Neoplastic extracellular matrix environment promotes cancer invasion in vitro

Elias Sundquist a,b,*, Outi Renko c,1, Sirpa Salo a,b,d, Johanna Magga c, Nilva K. Cervigne e, Pia Nyberg a,b,f, Juha Ristelai a,g,h, Raija Sormuneni i,j, Olli Vuolteenaho k,l, Flávia Zandonadil, Adriana F. Paes Lemel a, Ricardo D. Coletta e, Heikki Ruskoaho c,m, Tuula Salo a,b,n

a Cancer and Translational Medicine Research Unit, University of Oulu, PO Box 5281, Aapertie 5A, FIN 90014 Oulu, Finland
b Medical Research Center, Oulu University Hospital, Oulu, Finland
c Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
d Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
e Department of Pathology, Institute of Oncology, Cancer and Translational Medicine Research Unit, University of Oulu, PO Box 5281, Aapistie 5A, FIN 90014 Oulu, Finland
f Mass Spectrometry Laboratory, Brazilian Biosciences National Laboratory-CNPEM, Campinas, Brazil
g Department of Physiology, Institute of Biomedicine, University of Oulu, Oulu, Finland
h Northern Laboratory Centre NordLab, Oulu University Hospital, Oulu, Finland
i Biocenter Oulu, Oulu, Finland
j Department of Pathology, Institute of Diagnostics, University of Oulu, Oulu, Finland
k Department of Physiology, Institute of Biomedicine, University of Oulu, Oulu, Finland
l School of Pharmaceutical Sciences, Brazilian Biosciences National Laboratory-CNPEM, Campinas, Brazil
m Biocenter Oulu, Oulu, Finland
n Division of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland

Organotypic model

Article history:
Received 15 March 2016
Accepted 7 April 2016
Available online 20 April 2016

Keywords:
Carcinoma
Extracellular matrix
Invasion
Migration
Myoma
Organotypic model

Abstract

The invasion of carcinoma cells is a crucial feature in carcinogenesis. The penetration efficiency not only depends on the cancer cells, but also on the composition of the tumor microenvironment. Our group has developed a 3D invasion assay based on human uterine leiomyoma tissue. Here we tested whether human, porcine, mouse or rat hearts as well as porcine tongue tissues could be similarly used to study carcinoma cell invasion in vitro. Three invasive human oral tongue squamous cell carcinoma (HSC-3, SCC-25 and SCC-15), melanoma (G-361) and ductal breast adenocarcinoma (MDA-MB-231) cell lines, and co-cultures of HSC-3 and carcinoma-associated or normal oral fibroblasts were assayed. Myoma tissue, both native and lyophilized, promoted invasion and growth of the cancer cells. However, the healthy heart or tongue matrices were unable to induce the invasion of any type of cancer cells tested. Moreover, when studied in more detail, small molecular weight fragments derived from heart tissue rinsing media inhibited HSC-3 horizontal migration. Proteome analysis of myoma rinsing media, on the other hand, revealed migration enhancing factors. These results highlight the important role of matrix composition for cancer invasion studies in vitro and further demonstrate the unique properties of human myoma organotypic model.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Cancer cell invasion is the first fatal step towards metastases which mostly leads to the patients’ death. Therefore, the invasion activity of the tumor cells serves as an important prognostic factor in cancers [13,14]. Currently in vitro and in vivo studies concentrate the attention mainly on characterization of the genetic profile and proliferative activities of cancer cells. However, while mutation landscape and the cell proliferation rate are important in carcinogenesis, they alone are not sufficient factors to define the
severity of the disease. Indeed, in many cancers the pattern of extracellular matrix (ECM) invasion is a more significant prognosticator than the mitotic activity of the cells [4]. In the fibroblastic invasion pattern, elongated mesenchymal cells have increased traction forces that reorganize and degrade the ECM [27,32]. In addition to the proteolytic remodeling of ECM, some cancers adopt amoeboid migration characteristics and invade mainly using biomechanical forces. Eventually the crossstalk between the ECM and the cancer cells determine the invasion efficiency. Therefore, the tumor microenvironment (TME) containing e.g. cancer-associated fibroblasts (CAFs), endothelial and inflammatory cells; cytokines and proteases, is getting in the focus of cancer research [3,14].

In vitro, the 3D invasion pattern has been studied with organotypic models composed of rat tail type I collagen as well as commercial mouse tumor derivatives, such as Matrigel [21]. However, these classical methods that combine matrix from different species do not accurately mimic the composition of human TME. Our group has developed a 3D invasion assay using human uterine leiomyoma tissue [23]. This model, applied already in more than 20 publications, provides a hypoxic matrix containing essential TME components for in vitro invasion experiments [1,2,5,8,15,24,30,31,33]. In myoma tissue, invasion efficiency can be analyzed by determining the collagen degradation (carboxyterminal peptide of type I or III collagen - ICTP or IIICTP - radioimmunoassay (RIA) to detect type III collagen degradation products, as described by [23]. Briefly, the discs were put into Transwell inserts (diameter 6.5 mm, pore size 8µm, Corning Inc., Corning, NY, USA) and the HSC-3 cells (700,000 in 50 µl) were plated on top of each disc. The cells were allowed to attach to the discs and on the next day the discs were removed from the Transwell inserts and put onto uncoated nylon mesh resting on a curved steel grid in a 12-well plate with 1 ml of medium. The media were analyzed using radioimmunoassay (RIA) to detect type III collagen degradation products, as described by [23]. After 14 days the discs were prepared for histology as described below.

To lyophilize the myoma discs they were first put onto 24-or 48-well plates, one disc per well, covered with paraffin and frozen at −70 °C. The paraffin was pierced and the discs were lyophilized for 72 h using a Heto Drywinner DW3 (Heto-Holten A/S, Allerød, Denmark). After lyophilization the discs were placed in an excator and stored at −70 °C. The discs were rehydrated by rinsing them at 4 °C in DMEM/F-12 overnight. After rehydration the discs were used in the same manner as non-lyophilized native discs.

2.3. Scanning electron microscopy (SEM)

For SEM images (Fig. 1(A)) 700,000 HSC-3 cells were cultivated on top of myoma discs for 10 days as described above. For SEM the discs were dehydrated in an ascending ethanol series: overnight in 40%, 1 d in 50% and 3 days in 70% ethanol. To reveal the invaded cells inside the myoma, the discs were bisected. Dehydration was completed with 5 min in 80%, 5 min in 90% and twice for 5 min in 100% ethanol. After dehydration, a critical point drying was performed using a BAL-TEC Critical Point Dryer 030. Next the samples were attached to a metal platform using a two-sided carbon sticker and sputtered with a 6–12 nm platinum layer using an Agar High Solution Sputter Coater. Images were captured using Zeiss Ultra Plus field emission scanning electron microscope with 3.00 kV acceleration voltage and 8500x magnification.

2.4. Transmission electron microscopy (TEM)

For TEM images HSC-3 cells were cultivated in co-cultures with mesenchymal stem cells (400,000 of both cells, 14 days) (Fig. 1(C)) or with normal fibroblasts (400,000 of both cells, 14 days) (Fig. 1(D)) for 10 days. Samples were cut from the top of the myoma discs and fixed in 1% glutaraldehyde 4% formaldehyde mixture in 0.1 M phosphate buffer. They were post-fixed in 1% osmium tetroxide, dehydrated in acetone and embedded in Epon LX 112 (Ladd Research Industries, Williston, Vermont, USA). Thin sections were cut with Leica Ultracut UCT ultramicrotome, stained in uranyl acetate and lead citrate and examined in Philips CM100 transmission electron microscope. Images were captured with Morada CCD camera (Olympus Soft Imaging Solutions GMBH, Munster Germany).
2.5. Heart invasion assay

The human heart sample was a kind gift from Prof. Miklós Tóth, Semmelweis University, Budapest, Hungary. Sample collection was approved by the Health and Scientific Research Ethical Committee in Budapest. The porcine heart was collected from a blood donor pig from the Laboratory Animal Centre, University of Oulu, immediately after sacrificing. The porcine heart discs were prepared from the left ventricle and were further processed as described above for the myoma organotypic culture.

Mouse and rat hearts were collected from healthy animals from the Laboratory Animal Centre, University of Oulu. The animals were sacrificed, and the hearts were removed and stored at −70 °C. When still frozen, the tissue was cut into 3 mm slices with a disposable scalpel and further into discs with a 3 mm biopsy punch. Heart discs were equilibrated in media at room temperature (RT) for one hour to prepare organotypic cultures. The heart discs were placed into Transwell inserts (CellCrown™96, diameter 3 mm; Scaffdex, Tampere, Finland) and 100,000 cells in 10 μl of media were added on top of the discs. The heart organotypic cultures were sustained and the media was changed every 2–3 days. Collection of all animal hearts used in this study was approved by National Animal Experiment Board in Finland (ELLA).

2.6. Porcine tongue organotypic assays

The healthy porcine tongues were collected from the Laboratory Animal Centre, University of Oulu, immediately after sacrificing the pig that had been used by another research group who studied bone marrow mononuclear cell migration to ischemic brain tissue [19]. Their study was approved by the Research Animal Care and Use Committee of the University of Oulu. Tongues were stored at −70 °C. The tongues were first sterilized by dipping for 5 seconds in 70% ethanol followed by shaping the discs with an 8 mm biopsy punch from the lateral border of the tongues (Fig. 2C). The experiments with tongue discs were modified in three different ways. The discs were stored either overnight at 4 °C, or in an incubator (37 °C, 5% CO₂), or they were taken straight from the freezer (−70 °C) and thawed just before the invasion assay was started. The process is illustrated in Fig. 2. The tongue discs were
rinsed then in 0.2% chlorhexidine gluconate for 5 min (GlaxoSmithKline Oy, Corsodyl, chlorhexidine gluconate 2 mg/ml, Consumer Healthcare, Espoo) and the epithelium of the tongue was injured using either the tip of a plastic pipette to create small scratches, sharp tipped tweezers to create wounds or surgical knife to make X-shaped cuts through the keratinized epithelial surface. After punching the discs, they were transferred into Transwell inserts and DMEM/F-12 cell culture medium containing complete serum (600 ml) was added into the lower compartment and cells (200,000 in 50 ml) were added on top of the discs. Media were changed daily during the 9–11 days of incubation. After the incubation the discs were fixed in 4% formalin (24 h). The preparation of histological sections and immunohistology is described below.

2.7. Invasion assay with HSC-3 and CAFs or NOFs

HSC-3 cells (200,000 in 50 ml) were applied on top of myoma or tongue discs (with cuts as described above) with or without CAFs or NOFs (200,000 in 50 ml). All cells were fluorescently labeled with lipophilic long-chain dialkylcarbocyanine stains, HSC-3 cells with green (DiO) and CAFs/NOFs with red dye (Dil) (Vybrant labels, Invitrogen). Normal DMEM/F-12 media and myoma RM were used for tongue discs and only normal medium for myoma discs. The incubation time was 11 days. The sections were DAPI stained and photographed using an AMG EVOS FL microscope system.

2.8. Histology and immunohistochemistry

The organotypic cultures were fixed at day 14 (day 9 or 11 for porcine tongue assays) in 4% neutral-buffered formalin overnight. The samples were dehydrated, bisected and embedded in paraffin. 6 μm sections were deparaffinized and stained with Mayer’s HE. The endogenous peroxidase activity was blocked with H2O2 in MeOH for 30 min for pancytokeratin AE1/AE3 (Dako) staining. Antigen retrieval was performed by 0.4% pepsin in 0.01 M HCl at 37 °C for 20 min. Sections were blocked in 2% bovine serum albumin (BSA)/PBS for 30 min and incubated with primary antibodies in a humidified chamber at 37 °C for 30 min and at 4 °C overnight. Dilution (1:150) was prepared in REAL Antibody diluent (Dako). Biotinylated secondary antibody anti-mouse was applied for 1 h and StreptABComplex/horseradish peroxidase (HRP, Dako) in 0.5 M NaCl/PBS was applied for 30 min. Between each step the sections were washed twice in PBS for 10 min.

Myomas were stained for tenascin-C (TNC) as follows: for epitope retrieval, the sections were heated in a microwave oven in Tris-EDTA solution (pH 9) for 10 min and allowed to cool down at RT for 20 min. Endogenous peroxidase activity was blocked using DAKO Peroxidase-blocking solution S2023 for 10 min. The sections were then incubated with primary antibody (DB7, order #610003, Biohit, Helsinki, Finland) at a dilution of 1:500 for 60 min at RT. For visualization, HRP was introduced to the slides for 10 min, after which DAB chromogen was used for 5 min, the sections were counterstained using Mayer HE for 1 min and mounted mechanically. No quantifications were performed from TNC stained myoma sections.

Myoma and heart organotypic assays performed with G-361 cells were stained with S100. The antigen retrieval was performed by 0.4% pepsin in 0.01 M HCl at 37 °C for 30 min. The sections were incubated overnight at 4 °C with polyclonal rabbit anti-human S100 antibody (Dako Z0311, 1:3000).

From stained sections, the maximum invasion depth and/or area of invaded cells were quantified as described by [23].
2.9. Radioimmunoassay

A type III collagen C-terminal peptide (IIICTP) radioimmunoassay was used to investigate if invading cells degraded type III collagen when invading the ECM of tissue discs. Polyclonal antibody against IIICTP was raised in rabbits [22]. The IIICTP antigen was a synthetic peptide SP99 (NeoMPS). The synthetic peptide was conjugated to bovine thyroglobulin with carbodiimide (EDC; Pierce), according to the manufacturer’s instructions. The dialyzed conjugate was emulsified with 0.9% NaCl and Freund’s adjuvant (Sigma) and injected subcutaneously into rabbits at three- to four-week intervals.

Polyclonal antiserum for SP99 was diluted for IIICTP-RIA. SP99 was labeled by the Chloramine-T method using 125I [29]. An extra tyrosine was added to the C-terminus of SP99 to facilitate radiiodination. To create a standard curve, serial dilutions of SP99 were used. 100 μl of tissue sample media were incubated with 200 μl of the antiserum dilution and 200 μl of 125I-SP99 solution at 37 °C for 2 h. Next 500 μl of the secondary goat anti-rabbit antibody (200 μg/ml, Fitzgerald) in 15% polyethylene glycol (6 kDa) was added and the samples were incubated at 4 °C for 30 min. The samples were centrifuged at 2000 × g at 4 °C for 30 min after which the radioactivity of the precipitates was measured with a gamma counter (Wizard 1470; Wallac).

2.10. Gel filtration chromatography and wound healing assay

Aliquots of the heart tissue RM (3.5 ml) and myoma tissue RM (13 ml) were lyophilized. The dry residues were each re-dissolved in 3 ml of 0.1 M ammonium acetate (pH 6), and applied separately (13 ml) were lyophilized. The dry residues were each re-dissolved. 100 μl of tissue sample media were incubated with 200 μl of the antisera dilution and 200 μl of 125I-SP99 solution at 37 °C for 2 h. Next 500 μl of the secondary goat anti-rabbit antibody (200 μg/ml, Fitzgerald) in 15% polyethylene glycol (6 kDa) was added and the samples were incubated at 4 °C for 30 min. The samples were centrifuged at 2000 × g at 4 °C for 30 min after which the radioactivity of the precipitates was measured with a gamma counter (Wizard 1470; Wallac).

2.11. Mass spectrometry

The protein content of myoma RM was assessed using mass spectrometry. First, six myoma discs were rinsed for 24 h. Next the rinsing media were combined into two pools each containing rinsing media from three myomas. Mass spectrometry analysis was performed for both pools.

The rinsing media were concentrated using a 3 kDa centrifugal filter (Amicon Ultra, Millipore, Ireland) at 4 °C, and the proteins were treated with a final concentration of 1.6 M urea. The samples were reduced (5 mM dithiothreitol, 25 min at 56 °C), alkylated (14 mM iodoacetamide, 30 min at RT in the dark) and digested with trypsin (1:50, w/w). The reaction was stopped with 1% trifluoroacetic acid and desalted with Sep-pack cartridges. The samples were dried in a vacuum concentrator, reconstituted in 0.1% formic acid and analyzed by LC-MS/MS. Two independent experiments were performed.

An aliquot containing 3 μg of proteins was analyzed on an electron-transfer dissociation enabled LTQ Orbitrap Velos Mass Spectrometer (Thermo Fisher Scientific, USA) connected to a nano-flow liquid chromatography column (LC-MS/MS) by an EASY-nLC System (Proxeon Biosystem) through a proxeon nanoelectrospray ion source. Peptides were separated by a 2–90% acetonitrile gradient in an analytical PicoFrit column (20 cm × id 75 μm, 5 μm particle size. New Objective) at a flow of 300 nl/min over 212 min. The nanoelectrospray voltage was set to 2.2 kV, and the source temperature was 275 °C. All instrumental methods for the LTQ Orbitrap Velos were set up in the data-dependent analysis mode. The full scan MS spectra (m/z 300–1600) were acquired in the Orbitrap analyzer after accumulation to a target value of 1×10⁶. The resolution in the Orbitrap was set to r=60000. The 20 most intense peptide ions with charge states ≥ 2 were sequentially isolated to a target value of 5000 and fragmented in the linear ion trap by low-energy collision-induced dissociation (normalized collision energy of 35%). The signal threshold for triggering an MS/MS event was set to 1000 counts. Dynamic exclusion was enabled with an exclusion size list of 500, an exclusion duration of 60 s, and a repeat count of 1. An activation q=0.25 and an activation time of 10 ms was used.

The raw files were processed using the MaxQuant version 1.2.7.429 and the MS/MS spectra were searched using the Andromeda search engine against the Uniprot Human Protein Database (release July 11, 2012; 69,711 entries). The initial maximal allowed mass tolerance was set to 20 ppm for precursor and then set to 6 ppm in the main search and to 0.5 Da for fragment ions. Enzyme specificity was set to trypsin with a maximum of two missed cleavages. Carbamidomethylation of cysteine (57,021464 Da) was set as a fixed modification, and oxidation of methionine (15,994915 Da) and protein N-terminal acetylation (42,010565 Da) were selected as variable modifications. The minimum peptide length was set to 6 amino acids. Label-free protein quantification was performed using a previously described label-free quantification (LFQ) algorithm implemented in the MaxQuant software with a 2 min window for matching between runs and maximum 1% peptide and 1% protein false discovery rate (Cox & Mann 2008). Protein intensity values were normalized using the LFQ algorithm available through the MaxQuant program and used to further identify differentially expressed proteins. Bio information analyses of the data were performed using Perseus v1.2.7.4 software. Reverse and “only identified by site” entries were excluded. LFQ intensity values were log2 transformed; the dataset was filtered by two minimum valid values in at least one group, and statistical significance was assessed by applying Student’s t-test to identify differentially expressed proteins.

2.12. Statistical analysis

Data were analyzed with independent samples t-test (IBM SPSS Statistics version 21) and results were considered to be statistically significant if the p-value was lower than 0.05. P-values are represented in figures as *p ≤ 0.05, **p ≤ 0.01 and ***p ≤ 0.001. In boxplots the median is marked with a horizontal line, mean with square, the box representing 25–75% percentiles and whiskers representing standard deviation.

3. Results

3.1. Invading and dormant carcinoma cells feature distinct cell membrane structures

HSC-3 cancer cell invasion into the uterus leiomyoma organotypic model was visualized using SEM (Fig. 1(A)) followed by immunohistochemistry with cytokeratin AE1/AE3-staining (Fig. 1(B)) and TEM (Fig. 1(C) and (D)). Carcinoma cells in the invasion front (dotted rectangle in 1B) featured invadopodia structures (Fig. 1(C), arrow), whereas in the upper part of the disc (solid rectangle in 1B), the non-invasive cells were mostly surrounded by basement...
Fig. 3. HSC-3 cell invasion assay using native (A) and lyophilized (B) myoma discs. Invasion depths were analyzed from AE1/AE3 stained sections of native (n = 26) and lyophilized (n = 19) myoma discs (C). Carboxy-terminal peptide of type III collagen (IIICTP) concentrations (which indicate type III collagen degradation) were analyzed using RIA from native (n = 9) and lyophilized (n = 12) myoma discs (D). HE staining of HSC-3 cells invading in various myoma discs from different patients (E – G) shows variation in invasion efficiencies between different types of patient samples. There is vast variation in the amount of tenascin-C in the matrix of different types of myomas from abundant (H) to scanty (J). * p ≤ 0.05.
membrane structures (Fig. 1(D), arrow).

3.2. Lyophilization of the myoma model affects collagen degradation, but not the invasion pattern

We then tested if the HSC-3 invasion assay results from frozen native discs (Fig. 3(A)) could be recapitulated using lyophilized and rehydrated myoma discs (Fig. 3(B)). Based on the invasion depth analysis, no difference was found between the native or lyophilized discs (Fig. 3(C)). However, there was a statistically significant difference in IIICTP levels between lyophilized (11.6 mg/l) and native (19.8 mg/l) myoma assays, which indicates that the HSC-3 cells invading in lyophilized and rehydrated discs degraded less type III collagen than in native discs (Fig. 3(D)). However, it is important to note that although there were no differences in the pattern or depth of invasion between the native and lyophilized discs prepared from the same myoma samples, the mainly budding pattern of HSC-3 invasion (as well as SCC-15 and SCC-25, not shown) varied between discs from different patients (Fig. 3(E)–G). Therefore, different myomas should not be combined in one experimental set-up. Additionally, we recommend that every myoma for invasion assays should first be pretested – e.g. using “standard” HSC-3 carcinoma cells - to discard those myomas that have unusual invasion inductive properties. The variation of invasion efficiencies between myomas might partially be due to differences in invasion inductive matrix composition, such as the amount of TNC

Fig. 4. HSC-3 invasion assays using different types of tissues. HSC-3 cells were cultivated on top of myoma (A), human heart (B) and porcine tongue (C) discs after which the myoma and heart discs were prepared for immunohistological staining. Tongue discs were HE stained. The experiment was performed also using rinsed heart (n = 9) discs. The invasion area (D) and depth (E) were measured from stained sections. There was no detectable invasion in tongue discs (C and H). Invasion in heart discs was barely detectable (B, D and E), and invasion area and depth were considerably larger in native myoma discs (n = 5) compared to native heart discs (n = 13) (D and E). CAFs (F, red) and NOFs (G, red) were cultivated on top of the myoma discs (F and G) in co-cultures with HSC-3 cells (green). CAFs and HSC-3 cells were also cultivated on tongue discs (H), where no invasion was detected. *p ≤ 0.01 and ***p ≤ 0.001. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
3.3. Heart or tongue tissues do not attract HSC-3 invasion

Using the highly invasive HSC-3 cell line we next tested if cancer cells are able to invade into healthy human heart tissue discs (Fig. 4(B)) as readily as they invade into myoma tissue (Fig. 4(A)). Native myoma, and native and rinsed heart discs were used in this experiment. We found that there was only minimal invasion into the human heart matrix both in native and rinsed discs (Fig. 4(B), D and E) and there was no invasion in mouse, rat or porcine heart tissue discs (not shown). Invasion depth and area in myoma were vastly larger compared to those in the heart (Fig. 4(D) and (E)). Since HSC-3 is an aggressive tongue carcinoma cell line, we also tested whether HSC-3 cells could invade into their “natural matrix”, healthy tongue discs (Fig. 2). Although HSC-3 cells invaded into myoma, they showed hardly any penetration into the tongue discs (Fig. 4(C)), even after the surface was wounded as described before (Figs. 2 and 4(C)). The tongue discs were not invaded (Fig. 4(H)) even after co-culturing HSC-3 cells (green) with

Fig. 5. The effect of soluble factors on malignant cell invasion into human heart. Heart tissue discs, with or without the rinse period of 3 days, and native myoma discs were used in the invasion assays. Ductal breast adenocarcinoma cells (MDA-MB-231, A and B) and malignant melanoma cells (G-361, C and D) were cultivated on top of myoma (A and C) and heart discs (B and D) for 14 days. In myoma discs, the invasion depth of MDA-MB-231 cells (n=8) was significantly greater compared to G-361 cells (n=14) (E). In the heart, rinsing the discs increased the invasion depth of MDA-MB-231 (n=13 for native and 10 for rinsed) cells and G-361 cells (n=8 for native and 11 for rinsed) cells (F). *p ≤ 0.05 and ***p ≤ 0.001.
CAF or NOF (red), unlike in myoma discs (Fig. 4(F) and (G)).

3.4. Breast carcinoma and melanoma cells invade more in rinsed heart matrix

Since the invasion efficiency of the HSC-3 cell line clearly differed between myoma and heart tissue discs, we tested other invasive cell lines in these matrices as well. The invasion of breast carcinoma MDA-MB-231 (Fig. 5(A) and (B)) and melanoma G-361 (Fig. 5(C) and (D)) cells in native myoma, and native and rinsed hearts was analyzed. In myoma, deeper invasion was detected (Fig. 5(C) and (D)) cells in native myoma, and native and rinsed carcinoma MDA-MB-231 (Fig. 5(A) and (B)) and melanoma G-361 (Fig. 5(E)) cells in rinsed myoma. Similar to HSC-3 cells, the breast carcinoma and melanoma cell lines showed poor invasion into the native solid matrix of the heart tissue (Fig. 4(D) and (E); Fig. 5(F)), but the invasion of all cell lines was slightly induced after rinsing off the soluble fraction of the heart matrix.

3.5. Heart tissue contains migration inhibiting factors

Next we analyzed the gel filtration fractions of human heart and myoma RM using wound healing scratch assays. We found that small molecular weight fractions from the heart rinsing media caused marked inhibition of HSC-3 migration compared to the similar size fractions from the myoma rinsing media (Fig. 6(A) and (B)). This suggests that the heart tissue contains soluble factors that are able to inhibit cancer cell migration, which most likely affects invasion as well.

3.6. Myoma tissue contains growth factors as well as their receptors and binding proteins

Since we have previously shown that rinsing myoma discs decreases invasion depth and increases type III collagen degradation [31], we wanted to elucidate the mechanisms of this effect and analyzed the protein content of the myoma rinse. In the myoma rinse we found a variety of growth factors as well as their receptors and binding proteins (Table 1), including various migration affecting growth factors, such as fibroblast growth factor 2 (FGF2), transforming growth factor beta (TGF-β) 1 and −2, and hepatocyte growth factor (HGF).

4. Discussion

Our group has developed a three-dimensional organotypic invasion assay based on human uterine leiomyoma tissue [23]. Here we found that the myoma discs also function in invasion assays after lyophilization and rehydration, which makes their utilization and shipment more straightforward. On the other hand, healthy human heart or porcine tongue discs did not induce invasion, and rinsing of the heart discs to remove soluble factors resulted in only a slight induction of invasion. Moreover, the small molecular weight molecules from human heart rinsing media inhibited cancer cell migration. These results demonstrate that non-neoplastic healthy tissue is less able to induce invasion, and furthermore that the migration inhibitory effects of heart tissue may partially be due to soluble factors released from the tissue.

The composition of TME in cancerous tissue, for example the presence of ECM molecules, cytokines and proteases, could include highly important predictors of cancer prognosis. ECM may limit cancer initiation at early stages, whereas after modification by cancer cells at later stages, it can drive tumor progression [26]. We have shown that depletion of soluble factors by rinsing the myoma discs alters the invasion efficacy and pattern of aggressive oral cancer cells [31]. Here we demonstrated that, similar to rinsed myomas [31], invading HSC-3 cells degraded type III collagen more efficiently in native than in lyophilized and rehydrated myoma discs. This indicates that lyophilization and rehydration alters the matrix structures and may allow cancer cells to invade the tissue with less need to degrade the collagen fibers. However, although the invasion mechanisms varied between native and lyophilized myoma matrix, there was no difference in invasion depth, which indicates that lyophilized myoma tissue could be utilized in invasion assays as well as native myoma.

Primary malignancies of the heart are extremely uncommon. Although primary cardiac tumors are rare, tumors that metastasize to the heart from other organs occur more commonly. These secondary tumors have an incidence of 1.23% in autopsy reports [16]. The most common tumors with cardiac metastatic potential are carcinomas of the lung, breast and esophagus, but also lymphoma, leukemia and melanoma cells have been found to metastasize to
the heart [9,28]. Carcinoma cells metastasize into the epicardium preferably via a lymphatic route while many tumors, especially lymphoma and melanoma, can invade into the myocardium via a hematogenous route [17,28]. It is speculated that intracavitary pressure, high blood flow and contractile strength may protect the heart from metastatic invasion [9]. Obviously, the heart ECM around the striated muscle myocytes also differs from most other tissue matrices, and may explain why cancer cells do not invade into it.

We showed that in addition to the HSC-3 cells, also the metastatic breast cancer or malignant melanoma cell lines did not invade into the heart tissue discs. Invasion of cancer cell lines through myoma tissue can be seen via existing vessels within the myoma matrix. However, the vessels of human heart discs were not utilized for invasion. We demonstrated that one explanation for this anti-invasive effect could be the presence of soluble inhibitory factors within the heart tissue. Especially in the case of malignant melanoma cells, rinsing off the soluble compounds enhanced the cell invasion. However, even then the depth of invasion of melanoma cells was not at the same level as in myoma discs. In the case of breast and tongue cancer the invasion was also increased in rinsed discs, but the differences were less obvious. This indicates that heart tissue has inhibitory fractions that affect cell invasion. In fact, in a migration assay, small molecular weight fractions from heart rinsing media significantly inhibited the migration of the HSC-3 cell line. The identification of these soluble inhibitory factors and their effects on various cancer cell lines are exciting topics for further studies.

In the invasion assays, the most "natural TME" for HSC-3 cells, the porcine tongue tissue, was unable to induce their invasion. Even after adding myoma disc rinsing media as chemoattractant, invasion into the tongue was not induced. We then tested whether CAFs could enhance invasion induction into tongue discs. CAFs are known to have a role in carcinoma invasion in vivo by causing so-called "fibroblast-led collective invasion" [12]. CAFs form the leading edge of invading cells (Fig. 4(F)) and make a path for carcinoma cells to follow, as well as serve as a prognostic indicator in oral squamous cell carcinoma (OSCC) [7]. We added CAFs together with HSC-3 cells on top of myoma and tongue discs. Although HSC-3 cells invaded myoma as expected, the addition of

<table>
<thead>
<tr>
<th>Gene</th>
<th>Protein</th>
<th>Top enriched BP</th>
<th>Cellular component</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGFBP3</td>
<td>Insulin-like growth factor-binding protein 3</td>
<td>Apoptotic process</td>
<td>Extracellular</td>
</tr>
<tr>
<td>GRB2</td>
<td>Growth factor receptor-bound protein 2</td>
<td>Modulation by virus of host morphology or physiology</td>
<td>Plasma membrane</td>
</tr>
<tr>
<td>FGFBP1</td>
<td>Fibroblast growth factor-binding protein 1</td>
<td>Negative Regulation of cell proliferation</td>
<td>Extracellular</td>
</tr>
<tr>
<td>IGF1R</td>
<td>Insulin-like growth factor-binding protein 7</td>
<td>Negative Regulation of cell proliferation</td>
<td>Extracellular</td>
</tr>
<tr>
<td>IGFBP5</td>
<td>Insulin-like growth factor-binding protein 5</td>
<td>Signal transduction</td>
<td>Extracellular</td>
</tr>
<tr>
<td>HDCCFRP2</td>
<td>Hepatoma-derived growth factor-related protein 2</td>
<td>Nucleus</td>
<td>Extracellular</td>
</tr>
<tr>
<td>LTPB3</td>
<td>Latent-transforming growth factor beta-binding protein 3</td>
<td>Transforming growth factor beta receptor signaling pathway</td>
<td>Extracellular</td>
</tr>
<tr>
<td>LTPB4</td>
<td>Latent-transforming growth factor beta-binding protein 4</td>
<td>Transforming growth factor beta receptor signaling pathway</td>
<td>Extracellular</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gene</th>
<th>Protein</th>
<th>Top enriched BP</th>
<th>Cellular component</th>
</tr>
</thead>
<tbody>
<tr>
<td>FG2</td>
<td>Fibroblast growth factor 2</td>
<td>Apoptotic process</td>
<td>Extracellular</td>
</tr>
<tr>
<td>TGFBR2</td>
<td>Transforming growth factor beta-2</td>
<td>Axon guidance</td>
<td>Extracellular</td>
</tr>
<tr>
<td>HDGF</td>
<td>Hepatoma-derived growth factor</td>
<td>Cell proliferation</td>
<td>Extracellular</td>
</tr>
<tr>
<td>PDGFB</td>
<td>Platelet-derived growth factor subunit B</td>
<td>Negative regulation of transcription, DNA-dependent</td>
<td>Extracellular</td>
</tr>
<tr>
<td>PDCDFA</td>
<td>Platelet-derived growth factor subunit A</td>
<td>Platelet activation</td>
<td>Extracellular</td>
</tr>
<tr>
<td>EGF</td>
<td>Pro-epidermal growth factor</td>
<td>Positive regulation of cell proliferation</td>
<td>Extracellular</td>
</tr>
<tr>
<td>CEP9</td>
<td>Growth/differentiation factor 9</td>
<td>Positive regulation of transcription from RNA polymerase</td>
<td>Extracellular</td>
</tr>
<tr>
<td>TGFBR1</td>
<td>Transforming growth factor beta-1</td>
<td>Positive regulation of transcription from RNA polymerase II promoter</td>
<td>Extracellular</td>
</tr>
<tr>
<td>VEGFA</td>
<td>Vascular endothelial growth factor A</td>
<td>Positive regulation of transcription from RNA polymerase II promoter</td>
<td>Extracellular</td>
</tr>
<tr>
<td>IG1</td>
<td>Insulin-like growth factor I</td>
<td>Positive regulation of transcription from RNA polymerase II promoter</td>
<td>Extracellular</td>
</tr>
<tr>
<td>HGF</td>
<td>Hepatocyte growth factor</td>
<td>Positive regulation of transcription from RNA polymerase II promoter</td>
<td>Extracellular</td>
</tr>
<tr>
<td>TGFBR1I</td>
<td>Transforming growth factor beta-1-induced transcript 1 protein</td>
<td>Positive regulation of transcription, DNA-dependent</td>
<td>Nucleus</td>
</tr>
<tr>
<td>IG2</td>
<td>Insulin-like growth factor II</td>
<td>Regulation of transcription, DNA-dependent</td>
<td>Extracellular</td>
</tr>
<tr>
<td>CTGF</td>
<td>Connective tissue growth factor</td>
<td>Small molecule metabolic process</td>
<td>Extracellular</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gene</th>
<th>Protein</th>
<th>Top enriched BP</th>
<th>Cellular component</th>
</tr>
</thead>
<tbody>
<tr>
<td>TGFR2</td>
<td>TGF-beta receptor type-2</td>
<td>Apoptotic process</td>
<td>Plasma membrane</td>
</tr>
<tr>
<td>FGFR3</td>
<td>Fibroblast growth factor receptor 3</td>
<td>Apoptotic process</td>
<td>Plasma membrane</td>
</tr>
<tr>
<td>FGFR2</td>
<td>Fibroblast growth factor receptor 2</td>
<td>Apoptotic process</td>
<td>Extracellular</td>
</tr>
<tr>
<td>NTRK1</td>
<td>High affinity nerve growth factor receptor</td>
<td>Axon guidance</td>
<td>Plasma membrane</td>
</tr>
<tr>
<td>EPLS15</td>
<td>Epidermal growth factor receptor substrate 15</td>
<td>Cell proliferation</td>
<td>Plasma membrane</td>
</tr>
<tr>
<td>IGFR1</td>
<td>Insulin-like growth factor 1 receptor</td>
<td>Immune response</td>
<td>Plasma membrane</td>
</tr>
<tr>
<td>PDGFR</td>
<td>Platelet-derived growth factor receptor alpha</td>
<td>Modulation by virus of host morphology or physiology</td>
<td>Plasma membrane</td>
</tr>
<tr>
<td>KDR</td>
<td>Vascular endothelial growth factor receptor 2</td>
<td>Modulation by virus of host morphology or physiology</td>
<td>Extracellular</td>
</tr>
<tr>
<td>EGF</td>
<td>Epidermal growth factor receptor</td>
<td>Negative regulation of apoptotic process</td>
<td>Extracellular</td>
</tr>
<tr>
<td>FGFR2</td>
<td>Fibroblast growth factor receptor substrate 2</td>
<td>Neurotrophin TRK receptor signaling pathway</td>
<td>Plasma membrane</td>
</tr>
<tr>
<td>MET</td>
<td>Hepatocyte growth factor receptor</td>
<td>Positive regulation of transcription from RNA polymerase II promoter</td>
<td>Extracellular</td>
</tr>
<tr>
<td>FGFR1</td>
<td>Fibroblast growth factor receptor 1</td>
<td>Transcription, DNA-dependent</td>
<td>Extracellular</td>
</tr>
</tbody>
</table>
CAFs did not induce invasion of tongue discs. In addition, bone marrow mesenchymal stem cells that we have shown to be able to induce HSC-3 invasion in myoma [30] were not able to induce HSC-3 invasion into the tongue tissue discs. This may be due to species differences (human myoma versus porcine tongue). Most likely, however, it is because myoma, unlike healthy tongue, presents an ECM that mimics the tumor microenvironment phenotype. This tumor ECM differs from that of healthy tissue in that it contains e.g. more laminins, type IV collagen, lysyl-oxidase-1 (LOX-1) [23,31] and tenasin-C, as shown here in the myoma matrix (Fig. 3H–J).

Finally, in order to elucidate the previously detected decrease in invasion depth and increase in collagen degradation in rinsed myoma matrix [31], we deprived myoma tissue of its soluble factors by rinsing and analyzed the rinsing media utilizing mass spectrometry. This revealed a variety of growth factors as well as their binding proteins and receptors (Table 1). Some of these growth factors are known for their migration enhancing nature, including FGF2, TGF-ß1 and -2 and HGF. Of these growth factors, TGF-ß1 and HGF are of special interest, since TGF-ß1 induced myofibroblasts are shown to secrete HGF that increases invasion of OSCC cells in vitro [6,18]. Additionally, TGF-ß1 induces an epithelial-mesenchymal transition (EMT) in OSCC cells, a process in which cells of epithelial origin gain properties of mesenchymal cells, including loss of adhesion and increased migratory capabilities [25]. Some of the changes between invasion in native and rinsed myomas detected previously [31] could be attributed to these migration and invasion increasing growth factors in myoma rinsing media. However, as we have established, individual myomas vary in terms of composition and invasion aiding capabilities. Hence it cannot be deduced that all myomas contain these same growth factors in similar proportions. This variation in proportions of growth factors could lead to different responses in cells invading into the myoma, a complexity known also from different types of cancers. An excellent example of this complexity is TGF-ß, which was prominent in myoma rinsing media; it possesses both pro- and anti-tumorigenic features depending on the state of both the microenvironment and the cancer cells [20]. The varying interactions of cancer cells with soluble and insoluble factors of TME remain a topic for further studies. What are the cumulative interactions leading to enhancement or inhibition of invasion, and could new treatments be generated to modulate these interactions?

In conclusion, the importance of TME in carcinogenesis is well recognized. This provides the rationale behind the use of human tumor-derived matrix for cancer invasion studies rather than rodent or synthetic tumor matrices. Myoma is therefore an ideal tool to obtain answers of the co-operative behavior of the cells in the complex TME mimicking tumor matrix. However, myomas of single origin should be used in each experimental set-up. As demonstrated here, neither the healthy human tissue discs nor healthy porcine, mouse or rat tissue, either tongue or heart, supported invasive cancer growth. Furthermore, we demonstrated that soluble factors from human heart inhibited cancer migration and invasion in vitro. These so far uncharacterized factors may also partially explain why primary tumors or metastases rarely invade into the human heart.

Acknowledgments

We thank Mrs. Maija-Leena Lehtonen for her guidance and excellent technical help in cell culture and experiments, Mrs. Tanja Kuusisto for performing immunohistochemical stainings and Biocenter EM core technicians for preparing EM samples. Doctors Tuomas Mäkelä and Fredrik Yannopoulos are acknowledged for their guidance and co-operation in harvesting porcine tongues and Professor Petri Lehenkari for providing the porcine tongues. The authors thank Professor Miklós Tóth for kindly providing us with the human heart sample. Mrs. Katja Koukkula is acknowledged for her work on RIA. We thank Doctor Ahmed Al-Samadi for reviewing this article and providing excellent feedback. This work was supported by the Academy of Finland, Sigrid Juselius Foundation, Finnish Cancer Foundation, Finnish Foundation for Cardiovascular Research, Medical Research Center Oulu, Finnish Dental Society Apollonia and research funds from the Medical Faculty of the University of Oulu and Oulu University Hospital special state support for research.

References

