactose rich diet. Moreover, the haplotype background of lactase persistence allele among the Finno-Ugric-speakers strongly suggested that the lactase persistence T₃₉₁₉₆ mutation was introduced independently more than once to the North Eurasian gene pool. A significant difference in genetic diversity, haplotype structure and LD distribution within the cytochrome P450 CYP2C and CYP2D regions revealed the unique gene pool of the Finno-Ugric Saami created mainly by population genetic processes compared to other Europeans and sub-Saharan Mandenka population. From all studied populations the Saami showed also significantly the highest allele frequency of a CYP2C19 gene mutation causing variable drug reactions. The diversity patterns observed within CYP2C and CYP2D regions emphasize the strong effect of demographic history shaping genetic diversity and LD especially among such small and constant size populations as the Finno-Ugric-speaking Saami. Moreover, the increased LD in Saami due to genetic drift and/or admixture was shown to offer an advantage for further attempts to identify alleles associated to common complex pharmacogenetic traits.

A challenge in future studies of human genome variation is to understand the molecular basis of common complex diseases, and variable sensitivity to drugs, pathogens and other environmental factors when recent developments in genotyping and genomic resequencing have enabled the high-throughput genome-wide studies such as the HapMap (International HapMap Consortium 2007) and 1000 Genomes (Kaiser 2008). These studies aim primarily at validating genetic variation without ascertainment bias, and secondarily to explore the evolutionary factor shaping genetic diversity. Both large scale genotyping projects and fine-scale resequencing studies of restricted genome regions assessed in different populations are needed for further refinements of the recombination hotspot and LD block structures within the haplotype map of the human genome. A solid understanding of the human genomic variation and haplotype structure within will enable further determination of our evolutionary past and enhance the identification of genetic variants underlying common complex traits and diseases.
This study was carried out between 2002–2008 in the Department of Forensic Medicine at the University of Helsinki and as a visiting scientist in the Evolutionary Biology Unit at the University of Pompeu Fabra along with a one and a half year vacation fulfilling the National Military Service.

The study was financially supported by The Finnish Cultural Foundation, the Federation of European Biochemical Societies and the Finnish Graduate School in Population Genetics along with grants from the EU and the University of Helsinki.

I wish to thank the former head of the Forensic Department, Professor Antti Penttilä, and the new director Professor Erkki Vuori, for providing the excellent research facilities with great academic atmosphere. I also wish to thank Professor Jaume Bertranpetit for inviting me to visit the inspiring Evolutionary Biology Unit at the University of Pompeu Fabra.

The deepest gratitude I wish to express to my supervisor Professor Antti Sajantila at the Department of Forensic Medicine. When I finally managed to meet up with the world famous Finno-Ugric professor I really got excited. Your personal enthusiasm and deep knowledge concerning North Eurasian Finno-Ugric populations and human population genetics in general hooked me. Since then I have learned a lot from you about how to conduct scientific work. Your broad understanding and interest in science, genetics and life itself have constantly carried on and stimulated my own sometimes restless and narrow mind. Your patience with me has been unbelievable, especially when things have gone wrong. I have been very lucky to have had the opportunity to work under your supervision.

I am also greatly indebted to my second supervisor Professor David Comas for a chance to work with him in ever enjoyable atmosphere. Your valuable advice and broad knowledge in human population genetics have kept me on a right track. Moreover, your never ending good humour and social skills to survive with the whining PhD student have always impressed me.

Professor Ulf Gyllensten and Professor Pekka Pamilo deserve enormous compliments for carefully reviewing my thesis during their summer holiday season and for their valuable comments. I am also indebted to Professor Kimmo Kontula for important advice to conduct my final years in PhD studies.

It has always been inspiring and challenging to work in the OLL-BIO laboratory at the Department of Forensic Medicine. I have learned everything about genotyping and forensic laboratory work during these years in Kytösuontie 11. Especially I want to thank my colleague Minttu Hedman, with whom I have not only shared an office and scientific papers but also moments of scientific joy while filling bureaucratic applications or glasses of wine. Jukka Palo is also greatly thanked for revising most of my scientific writings and restlessly explaining to me the basics of population genetics. I also want to express my sincere gratitude to the rest of the former or current oll-bio members: Antti L, Hanna, Silvia, Johanna, Anna, Yukiko, Eve, Teija, Kirsti, Pia, Helmuth, Katarina, Hannu and Mikko. Thank you for all the great moments and good coffee breaks.

I also had a great pleasure to take part in the LD-EUROPE project and work with great scientists: Laurent Excoffier, Gil- laume Lavall, Howard Cann, Sir Walter Bodmer, Susan Tonks, Irina Evseeva, Al-
berto Piazza, Francesca Crobu, Silvana Santachiara-Benerecetti, Ornella Semino, Anna Gonzalez-Neira and Claudia de Toma. Thank you for your collaboration.

I also wish to thank all the bioevo-people in Pompeu Fabra with whom I had the opportunity to enjoy scientifically inspiring moments around the coffee machine—and obviously all the GFs in Bitacora: Monica, Roger, Stephanie, Ferran, Ixa, Urko, Eloi, Hafid, Araceli, Chiara, Andrés, Karla, Michelle, Gemma, Carles, Josep, Ricardo, Marta, Belen, Anna F, Anna R, Olga, Rui, Begoña, Oscar, Elena, Fracesc and Arcadi. Thank you and hope to see you soon.

Special BCN thanks go to Martin and Renia for being superkind hosts for homeless Finns and always being eager to share common weekend adventures. Bruno and Jordi. It’s always a joy even just to talk with you and enjoy life while watching operación triumfo.

Numerous friends in Capoeira Forca Natural are greatly acknowledged for various relaxing moments and aching muscles outside the scientific world. Antti Korpiisaari and Jussi Korhonen, thank you for your archaeological inspiration and intelligent company while digging treasures in eastern Finland. Risto and Pyry, you are greatly acknowledged for keeping an old guy sane in the Finnish forest. Juha and Aki, the two Hakunila musketeers, thank you for sharing fantastic journeys and private discussions. Gerald Matei (1974–2007), your never ending energy to get people to smile and enjoy life are greatly missed. And for Sampsa and Petri – thank you for your friendship. I also wish to thank all relatives. Especially Konsta, your visual eye and hilarious humour is more than greatly thanked during the printing of this thesis.

A warmest gratitude and sincere thanks are due to my family. Dear Heli and Georg. Thank you for all your mental and physical care. And do not worry, as your prodigal son will return. Vilma and Wander. Thank you for all the late dinners and great moments, which have kept me going.

Agnes “Oma”, dear grandmother (1910–2008). I wish you would be here to share a cup of tea with lemon.
REFERENCES

Arnheim N, Calabrese P, Nordborg M (2003) Hot and cold spots of recombination in the human genome: The reason we should find them and how this can be achieved. Am J Hum Genet 73:5–16

REFERENCES 43
REFERENCES

REFERENCES

Laakso J (1992) Uralilaiset kansat. Tietoa suomen sukukielistä ja niiden puhujista. WSOY, Juva

REFERENCES 47

Ota T, Kimura M (1973) A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet Res 22:201–204

REFERENCES

Nikun06.indd 49

24.9.2008 16:41:13

