The Variant p.(Arg183Trp) in SPTLC2 Causes Late-Onset Hereditary Sensory Neuropathy

Suriyanarayanan, Saranya

2016-03

http://hdl.handle.net/10138/223887
https://doi.org/10.1007/s12017-015-8379-1

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.
The Variant p.(Arg183Trp) in SPTLC2 Causes Late-Onset Hereditary Sensory Neuropathy

Saranya Suriyanarayanan1,2 · Mari Auranen3,4 · Jussi Toppila5 · Anders Paetau6 · Maria Shcherbii3 · Eino Palin3 · Yu Wei1 · Tarja Lohioja5 · Beate Schlott-Weigel8 · Ulrike Schön9 · Angela Abicht9 · Bernd Rautenstrauss9 · Henna Tyynismaa3 · Maggie C. Walter8 · Thorsten Hornemann1,2 · Emil Ylikallio3

Received: 13 August 2015 / Accepted: 5 November 2015 / Published online: 16 November 2015

© Springer Science+Business Media New York 2015

Abstract Hereditary sensory and autonomic neuropathy 1 (HSAN1) is an autosomal dominant disorder that can be caused by variants in SPTLC1 or SPTLC2, encoding subunits of serine palmitoyl-CoA transferase. Disease variants alter the enzyme’s substrate specificity and lead to accumulation of neurotoxic 1-deoxysphingolipids. We describe two families with autosomal dominant HSAN1C caused by a new variant in SPTLC2, c.547C>T, p.(Arg183Trp). The variant changed a conserved amino acid and was not found in public variant databases. All patients had a relatively mild progressive distal sensory impairment, with onset after age 50. Small fibers were affected early, leading to abnormalities on quantitative sensory testing. Sural biopsy revealed a severe chronic axonal neuropathy with subtotal loss of myelinated axons, relatively preserved number of non-myelinated fibers and no signs for regeneration. Skin biopsy with PGP9.5 labeling showed lack of intraepidermal nerve endings early in the disease. Motor manifestations developed later in the disease course, but there was no evidence of autonomic involvement. Patients had elevated serum 1-deoxysphingolipids, and the variant protein produced elevated amounts of 1-deoxysphingolipids in vitro, which proved the pathogenicity of the variant. Our results expand the genetic spectrum of HSAN1C and provide further detail about the clinical characteristics. Sequencing of SPTLC2 should be considered in all patients presenting with mild late-onset sensory-predominant small or large fiber neuropathy.

Keywords Neuropathy · Hereditary sensory autonomic neuropathy · Serine palmitoyl-CoA transferase · Sphingolipid

Abbreviations
1-deoxySL 1-Deoxysphingolipid
DML Distal motor latency
ENMG Electroneuromyography
HbA1C Glycated hemoglobin
HSAN Hereditary sensory and autonomic neuropathy
NCV Nerve conduction velocity
QST Quantitative sensory testing
SA Sphinganine
SISu Sequencing Initiative Suomi
SO Sphingosine
SPT Serine palmitoyl-CoA transferase
Introduction

Hereditary sensory and autonomic neuropathy (HSAN) is a diverse group of diseases of the peripheral nervous system. Autosomal dominant HSAN1 and autosomal recessive HSAN2 generally cause progressive distal impairment of all sensory modalities with minimal autonomic involvement, whereas autonomic symptoms predominate in HSAN3 (Houlden et al. 2004). HSAN1 is associated with variants in six genes: SPTLC1 (Bejaoui et al. 2001; Dawkins et al. 2001), SPTLC2 (Rothier et al. 2010), ATLI (Guealy et al. 2011), DNMTI (Klein et al. 2011), RAB7 (Verhoeven et al. 2003), and ATL3 (Kornak et al. 2014). SPTLC1 and SPTLC2 encode subunits of the enzyme serine palmitoyl-CoA transferase (SPT). SPT is located in the endoplasmic reticulum, and it catalyzes the rate-limiting step in the de novo biosynthesis of sphingolipids, i.e., condensation of L-serine with palmitoyl-CoA (Hanada 2003). Sphingolipids are vital components of cell membranes that serve multiple structural and signaling functions. The pathophysiology of SPT-related HSAN1 (termed HSAN1A for SPTLC1 variants and HSAN1C for SPTLC2 variants) is considered to result from the accumulation of aberrant sphingolipid species (Penno et al. 2010). Disease-causing variants in SPTLC1 shift the enzyme’s substrate specificity such that L-alanine or glycine is incorporated in place of L-serine. This results in the production of 1-deoxysphingolipids lacking the C1-hydroxyl group (1-deoxySLs). The 1-deoxySLs have neurotoxic properties and are thought to be responsible for the development of neuropathy (Penno et al. 2010).

Disease-associated variants in SPTLC2 have been found to similarly impair the enzyme’s amino acid selectivity and induce the synthesis of 1-deoxySL, causing its accumulation in HSAN1C patients’ serum (Rothier et al. 2010; Murphy et al. 2013; Ernst et al. 2015). Moderate accumulation of 1-deoxySL also occurs in metabolic syndrome and type 2 diabetes (Othman et al. 2012) and might be involved in the pathology of the diabetic sensory neuropathy (Othman et al. 2015a, b).

Increased availability of L-serine has been suggested as a means to counter the promiscuous use of the non-canonical amino acids by mutant SPT (Garofalo et al. 2011). The proper identification and clinical characterization of HSAN1A and C patients is therefore of great importance as they would qualify for such a specific treatment in the near future.

Patients and Methods

Patients

The index patient of the Finnish family (family F) was seen at the Helsinki University Hospital and underwent electroneuromyography (ENMG), quantitative sensory testing (QST), skin biopsy, autonomic testing, and muscle MRI using standard techniques. Skin biopsy small fiber density was analyzed by PGP9.5 labeling as described (Koskinen et al. 2005). Total DNA was extracted from blood. All participants gave written informed consent, and the study was approved by the Ethics Committee, Department of Medicine, Hospital District of Helsinki and Uusimaa (dnro 399/E9/07).

The two German patients (family G)—father and son—were examined at the Friedrich-Baur-Institute, Ludwig-Maximilians-University of Munich, Germany. Within the routine diagnostic work-up, clinical testing and ENMG were performed in both patients, while sural nerve biopsy was only done in the father. DNA was extracted from blood for genetic testing, and both patients gave written informed consent.

DNA Sequencing

In family F, the index patient’s sample was subjected to targeted gene panel sequencing using the HaloPlex Target Enrichment Kit (Agilent Technologies, Santa Clara, CA, USA) and a MiSeq sequencer (Illumina, San Diego, CA, USA), as previously described (Ylikallio et al. 2014). Variants were annotated using Annovar (Wang et al. 2010). Findings were confirmed by Sanger sequencing of SPTLC2 exon 4. In the index patient of family G, all coding exons of SPTLC1, SPTLC2, MFN2, BSCL2, and GARS were analyzed by Sanger sequencing. Primer sequences are available on request.

Variant pathogenicity was predicted by PolyPhen-2 version 2.2.2 (http://genetics.bwh.harvard.edu/pph2/) (Adzhubei et al. 2010) and Combined Annotation Dependent Depletion version 1.2 (CADD, http://cadd.gs.washington.edu/) (Kircher et al. 2014). The Sequencing Initiative Suomi (SISu) database (Lim et al. 2014), which contains sequencing data from >3000 individuals, was used to estimate variants’ prevalence in the Finnish population.

Haplotype Analysis

Disease-associated haplotypes were determined by analyzing four STS markers surrounding the SPTLC2 gene (AFM158XB4, D14S59, D14S109E, and AFM214XF8). PCR amplification was performed with forward primers labeled with 5’-6FAM dye. Fragments were run on an ABI3730XL DNA analyzer and analyzed with GeneMapper Software 5 (Applied Biosystems).

Lipid Analysis

500 μl of MetOH (Honeywell, Germany) including 200 pmol of deuterated internal standards (d7-sphinganine...
and d7-sphingosine, Avanti Polar Lipids) were added to the resuspended cell pellets (2–5 mio cells in 100 µl PBS) or 100 µl of serum. Serum samples were collected from affected and unaffected family members. Lipids were extracted at 37 °C for 1 h with constant agitation. Precipitated protein was pelleted by centrifugation (16000g, 5 min), and 500 µl was transferred to a new tube. Lipids were hydrolyzed by adding 75 µl of HCL (32 %) and incubated at 65 °C for 16 h. 100 µl KOH (10 M) was added to neutralize the HCL, followed by the addition of 125 µl of chloroform, 100 µl of ammonium hydroxide (2 N), and 500 µl of alkaline water for the extraction of free sphingoid bases. The sphingoid bases were separated on C18 column (Uptisepere 120 Å, 5 µm, 125 × 2 mm, Interchim, France) and analyzed on a TSQ Quantum Ultra MS analyzer (Thermo Scientific).

SPT Activity Assay

HEK293 cells were stably transfected with the SPTLC2 p.(Arg183Trp) mutant or the empty vector (pcDNA3.1, Invitrogen). Cells were cultured in DMEM (Sigma-Aldrich), including 400 µg/ml of Geneticin (Gibco, Invitrogen), 10 % fetal bovine serum (Gibco, Life Technologies), and penicillin/streptomycin (100 U/ml, Sigma-Aldrich). After 2 days, the medium was exchanged, and the cells were pre-incubated with L-serine, L-alanine-deficient DMEM (Genaxxon). After 2 h, isotope-labeled (2,3,3-d3, 15N) L-serine (1 mM and 10 mM) and (2,3,3,3) d4-L-alanine-deficient (2 and 10 mM) was added. The SPT inhibitor myricocin (2.5 µM) was used as a negative control. After 24 h, the cells were harvested, counted (Z2 Coulter Counter, Beckman Coulter, CA), pelleted (800×g at 4 °C, 5 min), and analyzed as described below.

Results

Clinical Characteristics

Clinical and neurophysiologic features of all mutation-positive individuals are presented in Table 1. The index patient in the Finnish family (Fig. 1a, family F: 323) had distal sensory symptoms in lower limbs, later progressing to muscle weakness and involvement of upper limbs. At age 67, the patient was obese (height 165 cm, weight 98 kg, BMI 36), and edema was noted in both legs. She was ambulant without external aids and able to walk on toes and heels with difficulty. In upper limbs, distal muscle strengths were normal. Upper limb sensory impairment was restricted to fingertips, and sensation for light touch, pinprick, and vibration were otherwise intact. Deep tendon reflexes were absent in lower limbs and weakly present in upper limbs. Pinprick sensation was weakened, and vibration sense was absent distally in legs. Thigh flexion strengths were decreased 4/5, knee flexion-extension strengths were normal, and ankle flexion-extension strengths were decreased 4/5. No skin ulcerations were noted.

ENMG showed recordable but decreased sensory amplitudes in distal legs, suggesting at most a mild sensory axonal neuropathy. QST revealed decreased sensation for vibration and cold distally in upper and lower limbs. Skin biopsy with PGP9.5 staining of small nerve fibers showed no intraepidermal nerve fibers in 6 mm of epidermis (Fig. 2a), which contrasted with a biopsy from a neurologically intact control (Fig. 2b). The density of epidermal nerve fibers in the patient was thus 0/mm of epidermis, indicative of small fiber neuropathy (<2 fibers/mm is considered to indicate small fiber neuropathy). Autonomic testing revealed no evidence for abnormal blood pressure or pulse responses upon rising or in response to paced or deep breathing or Valsalva testing. Lower limb muscle MRI at age 65 gave normal, symmetric results with no fatty degeneration.

The index patient’s two siblings had similar symptoms, and ENMG performed on her sister revealed comparable findings (Table 1). Her 50-year-old niece, individual 514, had only minor symptoms and normal ENMG (Table 1). However, QST showed elevation of sensory threshold to cold in lower limbs, indicative of mild impairment of A-delta small fibers. A skin biopsy showed two intraepidermal nerve fibers in 3 mm of epidermis (2/3 nerve fibers per mm), indicative of small fiber neuropathy.

The index patient in the German family (family G, III:1) noticed first symptoms at age 50 with mild hypoesthesia of the feet and later dysesthesia of the lower legs up to his knees; during the course of the disease, hands became also affected. Tendon reflexes were normal; muscle weakness was noted in toe extensors 3/5 and toe flexors 4/5. Walking on tiptoes and heels was not impaired, and only mild sensory ataxia was noticed.

Neurophysiologic testing at age 62 revealed a sensorimotor axonal neuropathy; nerve conduction velocity (NCV) of the right median nerve was 38 m/s, distal motor latency (DML) was normal, amplitudes were reduced; the right ulnar nerve showed normal NCV and DML, but also reduced amplitudes; motor nerves of the lower extremities (peroneal and tibial nerves) were not obtainable. No sensory NCVs could be obtained. Electromyography displayed some neurogenic changes in distal muscles of the lower limbs.

Cerebrospinal fluid examination showed normal results, and biopsy of the sural nerve displayed a severe chronic axonal neuropathy with subtotal loss of myelinated axons and no signs for regeneration (Fig. 2c). The number of non-
myelinated fibers was relatively preserved in all nerve fascicles (Fig. 2d). Five years later, at age 67, the patient suffered from gait ataxia, walking on heels was no longer possible and walking on tiptoes strenuous. Achilles tendon reflexes were absent. Amputation of the second toe of the left foot was noticed. Hypoesthesia was evident in a glove and stocking pattern in all limbs increasing distally in form of short socks; vibration sense was absent in both feet and decreased with 3/8 on knee level. Dysesthesia in hands and legs was reported. Additionally, a subclinical diabetes type II was suspected at age 67 on the basis of an elevated HbA1C. On the last clinical visit, the HbA1C was normal.

The son of the index patient (IV:1) was examined at age 26 and the daughter (IV:2) at age 23; both did not show any signs of a sensory neuropathy in clinical or electrophysiological analysis.

Genetic Findings

Targeted panel sequencing of known neuropathy-related genes was carried out to identify potential disease-causing variants in the index patient of family F. The analysis revealed a single novel variant, c.547C>T (p.(Arg183Trp)) in SPTLC2 (NM_004863.3). Other identified variants that alter amino acid sequence or splice sites are listed in supplementary Table 1. The SPTLC2 variant was confirmed by Sanger sequencing (Fig. 1b) and segregated with the disease phenotype within the family. The affected amino acid, Arg183, is conserved in mammals (Fig. 1c). The variant was rated “possibly damaging” by PolyPhen2 and received a scaled C-score of 25.3 in CADD.

In family G, a candidate gene sequencing approach revealed the same c.547C>T (p.(Arg183Trp)) mutation in SPTLC2, after exclusion of variants in SPTLC1, MFN2, BSCL2, and GARS. The same mutation was also found in the half-brother of the patient (III:3), also suffering from a sensory neuropathy, and in the patient’s son (IV:1), who did not yet show any symptoms (age 26). The daughter (IV:2) did not harbor the mutation. The father of the index patient (II:2), the father’s sister (II:4), and her daughter (III:5) were also reported to suffer from sensory loss in hands and legs, but were not available for genetic examination (Fig. 1a).

Analysis of STS markers surrounding SPTLC2 showed that the disease-associated haplotypes were not shared by families F and G (Table 2). This suggested that the variant has arisen on separate occasions in the two families.

SPT Activity

SPT activity was analyzed in HEK293 cells transfected with SPTLC2 p.(Arg183Trp), wild-type SPTLC2 or the empty vector (pcDNA3.1), 24-h after the addition of isotope-labeled serine (1 mM) and alanine (2 mM), the incorporation of the label into de novo formed sphingoid bases was quantified by LC–MS. We observed no significant difference in the canonical SPT activity (SA + SO) between SPTLC2 p.(Arg183Trp)- and SPTLC2wt-expressing cells. In contrast, we observed a significantly increased 1-deoxySLs (1-deoxySA and 1-deoxySO) formation for the SPTLC2 p.(Arg183Trp) mutant. At 10-mM alanine, also a significant amount of 1-deoxySL was formed in SPTLC2wt cells, but

<table>
<thead>
<tr>
<th>Patient</th>
<th>Family</th>
<th>Sex</th>
<th>AAO</th>
<th>Initial symptoms</th>
<th>Later symptoms</th>
<th>ENMG Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>323</td>
<td>F</td>
<td>F</td>
<td>54</td>
<td>Distal LL numbness</td>
<td>Age 67: distal UL numbness, burning and clumsiness; LL weakness</td>
<td>Mild-to-moderate axonal sensorimotor neuropathy</td>
</tr>
<tr>
<td>481</td>
<td>F</td>
<td>F</td>
<td>~50</td>
<td>LL hypoesthesia and pains</td>
<td>UL and LL numbness and weakness</td>
<td>Mild axonal sensorimotor neuropathy</td>
</tr>
<tr>
<td>463</td>
<td>F</td>
<td>M</td>
<td>~60</td>
<td>Distal UL numbness and clumsiness</td>
<td>Age 72: chronic foot infection leading to amputation</td>
<td>ND</td>
</tr>
<tr>
<td>514</td>
<td>F</td>
<td>F</td>
<td>50</td>
<td>Numbness and tingling in right hand</td>
<td>–</td>
<td>Normal at age 50</td>
</tr>
<tr>
<td>III:1</td>
<td>G</td>
<td>M</td>
<td>50</td>
<td>LL hypoesthesia</td>
<td>Gait ataxia, LL weakness, toe amputation</td>
<td>Sensorimotor axonal neuropathy</td>
</tr>
<tr>
<td>IV:1</td>
<td>G</td>
<td>M</td>
<td>–</td>
<td>No symptoms at age 26</td>
<td>–</td>
<td>Normal at age 26</td>
</tr>
</tbody>
</table>

Table 1 Clinical characteristics of individuals with SPTLC2 p.Arg183Trp variant

AAO age at onset, LL lower limbs, ENMG electroneuromyography, ND not done, UL upper limb, SFN small fiber neuropathy.
levels were fourfold higher in SPTLC2 p.(Arg183Trp) cells. In contrast, at 10-mM serine, canonical SPT activity was significantly increased in the SPTLC2 p.(Arg183Trp)-expressing cells (Fig. 3a), whereas 1-deoxySL formation was almost completely suppressed (Fig. 3b). Interestingly, no 1-deoxySO was formed at standard condition (1 mM Ser ? 2 mM Ala), whereas significant amounts of 1-deoxySO were found in the 10 mM Ala-stimulated cells. In the presence of SPT inhibitor myriocin, no isotope-labeled sphingoid bases were formed (data not shown).

Serum Sphingolipid Measurements

Serum samples were assayed for the canonical SPT products [sphinganine (SA) and sphingosine (SO)] and for the neurotoxic metabolites (1-deoxySL and 1-deoxySO).

In family F, serum samples were obtained from four patients and two healthy family members. The average levels of SO were 60 μM in patients and 61 μM in controls, and average levels of SA were 3.0 μM in patients and 3.2 μM in controls (Fig. 4a). The average serum levels of 1-deoxySO were 0.14 μM and of 1-deoxySA 0.055 μM in controls. Three patients (323, 463, and 481) had about fourfold increased levels, ranging between 0.46 μM and 0.55 μM for 1-deoxySO and between 0.21 μM and 0.23 μM for 1-deoxySA. One patient (514) had about twofold elevations, 0.20 μM for 1-deoxySO and 0.12 μM for 1-deoxySA (Fig. 4b).

In family G, serum samples were obtained from the index patient (III:1) and his son (IV:1). For control, serum from a healthy volunteer was used. The average levels of SO were 57 μM in index patient, 50 μM for his son, and 46 μM in control, and the average levels of SA were 1.8 μM in index patient, 2.1 μM in his son, and 1.6 μM in control (Fig. 4c). The average level of 1-deoxySO and 1-deoxySA in control was 0.05 and 0.03 μM, respectively. Index patient had 10-fold increase in the 1-deoxySO (0.5 μM) and threefold increase in 1-deoxySA levels (0.1 μM), and his son had threefold increase in 1-deoxySO (0.015 μM) and 1.6-fold increase in 1-deoxySA level (0.05 μM) compared to control (Fig. 4d).
Here, we report a new disease-causing \textit{SPTLC2} variant \(p.(\text{Arg183Trp})\) that elevates 1-deoxySL levels. Our data provide further insight into the clinical picture and associated biochemical abnormalities of HSAN1C disease.

The clinical picture in both the Finnish and the German family was a mild, late-onset axonopathy. Both index patients (family F, 323 and family G, III:1) reported first symptom in their mid-50s. The symptoms were initially sensory with later development of motor impairment and without autonomic involvement. In family F, also individuals 463 and 481 carried the same \textit{SPTLC2} variant and reported similar symptoms. Patient 463 had not undergone neurophysiologic testing, and therefore, the presence of a peripheral neuropathy behind his numbness, clumsiness, and chronic foot infection could not be confirmed. The symptoms reported by patient 481 were similar to the index

Table 2 Disease-associated haplotypes were determined in both families by measurement of STS marker sizes on both sides of \textit{SPTLC2} on chromosome 14q24.3

<table>
<thead>
<tr>
<th>Marker</th>
<th>Distance from variant</th>
<th>Family F (variant)</th>
<th>Family G (variant)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>323</td>
<td>481</td>
</tr>
<tr>
<td>AFM158XB4</td>
<td>–522 kb</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>c.547</td>
<td>0</td>
<td>T</td>
<td>C</td>
</tr>
<tr>
<td>D14S59</td>
<td>29 kb</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>D14S109E</td>
<td>175 kb</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>AFM214XF8</td>
<td>336 kb</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

For each marker, the different sizes are numbered. The haplotype associating with the c.547C>T variant is highlighted in bold. Families F and G do not share a common disease haplotype, suggesting that the variant has emerged on separate occasions in the two families

Discussion

Here, we report a new disease-causing \textit{SPTLC2} variant \(p.(\text{Arg183Trp})\) that elevates 1-deoxySL levels. Our data provide further insight into the clinical picture and associated biochemical abnormalities of HSAN1C disease.

Other families have been identified with similar symptoms in which \textit{SPTLC2} variants have been identified, highlighting the importance of these enzymes in the regulation of 1-deoxySL levels.

The clinical picture in both the Finnish and the German family was a mild, late-onset axonopathy. Both index patients (family F, 323 and family G, III:1) reported first symptom in their mid-50s. The symptoms were initially sensory with later development of motor impairment and without autonomic involvement. In family F, also individuals 463 and 481 carried the same \textit{SPTLC2} variant and reported similar symptoms. Patient 463 had not undergone neurophysiologic testing, and therefore, the presence of a peripheral neuropathy behind his numbness, clumsiness, and chronic foot infection could not be confirmed. The symptoms reported by patient 481 were similar to the index
Fig. 3 SPT activity was measured in HEK293 cells transfected with the empty vector (control), wildtype SPTLC2 (SPTLC2wt) or the mutant [SPTLC2 p.(Arg183Trp)]. Cells were grown in the presence of isotope-labeled (d3,15N) L-serine (1 mM or 10 mM) and (d4) alanine (2 mM or 10 mM) for 24 h. a Levels of de novo formed sphinganine (d3-SA) and sphingosine (d3-SO). b Levels of de novo formed isotope-labeled 1-deoxy-sphinganine (d3-deoxySA) and 1-deoxy-sphingosine (d3-deoxySO). Data are shown as means with standard deviation. (n.s. not significant; * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001)

Fig. 4 Levels of sphinganine (SA), sphingosine (SO), 1-deoxysphinganine (1-deoxySA) and 1-deoxysphingosine (1-deoxySO) in serum of patients and controls. a For family F the levels for SA and SO were not different in comparison to unaffected family members. b 1-deoxySA and 1-deoxySO levels were significantly elevated in patients 463, 481 and 323 compared to unaffected family members (476 and 466). Patient 514 showed by trend higher 1-deoxySA and 1-deoxySO levels but differences were not significant in comparison to 476. c For family G levels of SA and SO were slightly elevated compared to non-related control plasma. d 1-deoxySA and 1-deoxySO levels were significantly higher in patients compared to control. All data are shown as means with standard deviation (n.s. not significant; * p < 0.05; ** p < 0.01; *** p < 0.001)
The type 2 diabetes of patient 481 in family F and III:1 in family G are important to note, since diabetes is a prevalent cause of neuropathy and also causes elevation of 1-deoxySL levels (Othman et al. 2012, 2015a, b). Moreover, 1-deoxySA has been shown to be cytotoxic for insulin-producing cells (Zuellig et al. 2014), suggesting that 1-deoxySA could even be an etiologic or disease-modifying factor in diabetes. In both of our patients, the diabetes was mild or subclinical, which makes it unlikely to be the cause of their neuropathy. However, diabetes may be a contributory factor to the final clinical outcome. The other patients studied here did not have diabetes, which shows that it is not universal in HSAN1C. Nevertheless, given the potential toxicity of 1-deoxySA to insulin-producing cells, monitoring of plasma glucose and HbA1C is clearly advisable in HSAN1C patients.

The overexpression of SPTLC2 p.(Arg183Trp) in HEK cells led to a level of 1-deoxySL production that was significantly higher than in cells overexpressing the wild-type SPTLC2. This abnormal SPT activity correlated with 1-deoxySL accumulation in patient serum, similar to previously described SPTLC1 and SPTLC2 variants (Rotthier et al. 2010; Penno et al. 2010; Garofalo et al. 2011). The degree of 1-deoxySL elevation shows correlation with the severity of the phenotype (Laura et al. 2012a, b). For instance, SPTLC2 p.(Ala182Pro) patients, who had relatively severe childhood-onset disease, had 1-deoxySO levels of up to 1.0 μM (Murphy et al. 2013), approximately twofold compared to our p.(Arg183Trp) patients with disease-onset late in life.

In addition to the disease-causing variant itself, other genetic, environmental, and dietary factors may also influence clinical outcome in HSAN1C. Different blood 1-deoxySL levels have been seen among patients with the same disease variant and even within the same family. Within the group of SPTLC1 p.(Cys133Trp) carriers, we observed an up to fivefold difference in 1-deoxySL levels with the highest levels being recorded in the most severely affected patient (Penno et al. 2010). In family F, patient 514 had only modest 1-deoxySL elevation compared to her affected family members. Her clinical picture also appeared mild, although she was younger than the other family members, and thus, we cannot exclude that the disease will progress similar to her relatives. In family G, the index patient had markedly elevated 1-deoxySL levels, while his pre-symptomatic son only showed mild elevation. Therefore, identifying environmental modifiers, e.g., amino acids especially serine and alanine from diet, triglycerides or exercise, which may mitigate 1-deoxySL accumulation, could have important implications for patient treatment and counseling.

HSAN1 is important to diagnose since it may be amenable to rational treatment. Increasing L-serine through dietary supplementation lowered 1-deoxySL levels and improved the neuropathy of transgenic mice carrying Sptlc1 p.(Cys133Trp). A 10-week pilot trial with 14 human SPTLC1 p.(Cys133Tyr) carriers showed lowering of serum 1-deoxySL levels upon L-serine supplementation with no overt toxicity (Garofalo et al. 2011). However, L-serine supplementation has not been systematically tested in HSAN1C patients so far. Also for the SPTLC2 p.(Arg183Trp) mutant, 1-deoxySL formation was largely suppressed in the presence of 10 mM L-serine, whereas 1-deoxySL formation was significantly increased at 10 mM L-alanine (Fig. 3b). Therefore, L-serine supplementation should be considered as a potential therapeutic approach also for the SPTLC2 p.(Arg183Trp) variant.

With this report, disease-causing variants in SPTLC2 have been found in several European countries, and future
coordinated efforts may allow the possibility of treating these patients to be assessed.

Our study has expanded the clinical and genetic spectrum of HSAN1C. We have shown that the p.(Arg183Trp) variant in SPTLC2 leads to late-onset neuropathy, which is predominantly sensory but with later motor involvement. Distal small fibers appear to be affected prior to large predominantly sensory but with later motor involvement. Therefore, testing of this gene or an analysis of the blood sphingoid bases is recommended in similar phenotypes, particularly due to the future possibility for a specific treatment.

Acknowledgments In memoriam to B.R. a dear colleague and friend who unexpectedly passed away too premature. We thank Riitta Lehtinen for technical assistance. The authors wish to thank the following funding sources for support: Hospital District of Helsinki and Uusimaa (for M.A. and E.Y.), Sigrid Jusélius Foundation (for H.T.), University of Helsinki (for H.T.), the Academy of Finland (for H.T. and E.Y.). The 7th Framework Program of the European Commission (“RESOLVE”, Project Number 305707) for S.S. Furthermore, T.H. and S.S are grateful to the Hurka Foundation, the Novartis Foundation, and the Rare Disease Initiative Zurich (“radiz”, Clinical Research Priority Program for Rare Diseases, University of Zurich).

Compliance with Ethical Standards
Conflict of interest The authors declare no conflict of interest.

References

