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Abstract Understanding and managing ecosystems

affected by several anthropogenic stressors require meth-

ods that enable analyzing the joint effects of different

factors in one framework. Further, as scientific knowledge

about natural systems is loaded with uncertainty, it is

essential that analyses are based on a probabilistic

approach. We describe in this article about building a

Bayesian decision model, which includes three stressors

present in the Gulf of Finland. The outcome of the inte-

grative model is a set of probability distributions for future

nutrient concentrations, herring stock biomass, and

achieving the water quality targets set by HELCOM Baltic

Sea Action Plan. These distributions can then be used to

derive the probability of reaching the management targets

for each alternative combination of management actions.
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INTRODUCTION

In 2007, the Helsinki Commission (HELCOM) launched

the Baltic Sea Action Plan (BSAP) which, by focusing on

eutrophication, hazardous substances, biodiversity, and

maritime activities, aims at restoring the good ecological

status of the Baltic marine environment by 2021. The aims

of the BSAP are supported by the EU Strategy for the

Baltic Sea region, which addresses the environmental

challenges of the sea through intensifying cooperation in

the region and implementing the Integrated Maritime

Policy in the Baltic (CEC 2009). The focus of the Inte-

grated Maritime Policy is in the coordination of interrelated

issues: for instance, the relationship between improvements

to the sea quality and increased employment in terms of

better marine business potential using the EU green growth

initiative as catalyst.

Achieving good environmental status calls for the incor-

poration of the latest scientific knowledge and innovative

management approaches into strategic policy implementation.

This requires an understanding on the components, dynamics,

and interactions of the complex ecosystem, and how it reacts to

anthropogenic pressures. In addition to understanding the past

and present state of the ecosystem, information is needed for

managing the future state of the system. In large scale envi-

ronmental problems, the management targets are typically set

for 10–20 years. Consequently, predictions are of paramount

importance, but they will be uncertain because of the sto-

chasticity of natural systems and limitation of the current

knowledge. As the Baltic Sea ecosystem is altered by several

stressors at the same time, integrated analyses are needed.

The cause–effect relationships between the anthropo-

genic stressors and harmful environmental effects should be

analyzed in a manner enabling decision makers to consider

the risk level of the decisions made. Technically risk is

defined as the product of a probability of something envi-

ronmentally harmful happening and the consequence of such

event. Thus, if the research community provides a single

estimate, decisions will essentially be based on overconfi-

dent information. For instance, the prediction may indicate

that given an action, policy target will not be met since the

predicted value is below the target value. In contrast, if

decision makers are provided results in the form of a prob-

ability distribution, they get more honest information

(Mäntyniemi et al. 2009). If a probability distribution is

provided instead of a single estimate, then this can, for

example, indicate 60 % chance for meeting the target.

Probabilities are highly useful when alternative actions are

ranked in a decision analytic framework.
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There are two approaches to produce statistical infer-

ence: the classical frequentist and the Bayesian. The key

difference between them in the context of environmental

problems is: (1) because the frequentist approach deals

only with the uncertainty about potentially observable data,

it does not allow assessing uncertainty about states of

nature, but (2) Bayesian approach explicitly includes

knowledge in the form of a probability statement about

states of nature. We advocate the Bayesian approach since

it enables the use of existing information that can be

updated with new information. Bayesian Belief Networks

(BBNs) also are flexible in combining different risk per-

spectives. The technical risk definition can be effortlessly

combined with the economic perspective of agents aiming

at utility maximization and/or sociocultural risk definition

according to which social groups assign meaning to an

environmental harm (Renn 2008).

Bayesian belief networks are graphic models that enable

linking several risk factors and their management options

in one model, and the examination of their impact on

variables of management interest (Jensen 2001). In studies

aiming at solving the Baltic Sea environmental problems,

BBNs have been applied to oil spill and other environ-

mental risk assessments (Kuikka et al. 1999; Helle et al.

2011; Lecklin et al. 2011), to fish stock assessments

(Mäntyniemi et al. 2013a), and for decision analyses (Varis

and Kuikka 1999; Levontin et al. 2011; Lehikoinen et al.

2013), also involving human perspectives (Haapasaari

et al. 2007; Haapasaari and Karjalainen 2010). The prob-

abilistic knowledge used in BBN models has been based on

the estimation of probabilities with various statistical

methods and expert knowledge (Uusitalo et al. 2005). Also,

participatory modeling has been facilitated by BBNs

(Haapasaari et al. 2012, 2013; Mäntyniemi et al. 2013b).

The IBAM project (Integrated Bayesian risk analysis of

ecosystem management in the Gulf of Finland) studied

several anthropogenic pressures that affect the ecosystem

of the Baltic Sea, using an integrative Bayesian decision

model. The project focused especially on the Gulf of Fin-

land. In this article, we describe two subcomponents of the

Fig. 1 The stylized structure of the Bayesian decision model for the GoF management advice. Rectangles and ellipses represent decision and

random variables, respectively. The green variables are inputs from other models to the population dynamic model for herring. The influence of

the actions depends on the environmental stochasticity, uncertainty in knowledge, and on the strength of the dependencies between actions and

response. The full submodel related to oil spills has 16 variables, and submodels related to eutrophication 3–9 variables, depending on the area of

interest in the GoF
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grand model (Fig. 1) in more detail,: the water quality

modeling, and herring analysis. The former is an example

of modifying deterministic model to provide probabilistic

output. The latter illustrates how multiple stressors are

combined while taking uncertainty explicitly into account.

First, we present the BBN approach. Second, we give a

short description of the integrative decision model, after

which we describe in more detail the water quality mod-

eling and herring analysis, concentrating on the impact of

eutrophication and oil spills on the herring stock dynamics.

Then, we provide some example results and discuss the

advantages and challenges related to the work. Finally, we

conclude by discussing the relevancy of Bayesian model-

ing approach to research and management.

BAYESIAN NETWORKS IN INTEGRATED RISK

ANALYSIS

The Bayesian theory allows learning as a process in which

humans constantly update their understanding of the world.

In practice, problems are often structured into graphic

cause–effect relationships which permit examining how an

information change in one variable affects that of the other

ones. The Bayes’ theorem is used to update the preunder-

standing (prior knowledge) of a problem by new infor-

mation, to get a novel understanding (posterior knowledge)

of the issue (Pearl 1988; Spiegelhalter et al. 1993; Dennis

1996). The strength of the links between variables is

expressed by conditional probability distributions. The

more uncertain the relationship between the variables is the

wider is the probability distribution. As knowledge accu-

mulates so that our uncertainty about the phenomenon and

parameters decreases, also the probability distribution

narrows. This way the Bayesian approach describes

uncertainty in an explicit manner.

The Bayesian approach is based on subjective knowl-

edge. Thus, a real-world problem structured into a Bayes-

ian model is based on the researcher’s interpretation of the

existing knowledge related to the problem. The knowledge

can originate from new experimental data, the literature,

preexisting models, or statistics. It can also be elicited from

scientific or other competent experts. In most cases,

‘‘expert knowledge’’ refers to knowledge elicited from a

scientific expert, in relation to a model structure or prob-

ability distribution, or both. In the subjective terms, the

probability is expressed as a degree of belief which means a

private assessment of how likely an event is, based on the

available evidence (Ramsey 1926; Spiegelhalter et al.

1993; Gelman et al. 1995; Nau 2001). While formulating

subjective probabilities is one of the practical challenges of

the Bayesian approach, they make a consistent combination

of different types of information possible. The subjectivist

Bayesian approach differs fundamentally from the frequ-

entist inference that builds on the ideal of objectivity,

unbiased analyses, experimental evidence, and infinite

sampling (Malakoff 1999). A Bayesian Belief Net consists

of uncertain variables. By adding variables that can be

controlled (managerial decisions) and variables that mea-

sure utility or loss (i.e., preference) related to uncertain

variables, the impact and utility of the management mea-

sures can be evaluated.

BUILDING A BAYESIAN DECISION MODEL

FOR THE GULF OF FINLAND

The integrative decision analysis model encompasses three

risk factors present in the Gulf of Finland (hereafter GoF):

eutrophication, unsustainable fishing, and oil spills (Fig. 1).

The eutrophication part of the integrative BBN model can

be used to assess the probability of reaching the water

quality targets set by the EU’s Water Framework Directive

(WFD) for different types of the coastal waters (Aroviita

et al. 2012) or by the Helsinki Commission Baltic Sea

Action Plan (HELCOM BSAP) for the open sea (HEL-

COM 2012), and it also includes a variable describing the

overall chlorophyll status, linked to the herring stock

dynamics. The rest of the model includes the dynamics

related to oil spills and harvesting. The oil spill component

of the model is partially based on a previous project which

studied the risks related to maritime traffic in the GoF

(Klemola et al. 2009). The final output nodes are variables

describing the abundance of the herring and catch by the

commercial fishery. Various techniques and models were

used to produce conditional probability tables for the ran-

dom variables included in the model. These include outputs

from a three-dimensional (3D) ecosystem model, proba-

bilistic population dynamic models, and expert knowledge.

Predicting Nutrient Concentrations in the GoF

The main aim of water quality-modeling efforts was to

offer a way to assess how successful different loading

reduction scenarios could be in meeting the water quality

targets of the WFD and HELCOM BSAP. The integrative

model includes five water quality variables: nitrogen,

phosphorus, phytoplankton biomass, chlorophyll-a, and

Secchi depth, which can be studied in nine areas within the

GoF. Finnish and Estonian coastal areas were defined

according to the national implementation of the WFD, and

the division of the open sea areas was based on a previous

similarity analysis.

Six nutrient loading scenarios were included in the

analysis: Business-as-usual (BAU, i.e., no additional

measures taken compared with the situation in early 2000s)
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for Finland, Estonia, and Russia, 100 and 50 % imple-

mentation of the Baltic Sea Action Plan for all three

countries, and three alternative reduction scenarios only for

Finland.

The influence of external loads to the water quality in

GoF is currently described by the 3D EIA-SYKE ecosys-

tem model (Kiirikki et al. 2001, 2006). This model is

deterministic providing point estimates, while Bayesian

decision analysis uses probabilistic information. In order to

use deterministic results in a probabilistic framework, a

Gaussian Process approach was used to extend the deter-

ministic ecosystem model into a probabilistic form (Van-

hatalo et al. 2013).

Gulf of Finland Herring Stock Dynamics

and Fishery

Herring is one of the key species in the Baltic ecosystem due

to its high abundance and its role in the pelagic food web

(Sparholt 1994; Flinkman et al. 1998; Kornilovs et al. 2001;

Mäntyniemi et al. 2012; Suuronen and Lehtonen 2012).

Herring stocks also provide the most valuable fishery in

Finland (Finnish Game and Fisheries Research Institute

2004). Thus, there are abundant data and knowledge about

the Baltic herring, which simplify estimating the current

state of the stock and simulating its future development.

In IBAM, a probabilistic population dynamics model

was developed for the GoF herring stock (Rahikainen et al.,

unpublished). The model included the relevant population

dynamics variables and their dependencies in a probabi-

listic form. The population model incorporated different

harvest mortalities, the effects of oil on juveniles and

adults, the influence of eutrophication on the recruitment of

the herring, i.e., the risk factors included in the integrative

decision model.

More specifically, information about chl-a concentra-

tion, sea surface temperature, salinity, and abundance of

sprat (Sprattus sprattus) and cod (Gadus morhua) were

used as explanatory variables to account for their impact on

herring recruitment, growth rate, and natural mortality rate.

In this model, chl-a concentration stands for effects of

eutrophication. A Gaussian Process approach was used to

produce probabilistic estimates about chl-a, sea surface

temperature, and salinity. Moreover, the possible additional

mortality caused by the tanker Antonio Gramsci oil spill in

the GoF in 1987 was included in the model by means of

previously published probabilistic knowledge of the oil-

induced mortality on pelagic fishes (Lecklin et al. 2011) as

prior information.

After finishing the population model, it was used to

simulate the future states of the herring population and

catch by applying different eutrophication levels (resulting

from nutrient-loading scenarios), fishing mortalities, and

the effect of uncertain oil spills, after which the results

were fed into the integrative decision model.

EXAMPLE RESULTS AND PROS AND CONS

OF THE BAYESIAN DECISION MODELING

APPROACH

Is Water Quality Going to be Better and Herring

Stock Larger?

The outcome of the integrative Bayesian decision model is

a set of explicit distributions for the model variables, such

as nutrient concentration and the herring stock biomass in

the GoF. These distributions also indicate probabilities of

instances, for example, meeting the water quality targets

under the alternative nutrient load reduction scenarios. In

the following, we present and discuss some example results

that can be produced with the model.

An example of water quality-modeling results is pre-

sented in Fig. 2, which indicates the probability of nutrient

concentrations being in a certain quality class in the eastern

Estonian coastal waters. The figure underlines several

issues. First, BSAP has a positive effect on the water

quality, as it shifts the probability distributions toward

better classes. Second, the probability to reach ‘‘Good’’ or

‘‘High’’ status varies among variables, and the probability

of reaching the target classes is higher (i.e., there is more

probability mass in the higher classes) for phosphorus than

nitrogen. Third, uncertainty varies between variables and is

larger for Ptot (i.e., the distribution is wider) compared with

Ntot.

Regarding the GoF herring, nutrient reduction policies

have a minor effect on population abundance at all alter-

native oil spill and fishery management scenarios. Even the

most effective nutrient reduction scenario shifts the prob-

ability mass of the herring abundance just slightly toward

upper classes. This is an outcome of the fact that the pre-

dicted change in the chl-a level, impacting herring

recruitment, will be minor. Maritime safety tools are not

useful either, to manage herring stock abundance (Helle

et al., unpublished). It is vital to notice that the results do

not indicate that the actual water quality or an oil spill

would not affect herring stock size. Instead, major changes

in water quality or oil spill frequency cannot to be antici-

pated. Additional causes to the faint response in herring

abundance are stochastic fluctuations in stock dynamics

and large posterior uncertainty about the variables.

In the model, fisheries management is expressed via

different fishing mortalities that the commercial fleet is

allowed to exercise on the herring stock. Controlling fish-

ing mortality notably influences herring abundance, in

contrast to nutrient load and oil spill management. The
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closure of fishing will result in larger population size,

whereas doubling the fishing mortality will end in a much

lower population level (Helle et al., unpublished). It thus

appears that the society’s ability to manage the herring

population in the GoF is only effective in the conventional

fishery management context, where the bottomline is

control of mortality and survival of fishes.

Why Probabilistic Modeling?

Modeling was carried out by applying methods that allow

for uncertainty explicitly. Such an approach has many

advantages but also challenges that need to be considered

carefully. Vanhatalo et al. (2013) compared the point

estimate results of the deterministic EIA-SYKE model with

the probabilistic results that were produced by applying the

statistical correction procedure to the deterministic model.

They conclude that major reductions in nutrient loads are

required to achieve the goals of the EU’s WFD or the

HELCOM BSAP in the GoF. Noteworthy, they also dem-

onstrated how deterministic models can produce inade-

quate results for decision-making. As deterministic models

offer only a single estimate, they diminish the information

decision makers can use, and also eliminate decision-

makers’ opportunities to weight their perspective against

different levels of uncertainty. This addresses the prob-

lematic dichotomy assigned with deterministic models—in

plain language, the ‘‘answer’’ for question like ‘‘Will the

water quality targets be met,’’ can only be ‘‘yes’’ or ‘‘no.’’

Vanhatalo et al. (2013) reported that when the determin-

istic model predicts that, for instance, the water quality

targets are not met (i.e., the predicted value is below the

target value), the probability of success can in reality vary

from 0 to as high as 0.51.

However, probabilistic models are capable of advising

the decision makers with the probability of achieving the

target (Fig. 2; Table 1). For instance, in the eastern Finnish

outer archipelago, it is highly likely that targets regarding

dissolved inorganic nitrogen (DIN), chl-a concentration,

and phytoplankton biomass will not be met, while the

Secchi depth target will be achieved (Table 1), whatever

environmental policy is chosen. Importantly, the proba-

bility of achieving the dissolved inorganic phosphorus

(DIP) target is 6–21 %, depending on the nutrient reduction

policy. A deterministic approach is unable to calculate

these probabilities and to indicate that there still is a small

chance of reaching the target. Moreover, even though FIN3

scenario reduces Finland’s phosphorus load by 28 %

compared with BAU scenario, the probability to achieve

Fig. 2 An example of the results of the probabilistic water quality modeling. The columns illustrate the probability that the variable is in a certain

class defined according to the WFD in the Estonian eastern coastal waters. The class boundaries are from Anonymous (2009). Ntot and Ptot: Total

nitrogen and total phosphorus, respectively; BAU and BSAP business-as-usual and Baltic Sea Action Plan nutrient loading scenarios, respectively

Table 1 The probability of reaching the target states set by the WFD

for eastern Finnish outer archipelago (Helle et al., unpublished). BAU

and BSAP business-as-usual and Baltic Sea Action Plan scenarios,

respectively, FIN3 optimistic nutrient loading reduction scenario for

Finland (see Vanhatalo et al. (2013) for more information)

Scenario

BAU BSAP FIN3

DIN 0 0 0

DIP 0.055 0.206 0.056

Chl-a 0 0 0

Secchi 1 1 1

Biomass 0 0 0
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WFD target is practically the same under both scenarios.

This result is reasonable since in early 2000s, Finland was

responsible only for 8 % of the estimated bioavailable

phosphorus loads to the GoF, and thus, even the substantial

reduction by Finland alone would have negligible effect on

total load (Vanhatalo et al. 2013).

The probability of reaching the target states is opposite

for Secchi depth and chl-a (Table 1). There are two main

explanations for this. For practical reasons, we have used

the same transformation from chl-a to Secchi in all seg-

ments of the GoF area, whereas the exact form and strength

of the dependence between these variables likely varies

among and within the WFD areas (Fernandes et al. 2012;

Fleming-Lehtinen and Laamanen 2012). Another expla-

nation may be that the WFD targets are relatively more

stringent for chl-a than Secchi. Such nonconformity of

targets is also the likely reason why the probability to meet

chl-a targets remains zero even though the probability to

meet DIP targets increases under the BSAP option. The

model predicts clear decrease in chl-a concentration if

BSAP were implemented, but these levels remain still

above the target state.

Updating Knowledge

Another advantage of the using Bayesian models is their

ability to combine previous knowledge with new knowl-

edge in a coherent manner, i.e., they ‘‘learn’’ by using prior

knowledge and new data to calculate probabilistic posterior

estimates (Fig. 3). In IBAM, the GoF herring stock

dynamics model (Rahikainen et al., unpublished) was

applied to update the available knowledge. Essentially, the

model estimates the influence of eutrophication, oil spills,

and harvesting on the stock dynamics, including repro-

duction, growth, and survival. The model output is proba-

bilistic, and two key variables, herring catch and

population biomass, were used as input in the integrative

BBN (Helle et al., unpublished).

In addition to offering input to the integrative decision

model, the herring model updates our understanding of

several factors affecting herring population dynamics. The

tanker Antonio Gramsci accident induced additional mor-

tality of GoF herring in 1987, especially at early life-stage

(Rahikainen et al., unpublished). Although one can con-

clude that the Antonio Gramsci oil reduced the GoF her-

ring abundance, uncertainty about the level of mortality is

high.

Further, the current status of eutrophication is estimated

to substantially reduce reproduction of herring (Rahikainen

et al., unpublished). In terms of chl-a concentration, which

is used as an index for all eutrophication-related changes in

the ecosystem, chl-a concentration should be decreased by

about 50 % from the present level to facilitate the maxi-

mum reproduction of herring at any given spawning stock

size.

Challenges and Future Outlook

Bayesian models were applied in the project to provide

justified uncertainty estimates and to utilize the available

data complemented with the existing scientific literature to

obtain an integrated risk analysis. The use of prior infor-

mation in parameter estimates is important from the point

of view of effective learning in science: the information

content of previous publications can be used to decrease

uncertainty in future analyses by including this knowledge

to prior probabilities of model parameters. In particular,

this is useful when examining oil accidents or other rarely

occurring phenomena.

An external challenge is to introduce Bayesian approach

to arenas, where the classical frequentist approaches have

conventionally been applied. Among natural sciences, the

ideal of objective science has dominated, and this has

affected managers who may prefer ‘‘exact’’ advice instead

of subjective probability distributions in decision-making.

However, it is evident that inclusion of uncertainty is an

essential part of a successful decision-making process.

Point estimates oblige decision makers to be risk-neutral,

which may lead to poor decisions in case the decision

makers are actually risk averse (Burgman 2005). Com-

municating uncertainty to decision makers and stakehold-

ers is undoubtedly a key challenge. The science community

has to further develop approaches for unfolding the

uncertainties in an understandable and a realistic way.

Ability to consider implications of uncertainties from the

Fig. 3 The prior and posterior understanding of the salinity threshold

influencing herring growth. The logistic relationship indicates the

probability for growth rate being above the modeled base level. The

blue lines are realizations of the prior distribution; the red lines are

realizations of the posterior distribution
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policy point of view should be a specific concern. Bayesian

inference describes uncertainty by probability distributions,

which we regard as intuitively understandable expression

of ambiguity. Thus, we strongly advocate using probabi-

listic approaches in risk assessment and management

modeling, albeit it may be more time-demanding than the

more traditional methods.

The model described in this article and other similar

kinds of BBNs can assist managers in taking management

decisions related to complex environmental problems. It

can also be used for prioritizing future research topics

through a value-of-information (VoI) analysis. This means

that the posterior distributions of the model built in the

IBAM project could be used to analyze whether efforts

should be directed to research focusing on eutrophication,

oil spills, or the fisheries management. Such a VoI analysis

shows where uncertainty can be reduced with least costs

(e.g., Mäntyniemi et al. 2009).

Although we find BBNs to be a flexible tool to integrate

different types of knowledge and submodels, there were

also some issues to be solved during the project. The major

challenges were related to developing the population

models, and to combine several modeling techniques

coherently, e.g., the use of deterministic modeling results

in a probabilistic context. Regarding the population mod-

els, a large number of prior probabilities needed to be

elicited from the literature and expert knowledge, and

several computational problems needed to be solved.

It is also important to notice that major uncertainties

exist not only within natural systems but also on the

human-side of the management, i.e., the behavior of people

and their commitment to management decisions is difficult

to predict (e.g., Nichols et al. 1995; Haapasaari et al. 2007;

Fulton et al. 2011; Levontin et al. 2011). The relevant

aspects in human behavior include stakeholder involve-

ment, their attitudes and values, communication of

knowledge and uncertainties, empowerment, and develop-

ment of trust and commitment. For improved management

evaluations, there is a need for models taking into account

a number of aspects in human behavior.

Acknowledgments This article is a contribution from the IBAM

project, which has received funding from the BONUS? program

funded jointly by the European Community’s Seventh Framework

Programme (FP7/2007-2013, grant agreement 217246) and Baltic Sea

national funding institutions. The study has received additional sup-

port from Helsinki University Centre for Environment and Finnish

Environment Institute under MULTIDOM project, and from the

project ECOKNOWS (Effective Use of Ecosystem and Biological

Knowledge in Fisheries), funded from the European Union’s Seventh

Framework Programme (FP7/2007-2013) under Grant Agreement No.

244706/ECOKNOWS project. However, the article does not neces-

sarily reflect EC views and in no way anticipates the Commission’s

future policy in the area. The authors thank anonymous referees for

their useful comments on the final draft.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

REFERENCES

Anonymous. 2009. A list of surface water bodies and the procedure

for the formation of these surface water bodies, for which class

status must be determined, and the conformity between the status

of the surface water bodies and the values of quality indicators,

and the procedure for determining class status. https://www.

riigiteataja.ee/akt/125112010015 (in Estonian).
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