Bryophyte flora of Hunan Province, China. 24. Neckeraceae and Miyabeaceae (Musci)

Enroth, Johannes

2017-08

http://hdl.handle.net/10138/224211

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.
Bryophyte flora of Hunan Province, China. 25. Neckera-ceae and Miyabeaceae (Musci)

JOHANNES ENROTH1,2,* & TIMO KOPONEN2,3

1 Department of Biosciences, P.O. Box 65, FI-00014 University of Helsinki, Finland; 2 Finnish Museum of Natural History, Botany Unit (Bryology), P.O. Box 7, FI-00014 University of Helsinki, Finland (*corresponding author, e-mail: johannes.enroth@helsinki.fi) 3Finnish-Chinese Botanical Foundation, Mailantie 109, FI-08800 Lohja, Finland

Received Dec. 14, 2016, accepted Jan. 28, 2017

In Hunan Province of China, the moss family Neckera-ceae has 24 species in eight genera, namely Circulifolium S. Olsson, Enroth & D. Quandt (with 1 species), Forsstroemia Lindb. (3), Homalia Brid. (1), Homaliodelphus M. Fleisch. (7), Neckera Hedw. (5), Neckeropsis Reichardt (2), Pinnatella M. Fleisch. (2), Taiwanobryum Nog. (2) and Thannobryum Nieuwl. (1). The family Miyabeaceae contains one genus, Homaliodelphus Dixon & P. de la Varde with one species. Forsstroemia noguchii L.R. Stark, Neckera setschwanica Broth., and N. konoi Broth. ex Cardot are new records for Hunan. The presence of Taiwanobryum speciosum Nog. in Hunan is confirmed and Pinnatella taiwanensis Nog. is new to mainland China. Forsstroemia cryphaeoides Cardot is excluded from the Hunan flora. Neckera decurrens Broth. is reported for the first time from Vietnam. A key to the species is provided and their habitats, substrates and taxonomy are discussed. The taxa are divided into floristic elements on the basis of their total range and range in Hunan. Altitudinal ranges of 11 taxa are mapped.

Key words: China, floristic elements, habitats, Hunan, Miyabeaceae, Neckera-ceae, nomenclature, substrates, ranges, taxonomy
CONTENTS

1. Introduction, material and methods ... 149
2. Neckeraeaceae Schimp. 1855 ... 149
 Key to the taxa of Miyabeaceae and Neckeraeaceae reported from Hunan 150
 2.1 Circulifolium S. Olsson, Enroth & D. Quandt 152
 1. Circulifolium exiguum (Bosch & Sande Lac.) S. Olsson, Enroth & D. Quandt 152
 2.2. Forsstroemia Lindb. .. 152
 2. Forsstroemia noguchii L.R. Stark ... 152
 3. Forsstroemia trichomitria (Hedw.) Lindb. ... 153
 4. Forsstroemia yezoana (Besch.) S. Olsson, Enroth & D. Quandt 153
 2.3 Homalia Brid. .. 154
 5. Homalia trichomanoides (Hedw.) Brid. ... 154
 2.4. Homaliiodendron M. Fleisch. .. 154
 6. Homaliiodendron flabellatum (Sm.) M. Fleisch. 155
 7. Homaliiodendron cf. ligulaefolium (Mitt.) M. Fleisch. 156
 9. Homaliiodendron nekeroides Broth. in Hand.-Mazz. 157
 10. Homaliiodendron papillosum Broth. .. 157
 11. Homaliiodendron pulchrum L.Y. Pei & Y. Jia 158
 12. Homaliiodendron cf. scalpellifolium (Mitt.) M. Fleisch. 159
 2.5. Neckera Hedw. ... 159
 13. Neckera decurrens Broth. ... 160
 14. Neckera flexiramea Cardot .. 160
 15. Neckera inopinata Enroth & M. Ji ... 161
 16. Neckera konoi Broth. ex Cardot .. 161
 17. Neckera setschwanica Broth. ... 162
 2.6. Neckropsis Reichardt ... 162
 18. Neckropsis calcicola Nog. .. 162
 19. Neckropsis nitidula (Mitt.) M. Fleisch. 163
 2.7. Pinnatella M. Fleisch. ... 163
 20. Pinnatella makinai (Broth.) Broth. ... 163
 21. Pinnatella taiwanensis Nog. .. 164
 2.8. Taiwanobryum Nog. .. 164
 22. Taiwanobryum guangdongense (Enroth) S. Olsson, Enroth & D. Quandt 164
 23. Taiwanobryum speciosum Nog. ... 165
 2.9. Thannobryum Nieuwl. .. 165
 24. Thannobryum subserratum (Hook.) Nog. & Z. Iwats. 165
3. Miyabeaceae Enroth, S. Olsson, Buchbender, Hedenäs, Huttunen & D. Quandt 166
 3.1. Homaliadelphus Dixon & P. de la Varde 166
 25. Homaliadelphus targionianus (Mitt.) Dixon & P. de la Varde 166
4. Doubtful and excluded records ... 167
5. Discussion ... 167
 5.1. Range extensions ... 167
 5.2. Phytogeography; floristic elements ... 167
 5.2.1. Taxa ranging only in SE Asia ... 170
 5.2.2. Taxa ranging also outside SE Asia .. 170
 5.3. Conservation ... 171
1. Introduction, material and methods

This paper belongs to a series dealing with the bryophyte flora of Hunan Province in China. The series is mainly based on the authors’ excursions and collections. Essential background information of the material and methods, and abbreviations of the collecting localities of the three first excursions (to Mangshan, Wulingyuan, Taoyuandong, Yuankou, Badagongshan and Hupingshan) and geographical areas used in this study are given in parts 1 and 3 (Koponen et al. 2000, 2004). The collecting localities of the two later excursions, in 2000 and 2001 (to Badagongshan, Daweishan, Shunhuangshan and Yunshan) were described by Koponen et al. (2014, see also below). The preceding part in the series, treating the Pottiaceae is that by Sollman and Koponen (2017).

In this paper, we cite the nomenclature including the basionyms of taxa and the synonymous names previously reported or used for Hunan bryophytes. The specific taxonomy is discussed when necessary and illustrations useful in the identification are referred to. In “Habitat and substrates in Hunan” we collect information from the labels of our specimens. If specimens from only four collecting sites are present in the material, we repeat the label details in full. In case of more specimens, a summary of habitats and substrates is given. For each species the frequency in the province is estimated and the ranges in Hunan, China and total worldwide ranges are summarized.

We add two collecting localities absent from the list published in 2014.

Badagongshan National Nature Reserve

Daweishan National Forest Park

2. Neckeraceae Schimp. 1855

The present paper reports the species of the moss families Neckeraceae and Miyabeaceae found in Hunan. The circumscription of the Neckeraceae applied here follows the one established by Olsson et al. (2009a) and further elaborated by Olsson et al. (2010, 2011). In that circumscription the Neckeraceae contains the genera Leptodon Mohr, Forstroemia Lindb. and Taiwanobryum Nog., the latter two newly defined. The family has three main clades called Neckera clade, Thamnobryum clade, and Pinnaella clade (Olsson et al. 2009a, 2010, 2011). The last-mentioned clade is essentially, if not exclusively, tropical and Asian.
Key to the taxa of Miyabeaceae and Neckeraceae reported from Hunan

1. Plants small, complanate, “leafy liverwort-like”; leaves ecostate, asymmetric, nearly rounded to obovate or spatulate, often with a distinct basal lobe *Homaliadelphus targionianus* (Miyabeaceae)
 – Plants different .. 2

2. Plants to c. 1 (–1.5) cm high, stipitate-frondose; distal or most branch leaves caducous *Taiwanobryum guangdongense*
 – Different combination of characters .. 3

3. At least upper (or all) leaves distinctly undulate ... 4
 – Leaves not distinctly undulate .. 10

4. Leaf apex mostly truncate; costa weak, reaching to midleaf at most *Neckeropsis calcicola*
 – Leaf apex acute; costa weak and short or strong and reaching to above midleaf 5

5. Paraphyllia present ... Neckera setschwanica
 – Paraphyllia absent ... 5

6. Plants strongly glossy; leaves complanate, distinctly asymmetric 7
 – Plants dull or slightly glossy; leaves not complanate, symmetric or slightly asymmetric ... 8

7. Upper part of leaf decurrencies to 6–7(–9) cells wide .. Neckera decurrens
 – Upper part of leaf decurrencies to 3–4(–5) cells wide .. Neckera flexiramea

8. Apical and laminal cells with solid or weakly porose walls .. Neckera inopinata
 – Apical and laminal cells with strongly incrassate, distinctly porose walls 9

9. Plants autoicous; branch tips often attenuate; capsules immersed *Forsstroemia yezoana*
 – Plants dioicous; branch tips not attenuate; capsules exserted Neckera konoi

10. Plants not or only indistinctly stipitate-frondose; leaves strongly complanate; leaf apices rounded to obtuse .. 11
 – Plants distinctly stipitate-frondose; leaves complanate or not; leaf apices obtuse 13

11. Plants slender; stems with leaves to 2 mm wide; flagelliform, microphyllous branches common .. *Circulifolium exiguum*
 – Plants more robust; stems with leaves more than 2 mm wide; flagelliform, microphyllous branches infrequent .. 12

12. Plants distinctly glossy; costa reaching to ½ of leaf length at most; capsules immersed *Neckeropsis nitidula*
 – Plants slightly glossy; costa usually to ½ or ¾ of leaf length, occasionally shorter; capsules exserted .. *Homalia trichomanoides*

13. Stipe leaves spreading to squarrose .. 14
 – Stipe leaves appressed ... 15
14. Plants mostly between 2 and 6 cm long; stem leaves to c. 2 mm long; apical and median laminal cells with strongly incrassate and more or less porose walls Pinnatella makinoi

- Plants commonly to over 10 cm long; stem leaves to c. 2.8 mm long; apical and median laminal cells with fairly thin, solid walls .. Pinnatella taiwanensis

15. Leaf apices narrowly acute to acuminate; leaf margins nearly entire or faintly serrulate near apex ... 16

- Leaf apices acute to obtuse; leaf margins near apex distinctly serrate by uni- or (mostly) multicellular teeth ... 17

16. Plants autoicous, sporophytes common; branches not attenuate or filiform ... Forsstroemia trichomitria

- Plants dioicous, sporophytes rare; branches often attenuate or filiform .. Forsstroemia noguchii

17. Leaves with a long, linear-lanceolate acumen Taiwanobryum speciosum

- Leaves different ... 18

18. Costa strong, forming a distinct abaxial keel in dry leaves, ending near leaf apex; leaf apex moderately serrate by uni- or multicellular teeth Thamnobryum subserratum

- Costa weaker, not forming a keel in leaves, reaching to c. 3/4 at most; leaf apex very strongly serrate to incised by multicellular teeth .. 19

19. Plants strongly glossy and complanate; costa absent or reaching 1/5(–1/4) of leaf length at most ... Homaliodendron pulchrum

- Plants dull or glossy, complanate or not; costa reaching to 1/3 or 3/4 of leaf length 20

20. Laminal cells especially in branch leaves and near leaf apices distinctly mammillose Homaliodendron papillosum

- Laminal cells smooth or very slightly bulging ..21

21. Capsules immersed ... Homaliodendron neckeroides

- Capsules exserted .. 22

22. Plants remotely and irregularly branched; stipe leaves ovate, apex obtuse .. Homaliodendron montagneanum

- Plants often densely and ± regularly branched; stipe leaves ovate to triangular, apex acute ...

.. 23

23. Branch leaves broadly spathulate or obovate Homaliodendron flabellatum

- Branch leaves narrower .. 24

24. Branch leaves nearly symmetric, lingulate Homaliodendron cf. ligulaefolium

- Branch leaves asymmetric, mostly ovate to spathulate ... Homaliodendron cf. scalpellifolium
2.1 Circulifolium S. Olsson, Enroth & D. Quandt

Circulifolium is a genus of two species, both distributed in China. It was segregated from *Homaliodendron* M. Fleisch. by Olsson *et al.* (2010). Ninh (1984) treated it as *Homaliodendron* sect. *Circulifolia*, but it is more closely related to *Neckeropsis* s.l., *Caduciella* Enroth and *Himantocladium* (Mitt.) M. Fleisch. than to *Homaliodendron* M. Fleisch. *s.str.* *Circulifolium* differs from the latter genus by having more or less spatulate leaves with rounded, entire or slightly dentate apices, and filiform instead of leaf-like pseudoparaphyllia.

One species is known from Hunan. Brotherus (1929) cited also *Circulifolium microdendron* (Mont.) S. Olsson, Enroth & D. Quandt (as *Homaliodendron microdendron* (Mont.) M. Fleisch.) from the province, but that specimen *(Handel-Mazzetti 2293, H-BR11493)* represents a small, glossy form of *H. flabellatum* (Sm.) M. Fleisch.

1. *Circulifolium exiguum* (Bosch & Sande Lac.) S. Olsson, Enroth & D. Quandt

Taxonomy. *Circulifolium exiguum* is characterized by very slender, irregularly branched plants with strongly complanate leaves.

Illustrations (all as *Homaliodendron exiguum*), Fleischer 1908: 899 (fig. 157, “156”); Ninh 1984: 13 (fig. 5); Enroth 1989: 59 (fig. 7); Noguchi 1989: 715 (fig. 315A).

Habitats, substrates and range in Hunan (Fig. 2). *Circulifolium exiguum* was first reported from Hunan by Koponen *et al.* (2000, as *Homaliodendron exiguum*, not cited in Jia & He 2013). *Hupingshan*. 59. 53328, mixed with *Pinnatella makinai*, primary evergreen broadleaf forest, 550–700 m, on stump. *Mangshan*. 4b. 51441, 51442, mixed with *Hypopterygium* sp., meridional mixed forest, on tree trunks at 640 m (Koponen *et al.* 2000, as *Homaliodendron exiguum*). *Taoyuandong*. 20a. 57249, Zhuliang waterfall, 670 m. *Yuankou*. 74b. 59911, at trail side along river, on tree base at 330–400 m. 78c. 59685, bamboo forest with remnant trees of original evergreen broadleaf forest and *Pinus massoniana* on steep slope at 700–870 m. 79b. 59611, mixed with *Homaliodendron cf. scalpeliferum*, primary broadleaf evergreen and deciduous forest, 950–1000 m, on outcrop. – Frequency in Hunan: Rare.

Range in China. *Circulifolium exiguum* is a tropical-subtropical species, in China known from most of the southern provinces, the northernmost localities being in Xizang and Jiangsu (Redfearn et al. 1996, Wu 2011a). According to Wu (2011a), it grows between 160–1850 m on trees and shaded rock surfaces.

Total range (Ninh 1984, Enroth 1989). Afr 3; As 2: Chi Ja Tai, As 3: Bu In Ne Sri Tha Vi, As 4: Ind Ma Phi PNG; Austr 1; Oc: Fij.

2.2 Forsstroemia Lindb.

Forsstroemia was revised by Stark (1987) who recognized 10 species. Olsson *et al.* (2011) determined that the genus belongs in the Neckeraeae and more specifically in the *Neckera* clade and transferred two species from *Neckera* to *Forsstroemia*. According to Zhang and He (2011), six species were known from China but Jia and He (2013) added two species. The latter authors cite *Forsstroemia cryphaeoides* Cardot from Hunan, based on the report by Koponen *et al.* (2004). However, that species does not occur in Hunan (see Doubtful and excluded records, below). Three species of *Forsstroemia* are known from Hunan.

2. *Forsstroemia noguchii* L.R. Stark

Taxonomy. The specimen of *Forsstroemia noguchii* (below), which consists of only two shoots, is typical of the species, having irregularly branched, slender, attenuate stems and flexuose branches (Stark 1987).

Illustrations. Stark 1987: 189 (fig. 30); Zhang & He 2011: 141 (pl. 301: 1–4).

Habitat, substrate and range in Hunan. *Forsstroemia noguchii* has not previously been recorded to Hunan (Jia & He 2013). Badagongshan. 40a. 50438, mixed with *Homaliodendron cf. ligalaefolium*, primary, dry deciduous-evergreen forest, at c. 1300 m, tree trunk. – Frequency in Hunan: Very rare.

Range in China. *Forsstroemia trichomitria* is known from 11 provinces in China (Jia & He 2013). According to Zhang and He (2011), it grows on tree trunks and rocks between 850 and 2400 m.

Total range (Stark 1987, Zhang & He 2011). Am 1, Am 5, Am 6, As 1 (Russian Far East), As 2: Chi Ja Kor, As 3: Ne.

4. *Forsstroemia yezoana* (Besch.) S. Olsson, Enroth & D. Quandt

Taxonomy. *Forsstroemia yezoana* has long been recognized as *Neckera yezoana*, probably due to the undulate leaves and relatively weak costa, thought to be typical of most species of *Neckera*. It can usually be recognized by the somewhat turgid habit (because the leaves are not complanate) and narrowly ovate to lanceolate leaves with thick-walled cells. Especially distal branch leaves are often somewhat homomallous.

Illustrations (as *Neckera yezoana*). Noguchi 1989: 703 (fig. 310B); Wu 2011a: 357 (pl. 382, figs. 1–12).

Habitats, substrates and range in Hunan. Reported from Badagongshan. 42a. 64784, 64851, 64985, trunk of *Tapiscia sinensis* at 1370 m (Enroth & Koponen 2003). Hupingshan. 58. 53606, river valley in primary evergreen broadleaf forest, tree trunk at 550 m. – Frequency in Hunan: Very rare.

Range in China. *Forsstroemia trichomitria* was described as high elevation (950–2099 m) primary evergreen broadleaf forests, mixed evergreen and deciduous forests or deciduous forests. At lower elevations it was taken from secondary forests, in bamboo, *Phellodendron sinense* and *Cunninghamia lanceolata* plantations, in grazed open or semi-open secondary forests and along trail in orchards at
430–1550 m (Fig. 1). It is mainly epiphytic as the statistics for the specimens reported here shows: Tree trunk (25), tree base (1), log (1), bush (1), rock (3), cliff (1) and litter (1). Eight of the specimens from tree trunks were collected on *Tapiscia sinensis*. – Frequency in Hunan: Rather rare.

Range in China. Redfearn *et al.* (1996, as *Neckera yezoana*) and Jia and He (2013) listed *Forsstroemia yezoana* from 10 Chinese provinces, and Wu (2011a) cited specimens from nine provinces. Wu (2011a) gives the altitudinal range of 1000–2900 m, and states that it grows on trees, rotten logs and rock surfaces. Total range (Noguchi 1989, Wu 2011a). As 1 (Russia, Sakhalin), As 2: Chi Ja Kor.

2.3. Homalia Brid.

He (1997) recognized five species in *Homalia*. Of those, the South and Central American *H. glabella* (Hedw.) Schimp. was transferred to *Thamnmodalia* S. Olsson, Enroth & D. Quandt by Olsson *et al.* (2010) and *Homalia pennatula* (Mitt. ex Dixon) S. He & Enroth actually belongs in *Symphyodon* Mont. (Olsson *et al.* 2009a) and should be recognized as *S. pennatulus* (Mitt. ex Dixon) Dixon. One species of *Homalia* is known from China.

5. Homalia trichomanoides* (Hedw.) Brid. var. trichomanoides

Taxonomy. *Homalia trichomanoides* var. *trichomanoides* is a well-known taxon in the temperate regions of the northern hemisphere (see the Illustrations). *H. trichomanoides* var. *japonica* (Besch.) S. He is smaller than var. *trichomanoides*, and also differs from it by being dioicous (He 1997, Wu 2011a). The variety *japonica* is much rarer in China than var. *trichomanoides* (Wu 2011a).

Habitat, Substrate and Range in Hunan. Changsha City. 1. 48982, 49386, meridional evergreen forest on tree bases in shadow at 50 m (Koponen *et al.* 2000). – Frequency in Hunan: Very rare. Range in China. In China *Homalia trichomanoides* var. *trichomanoides* was previously known from several provinces mainly in the central and northern parts of the country (Redfearn *et al.* 1996, Wu 2011a, Jia & He 2013). Total range. According to He (1997), *H. trichomanoides* var. *trichomanoides* is widely distributed mainly in the temperate regions of the northern hemisphere. Am 1; Am 2 (Mexico); Eur; As 1, As 2: Chi Ja Kor, As 3: Bhu In.

2.4. Homaliodendron M. Fleisch.

Homaliodendron s.str. (*Circulifolium* excluded) contains distinctly stipitate, frondose and mostly medium-sized to robust plants with very coarsely serrate leaf apices (Olsson *et al.* 2010), corresponding to Ninh’s (1984) *Homaliodendron* sect. *Homaliodendron*.

There are nine species of *Homaliodendron* s.str. reported from China. That number includes
H. neckeroides Broth. which was treated in Neckera by Wu (2011a), H. fruticosum (Mitt.) S. Olsson, Enroth & D. Quandt, known from Yunnan but absent from Wu (2011a), and Homaliodendron pulchrum L.Y. Pei & Y. Jia, which was described too recently (Pei et al. 2011) to be included in Wu’s account.

Of the nine Chinese species, Homaliodendron montagneanum (Müll. Hal.) M. Fleisch., H. neckeroides and H. pulchrum are distinct and mostly easily identified, with the reservation that H. neckeroides is difficult to distinguish, if sporoophytes are not present. In principle also H. papillosum is distinct, if one assigns all specimens with more or less distinctly mammilllose leaf cells to it. However, the variability in plant stature, leaf shape, strength of costa, and leaf areolation in such material is inconveniently wide.

Jia and He (2013) cite also Homaliodendron opacum Nog. and H. undulatum Nog. from China. However, both names were treated as taxonomic synonyms of H. papillosum Broth. by Su (1988; not seen by us but cited by Wu 2011a).

Enroth (1989) adopted a very wide concept of H. flabellatum based on New Guinea material, encompassing also expressions that Wu (2011a) treated as H. ligulaefolium and H. scalpellifolium. That wide concept was followed by Koponen et al. (2000). It seems that the variability in China is not quite as continuous as in New Guinea, and therefore we here recognize H. cf. ligulaefolium and H. cf. scalpellifolium. We also re-examined the specimens reported as H. flabellatum from Mangshan and Wulingyan by Koponen et al. (2000) and list them here according to the present narrower species concept. Wu (2011a) published some of our collection as H. flabellatum; these are here re-identified. The main distinctions reside in the shape of the branch leaves, and they are not clear-cut. It seems that the specific boundaries in this assemblage can hardly be worked out without systematic studies based on molecular data and a geographically wide sampling of specimens. The ranges of these three taxa in Hunan (Figs. 1 and 2) do not support the separation to different species. All of them have been collected in both orotemperate and meridional zones, and from the same or nearby localities.

Six to eight species of Homaliodendron s.str. are known from Hunan, depending on whether one recognizes H. ligulaefolium and H. scalpellifolium as distinct species.

6. Homaliodendron flabellatum (Sm.) M. Fleisch.

TAXONOMY. The specimens Koponen et al. 55098, 55142 and 55144 (also in Wu 2011a), all from Taoyuandong from between 745 and 800 m, represent a very distinctive expression. They are strongly glossy and strongly complanate, resembling H. pulchrum in those characters. One would be tempted to formally recognize them at least at the subspecific level, but given the great intraspecific variability of H. flabellatum, such a conclusion would need support from molecular data.

HABITATS AND SUBSTRATES IN HUNAN. Most of the collections were taken in either primary or second growth meridional evergreen broadleaf forests, and some specimens from sites disturbed by grazing or from bamboo groves at 400–1350 m (Fig. 1). One specimen was taken at 1500 m in mixed primary deciduous – evergreen forest. Substrates: Tree trunk (6 specimens), dead tree (1), twig (1), cliff (4) and top of outcrop (2). – Frequency in Hunan: Rather rare.

RANGE IN HUNAN. Rao et al. (1997, Note 10) gave two references, as Homaliodendron squarrosulum M. Fleisch. and H. ligulaefolium (Mitt.) Fleisch. in which no voucher specimens were
cited. It was recorded from Changsha City by Brotherus (1929, as *H. microdendron*, see Chapter 2.1). **Badagongshan.** 50. 50109. 92. 61178. **Daweishan.** DAW18. 61841. DAW27. 61883. **Mangshan.** 9a. 49081. 11c. 51329. **Shunhuangshan.** S8. 70680. S9. 70694. **Taoyuandong.** 21a. 55098. 21c. 55142, 55144. 28. 56554. 31. 55424. **Wulingyuan.** 16a. 52872. **Yunshan.** Y6a. 70087.

Range in China. *Homaliodendron flabellatum* is widely distributed in central and southern China (Redfearn *et al.* 1996, Wu 2011a, Jia & He 2013). It grows on tree trunks and rocks at 250–2800 m (Wu 2011a).

Total range (Enroth 1989, Buck 1998). Afr 3; Am 2, Am 3, As 2: Chi Ja Ta, As 3: Bhu Bu In La Ne Sri Tha Vi, As 4: Ind Ma Phi PNG; Austr 1 (Queensland); Oc: Haw NC.

Taxonomy. If one compares the illustrations of *H. flabellatum* and *H. ligulaefolium* in Ninh (1984) and Wu (2011a), the distinction between those two appears to be clear, especially in the leaf shape. In fact there is almost a morphological continuum from the narrow-leaved plants (“*H. ligulaefolium*”) to the wide-leaved ones (“*H. flabellatum*”), and “*H. scalpellifolium*” is somewhere in between these two extremes.

Illustrations. Ninh 1984: 22 (fig. 10); Wu 2011a: 332 (pl. 372, figs. 10–19).

Habitats and substrates in Hunan. Most of the collections came from primary forests. In the meridional zone it grows in both primary and second growth broadleaf evergreen forests at 640–1250 m (Fig. 2). The disturbed sites were such as *Metasequoia glyptostroboides* plantation, cut *Cunninghamia lanceolata* – *Pinus massoniana* forest on ridge and mature secondary evergreen forest. The localities in evergreen – deciduous mixed forests, pure deciduous forests and mixed evergreen – deciduous bushes at 1240–1860 m were all primary. *Homaliodendron ligulaefolium* is rather obligatory epiphyte. Substrate statistics: On tree or trunk (15 specimens), rotten bark (1), base of tree (2), fallen log or tree (2), rotten twig (1), climber (1), bush (1) and rock outcrop (2). – Frequency in Hunan: Rather rare.

Range in Hunan. The specimens from Mangshan reported as *H. flabellatum* by Koponen *et al.* (2000) are *Homaliodendron* cf. *ligulaefolium*. P.-C. Wu (2011a) reported one collection of *H. ligulaefolium* from Hunan, Mt. Hengshan. **Badagongshan.** 40a. 50438 (mixed with *Forsstroemia noguchii*), 55620. 45. 55527. 47. 48946. 50. 48757, 50102. 55a. 47910 (Wu 2011a, as *H. flabellatum*), 47914, 54257. 55b. 54372. 86b. 58680 (mixed with *H. papillosum*). **Huipingshan.** 69. 54098. 70. 54069 (Wu 2011a, as *H. flabellatum*). **Mangshan.** 4b. 51217, 51391, 51401, 51679. 7a. 50929. 7c. 50883. 7d. 51054. 7e. 50642. 9a. 49429, 49517. 10c. 51031, 51265. 12b. 50575. **Taoyuandong.** 27. 56524. 31. 57366, 57411. 33. 56739. **Yunshan.** Y7a. 70135.

Range in China. Wu (2011a) listed specimens from Guangdong, Hunan, Jiangxi, Taiwan, and Yunnan; Jia and He (2013) added Anhui, Henan, Chongquin, Guizhou and Zhejiang provinces. Wu (2011a) lists rock surfaces and trees at 1300 m as the substrate.

Total range (Ninh 1984, Wu 2011a). As 2: Chi, As 3: Sri Vi, As 4: Ind Phi PNG; Oc: NC.

Taxonomy. *Homaliodendron montagneanum* can be distinguished by the remote and irregular mode of branching and by the obtuse apices of stipe leaves.
Illustrations. Ninh 1984: 18–20 (figs. 7–9); Wu 2011a: 335 (pl. 373, figs. 7–13).

Range in Hunan. Wu (2011a) cited Homaliodendron montagneanum from E Hunan (Mt. Hengshan), but we have not seen any specimens from the province.

Range in China (Wu 2011a, Jia & He 2013). Fujian, Guangdong, Guangxi, Hubei, Hunan, Sichuan, Taiwan, Xizang, Yunnan. According to our experience, it is relatively common in SW China, especially in Yunnan. According to Wu (2011a), it grows on rocks and trees between 2200 and 3500 m.

Total range (Ninh 1984, Long 1994). As 2: Chi, As 3: Bhu Bu In Ne Tha, As 4: Ind.

9. Homaliodendron neckeroides Broth. in Hand.-Mazz.

Taxonomy. Due to the immersed sporophyte, Homaliodendron neckeroides was treated as Neckera neckeroides by Enroth and Tan (1994) and Wu (2011a), but it belongs in Homaliodendron after all (Olsson et al. 2010), as the gametophyte morphology indeed would suggest. When sporophytes are absent, it is difficult to distinguish it from some expressions of H. flabellatum.

Illustrations. Enroth and Tan 1994: 54 (fig. 1); Wu 2011a: 349 (pl. 379, figs. 14–25).

Range in China. Homaliodendron neckeroides is a central Chinese endemic, confirmed from Guizhou, Hunan and Shaanxi (Wu 2011a, Jia & He 2013). Redfearn et al. (1996) cited it also for Zhejiang. According to Wu (2011a), it grows “often on tree trunks” at 1000 m.

Homaliodendron crassinervium Thér. var. bacvietensis Tixier, Rev. Bryol. Lichénol. 34: 146. 1966.

Taxonomy. Homaliodendron papillosum is very variable, and it should be studied whether there in fact are more than just one species of Homaliodendron with distinctly mammillose leaf cells. The mammillosity is usually more pronounced in branch leaves than in stem leaves, and around midleaf rather than in the basal or apical parts of leaves. Sometimes the stem leaves can have smooth cells, while the branch leaves from the same frond have distinctly mammillose cells. The juxtacostal cells are often smooth. According to Ninh (1984), the laminal cells can be “papillose” or smooth, and he emphasized “irregularly and strongly plicate” dry leaves as a good distinguishing character of H. papillosum.
Habitats and substrates in Hunan. Most collections of *Homaliodendron papillosum* were taken in meridional zone at 550–1380 m (Fig. 1) both in primary and secondary forests. The localities with heavy human impact were described as hotel garden and forest edge, young *Cunninghamia lanceolata* and palm plantation, semi-open grazed secondary forest, bamboo forest with remnant trees of original broadleaf evergreen forest, trail-side in orchards and road-side. The high elevation deciduous forest and mixed forest of evergreen and deciduous trees at 900–1580 m were primary. It is mainly epiphytic on tree trunks and secondly grows on cliffs, especially vertical ones. The many kinds of substrates and habitats may explain why it is the most common species of the Neckeraceae in Hunan. Substrate statistics: Tree trunks (44 specimens), tree base (4), branch (4), tree root (1), stump (2), rotten trunk (1), bush (2), fallen branch (2), log (2), rotten twig (1), cliff (7), rock outcrop (9) and bolder (4). – Frequency in Hunan: Moderately common.

Range in China. *Homaliodendron papillosum* has been recorded from western, central and southern China (10 provinces in Wu 2011a, 9 provinces in Jia & He 2013) and collected between 680 and 2200 m on rocks, tree trunks and rotten logs (Wu 2011a).

Total range (Ninh 1984, Wu 2011a). As 2: Chi; As 3: Bhu Ne Vi.

Taxonomy. *Homaliodendron pulchrum* has strongly glossy and strongly complanate fronds and the costa is almost absent or reaching to c. 1/4 of leaf length at most, being usually much shorter than that.

Illustrations. Pei et al. 2011: 138 (fig. 2).

Habitats, substrates and range in Hunan (Fig. 1). **Mangshan.** 4b. 51443, 51517, along river shores and in meridional evergreen mixed forest at 800 m, on tree trunk. These specimens were reported as *H. flabellatum* by Koponen et al. (2000). **Hupingshan.** 58. 53719, evergreen broadleaf forest on tree trunk at 550 m. 59. 53271, evergreen broadleaf forest on tree trunk at c. 640 m. **Wulingyuan.** Zhangjiajie (Pei et al. 2011). – Frequency in Hunan: Very rare.

Range in China. This very distinctive Chi-
The plants we treat as Homaliodendron cf. scalpellifolium are more or less intermediate between the narrow-leaved H. cf. ligulaefolium and the wide-leaved H. flabellatum. The costa tends to be somewhat shorter than in the other Chinese species of Homaliodendron (excluding H. pulchrum), but even that is not a clear-cut distinction.

Illustrations. Noguchi 1989: 717 (fig. 316); Wu 2011a: 337 (pl. 374, figs. 7–14).

Habitats and substrates in Hunan. All collections of Homaliodendron cf. scalpellifolium were obtained in forests, often along brook sides or creeks, either in primary or in second growth broadleaf evergreen forests at 400–1500 m (Fig. 2), or in primary mixed evergreen and deciduous forests at higher elevations, at 1200–1580 m. Only a few specimens came from sites heavily disturbed by human activities such as forest grazing or bamboo cultivations. Substrates: Tree trunk or bark (7 specimens), tree base (1), rotten twig or log (2), stump (1), cliff (7), rock outcrop (1), humus (1) and gravel (1). – Frequency in Hunan: Rather rare.

Range in Hunan. Homaliodendron scalpellifolium was recorded for Hunan by Wu (2011a). Most of the specimens from Mangshan were reported as H. flabellatum by Koponen et al. (2000). Badagongshan, 40b. 50451. 44a. 54507. 50. 50110. 52. 54702. 55a. 54332. 88b. 59005. Daweishan. DAW17. 61964 (Wu 2011a, as H. flabellatum). DAW27. 61873, 61950. Mangshan. 3b. 51736. 4b. 51134, 51509. 7a. 50955. 9a. 49162. 12a. 49579. Shunhuangshan. S9. 70785. S12a. 70832 (mixed with Thamnobryum subserratum). S16. 71048, 71066 (mixed with Forstroemia yezoana). Taoyuandong. 21a. 54957. 21d. 55928. 24. 56952. 32. 57200. 34. 57059 (Wu 2011a, as H. flabellatum). Yuankou. 75b. 59452 (Wu 2011a, as H. flabellatum), 59453. 79b. 59611 (mixed with Circulifolium exiguum).

Range in China. If one follows Wu’s (2011a) concept, this is the most common species of Homaliodendron in China. Wu (and Jia & He 2013) cited specimens from 17 provinces and said it grows on shaded and wet rocks and trees at 500–3600 m.

Total range. Afr 3: (Mauritius); As 2: Chi Ja, As 3: In La Ne Sri Vi, As 4: Ind Ma Phi PNG; Oc: NC.

2.5. Neckera Hedw.

The genus Neckera in its traditional circumscription has been shown to be an unnatural assemblage of species (Olsson et al. 2011) sharing some superficial resemblance, often expressed as glossy, undulate, asymmetric and acute-tipped leaves and immersed capsules.

Wu (2011a) treated a total of 17 species in Neckera. Of those, N. crenulata Harv. has been transferred to Taiwanobryum (Olsson et al. 2010), N. yezoana and N. goughiana Mitt. to Forstroemia (Olsson et al. 2011), and N. neckeroides belongs into Homaliodendron (see above). Wu (2011a) did not treat several species reported from China before 2011, including N. enrothiana M.C. Ji (Ji & Miao 2009), N. xizangensis Enroth (Enroth & Ji 2010), N. bhutanensis Nog., N. pusilla Mitt. and N. denigricans Enroth (Ji & Enroth 2010). Therefore, the identification key in Wu (2011a) is inadequate, and an updated key was published by Enroth (2017).

Five species of Neckera s.str. are known from Hunan.

Chinese endemic is known from Sichuan, Guangxi and Hunan (Pei et al. 2011, Jia & He 2013) from between 450 and 1200 m.

Total range. (Pei et al. 2011). As 2: Chi.

Illustrations. Noguchi 1989: 717 (fig. 316); Wu 2011a: 337 (pl. 374, figs. 7–14).

Habitats and substrates in Hunan. All collections of Homaliodendron cf. scalpellifolium were obtained in forests, often along brook sides or creeks, either in primary or in second growth broadleaf evergreen forests at 400–1500 m (Fig. 2), or in primary mixed evergreen and deciduous forests at higher elevations, at 1200–1580 m. Only a few specimens came from sites heavily disturbed by human activities such as forest grazing or bamboo cultivations. Substrates: Tree trunk or bark (7 specimens), tree base (1), rotten twig or log (2), stump (1), cliff (7), rock outcrop (1), humus (1) and gravel (1). – Frequency in Hunan: Rather rare.

Range in Hunan. Homaliodendron scalpellifolium was recorded for Hunan by Wu (2011a).

Taxonomy. The plants we treat as Homaliodendron cf. scalpellifolium are more or less intermediate between the narrow-leaved H. cf. ligulaefolium and the wide-leaved H. flabellatum. The costa tends to be somewhat shorter than in the other Chinese species of Homaliodendron (excluding H. pulchrum), but even that is not a clear-cut distinction.

Illustrations. Noguchi 1989: 717 (fig. 316); Wu 2011a: 337 (pl. 374, figs. 7–14).

Habitats and substrates in Hunan. All collections of Homaliodendron cf. scalpellifolium were obtained in forests, often along brook sides or creeks, either in primary or in second growth broadleaf evergreen forests at 400–1500 m (Fig. 2), or in primary mixed evergreen and deciduous forests at higher elevations, at 1200–1580 m. Only a few specimens came from sites heavily disturbed by human activities such as forest grazing or bamboo cultivations. Substrates: Tree trunk or bark (7 specimens), tree base (1), rotten twig or log (2), stump (1), cliff (7), rock outcrop (1), humus (1) and gravel (1). – Frequency in Hunan: Rather rare.
13. **Neckera decurrens** Broth.

Taxonomy. *Neckera decurrens*, originally described from Hunan (see above), appears to be close to *N. flexiramea*, and the best distinction is in the width of the upper parts of the decurrencies (see the key). There is no consistent difference in the length of the costa, although the descriptions and illustrations in Wu (2011a) would seem to suggest so. Indeed, in the holotype of *N. decurrens* the costae are mostly very short, just as in *N. flexiramea*. That species is more slender than *N. decurrens*, and often has more or less arcuate branches (hence the specific epithet). If sporophytes are present, distinguishing the two species is easy, as *N. decurrens* has an immersed capsule, whereas that of *N. flexiramea* is exserted on a 3–4 mm long seta (Wu 2011a).

Illustrations. Wu 2011a: 344 (pl. 377, figs. 1–11).

Habitats and substrates in hunan. *Neckera decurrens* was collected in the meridional primary and disturbed evergreen broadleaf and in primary orotemperate deciduous forests at 550–1860 m (Fig. 1). Man-made habitats were such as *Metasequoia glyptostroboides, Magnolia officinalis* subsp. *biloba* and *Tapiscia sinensis* plantations. The present specimens were collected from tree trunk (4), climber (2), tree base (1), decaying stump (1), fallen twig (1) and stone (1). The following trees were identified: *Prunus grayana, Fagus longipetiolata, Symlocos* sp. − Frequency in Hunan: Rare.

Range in china. *Neckera decurrens* was previously known from China and is here reported for the first time from Vietnam (see below). Wu (2011a) cited specimens from Guizhou, Hubei, Hunan and Yunnan, but according to Redfearn et al. (1996) and Jia and He (2013), it has also been reported from Guangxi. It has been recorded at 150–2000 m from tree trunks and shaded rocks (Wu 2011a).

14. **Neckera flexiramea** Cardot

Taxonomy. For the differences between *Neckera flexiramea* and *N. decurrens*, see discussion under the latter. These two species appear to be the most common ones of *Neckera s.str.* in Hunan.

Illustrations. Noguchi 1989: 701 (fig. 309A); Wu 2011a: 344 (pl. 377, figs. 12–23).

Habitats and substrates in hunan. Most of the collections were collected in primary or secondary evergreen broadleaf forests at
550–1350 m (Fig. 1). One collection was taken in primary dry mixed evergreen and deciduous forest at c. 1300 m and one from plantation of Phellodendron chinense and other trees. Substrate statistics for the present specimens: Tree trunk (10), tree branch (2), fallen branch (2), climber (1) and cliff (1). The identified trees were Tapisicia sinensis (2 records) and Eurya sp. (1 record). – Frequency in Hunan: Rare.

Range in China. Wu (2011a) and Jia and He (2013) cited specimens of Neckera flexiramea from Anhui, Chongqing, Guangxi, Hunan and Taiwan, but Redfearn et al. (1996) mentioned it also from Sichuan and Zhejiang. According to Wu (2011a), it grows on tree trunks and rock surfaces at 960–1150 m.

Total range (Noguchi 1989, Wu 2011a). As 2: Chi Ja Kor.

15. Neckera inopinata Enroth & M.C. Ji

Polish Bot. J. 57(1): 64. 2012. – Holotype: China. Hunan. Wulingyuan World Heritage Area, Zhangjiajie, Pipajie meridional zone, on roadside bushes, 687 m, on Liquidambar formosana, collection site 80, 15.IX.1999 P. Rao 58379 (H). – The paratype from Zhejiang (T. Simon 39 in EGR) was collected in Cryptomeria japonica forest at 1000 m.

Taxonomy. Neckera inopinata resembles especially N. konoi Broth. ex Cardot, N. coreana Cardot (which was excluded from the Chinese flora by Wu 2011a), N. humilis Mitt. and N. setschwanica Broth. (Enroth & Ji 2012). From the first two it can be distinguished by the less strongly asymmetric leaves and by the shorter apical and median laminal cells which also have much less distinctly porose walls. From the latter two N. inopinata differs especially by the absence of paraphyllia, which are consistently present in N. humilis and N. setschwanica (cf. Wu 2011a). The leaf shape variability, from ovate-lingulate to ovate, in the Badagongshan specimens reported here is just as clear as in the type material, and such variability is not present in any of the other species of comparison. The leaf margins of N. inopinata are sharply serrulate almost to the base, which is a further distinctive character.

Habitats, substrates and range in Hunan. Neckera inopinata was in the protologue reported from Wulingyuan in Hunan, and here we report a new locality in Badagongshan. 42b. 64872, only few small shoots mixed with N. decurrens and Homaliodendron sp., meridional forest on cliffs, trunk of Prunus grayana at 1400 m. Wulingyuan. 80. 58379, see above. – Frequency in Hunan: Very rare.

Total range. As 2: Chi.

16. Neckera konoi Broth. ex Cardot

Taxonomy. The present plants of Neckera konoi are quite small, but the other characters match the published descriptions and illustrations (Noguchi 1989, Wu 2011a).

Illustrations. Noguchi 1989: 705 (fig. 311B).

Habitat, substrate and range in Hunan.
Neckera konoi has not previously been recorded to Hunan (Jia & He 2013). Hupingshan. 72. 49877, Hupingshan Peak area, lower part of deciduous forest, at c. 2000 m on tree trunk. – Frequency in Hunan: Very rare.

Range in China. In China Neckera konoi was previously known from Anhui and Sichuan (Wu 2011a, Jia & He 2013), growing on tree bark at 1600 m (Wu 2011a). – New to Hunan.

Total range (Wu 2011a). As 2: Chi Ja Kor.

Taxonomy. Neckera setschwanica is distinctive by the following combination of characters: proximal leaf margins that are often recurved in the basal part of leaves; costa that reaches from 1/2 to c. 2/3 of leaf length; elongate apical leaf cells; thick and porose walls of apical and laminal cells; and by the presence of paraphyllia. In the Chinese flora N. setschwanica resembles especially N. humilis Mitt., but that species has more concave leaves and shorter leaf cells (Wu 2011a).

Habitat, substrate and range in Hunan. Neckera setschwanica has not previously been recorded to Hunan (Jia & He 2013). Hupingshan. 58. 53639, primary evergreen broadleaf forest in river valley, moist, partially shaded cliff at 550 m, mixed with Homaliadelphus targioni-anus and several other non-neckeraceous mosses. – Frequency in Hunan: Very rare.

Range in China. Neckera setschwanica was long considered as a Chinese endemic, but it was recently reported from Bhutan (Enroth 2017). In China it was previously known from Sichuan, Xizang and Yunnan (Wu 2011a, Jia & He 2013). According to Wu (2011a), N. setschwanica grows on tree trunks and rock surfaces between 1500 and 3950 m, but based on the present specimen it can grow in suitable microhabitats at considerably lower altitudes. New to Hunan.

2.6. Neckeropsis Reichardt

Neckeropsis s.lat. is an essentially tropical genus with 29 species, of which two occur in Hunan. The genus is currently under study by the first author and his colleagues and it will be divided into several smaller genera based on molecular evidence. Neckeropsis s.lat. is quite a heterogeneous grouping, but it has traditionally been recognized by irregular, sparse mode of branching, non-stipitate shoots and a complanate leaf arrangement termed “pseudotetrasstichous” by Touw (1962).

J. Hattori Bot. Lab. 16: 124, fig. 1. 1956.

Taxonomy. Neckeropsis calcicola resembles the widely distributed tropical N. lepineana (Mont.) M. Fleisch. so much that in the absence of sporophytes the two cannot always be reliably distinguished from each other (Touw 1962, 1972). N. calcicola tends to have a longer costa, often reaching to midleaf, and slightly longer leaf cells with more porose walls.

Illustrations. Noguchi 1989: 713 (fig. 314); Wu 2011a: 360 (pl. 383, figs. 8–14).

Habitats and substrates in hunan. All collections of Neckeropsis calcicola came from rather low elevation in meridional zone at 350–600 m (Fig. 1). It grows both in primary evergreen broadleaf forests and in secondary forests, and was ones taken from rocks along river in valley surrounded by arable land. It favours rock as substrate but grows also on rotten wood and tree trunks. Substrate statistics: Cliff (5 specimens), stone or rock (4), stump (1), rotten
tree trunk (1), tree trunk (1) and bush (1). – Frequency in Hunan: Very rare.

Range in Hunan. *Neckeropsis calcicola* was recorded from Hunan by Enroth and Koponen (2003), Wu (2011a) and Jia and He (2013). **Badagongshan.** 39d. 64632 (Enroth & Koponen 2003), on vertical cliff by road over river, open. **Hupingshan.** 56b. 53941. 57. 48632. 58. 53622, 53635, 53725, 53790. 59. 53302 (= Shi-men Co., Wu 2011a), 53324. 60. 53886, 53888, 53923. **Wulingyuan.** Da-yong Co. (Wu 2011a).

Range in China. *Neckeropsis calcicola* is known from eight provinces in China (cf. Redfearn *et al.* 1996, Wu 2011a, Jia & He 2013) and grows on rocks and tree trunks at 290–3600 m (Wu 2011a).

19. **Neckeropsis nitidula** (Mitt.) M. Fleisch.

Taxonomy. This species is fairly easy to recognize, as the plants are strongly complanate and very glossy. It resembles *Homalia trichomanoides*, but is glossier and has more distinctly apiculate leaves and immersed capsules.

Illustrations. Touw 1962: 415 (pl. 19); Noguchi 1989: 709 (fig. 312); Wu 2011a: 365 (pl. 385, figs. 6–14).

Range in Hunan. Wu (2011a) cited *Neckeropsis nitidula* from E Hunan, Mt. Hengshan. It was not collected in any of the Helsinki University excursions in the province.

Range in China. *Neckeropsis nitidula* is known from eight provinces in China, including Hunan, and grows on tree trunks, rocks and soil walls at 120–2000 m (Wu 2011a).

20. **Pinnatella makinoi** (Broth.) Broth.

Taxonomy. *Pinnatella makinoi* has broadly ovate-lanceolate leaves which resemble those of *P. ambigu*a (Bosch & Sande Lac.) M. Fleisch., a species also known from China. However, *P. makinoi* can be distinguished by the only few well-differentiated stipe leaves, absence of a central strand in the stem, and the strongly incrassate and porose walls of laminal cells.

Illustrations. Noguchi 1989: 723 (fig. 319A); Enroth 1994a: 6 (fig. 3c), 45 (fig. 17); Wu 2011b: 376 (pl. 389, figs. 8–17).

Habitats, substrates and range in Hunan. *Pinnatella makinoi* was reported by Enroth and Koponen (2003) and Wu *et al.* (2011b) from **Hupingshan.** 58. Shi-men Co. (Wu 2011b, Koponen *et al.* 53726). 59. 53328, mixed with *Circulifolium exiguum*, primary evergreen broadleaf forest at c. 600 m, on stump. – Frequency in Hunan: Very rare.

The tropical genus *Pinnatella* was monographed by Enroth (1994a), who recognized 15 species. Olsson *et al.* (2010) transferred two of the species to *Taiwanobryum* and one to *Neckeropsis*, and shortly afterwards Enroth *et al.* (2010) described *P. homaliadelphoides* Enroth *et al.* from India and China. Thus there are currently 13 species placed in *Pinnatella*. The genus can be characterized by distinctly stipitate-frondose plants with recurved to squarrose stipe leaves and a strong costa in the leaves (except in *P. homaliadelphoides* Enroth *et al.*, see above under *Homaliadelphus*). There are usually in the leaves more or less distinct inframarginal borders consisting of elongate cells. The capsules are exserted and the setae rather distinctly mammillose in the upper part. Nine species are known from China (Wu 2011b) and two from Hunan.
Range in China. *Pinnatella makinoi* is known from six to seven Chinese provinces (Redfearn et al. 1996, Wu 2011b, Jia & He 2013). It favors (calcareous) rocks as substrate (Enroth 1994a), but grows also on tree trunks and is found between 600 and 3600 m (Wu 2011b).

Taxonomy. This large, shaggy species is relatively easy to identify. The fronds are elongate and up to about 20 cm long. The laminal cells are also much longer than in *P. makinoi* and *P. ambigu*a, with which it could be confused (Enroth 1994a).

Illustrations. Enroth 1994a: 5 (fig. 1c), 23 (fig. 10).

Habitat, substrate and range in Hunan. *Pinnatella taiwanensis* was reported from Hunan by Enroth and Koponen (2003, included in Jia & He 2013) from *Hupingshan*. 63. 54169, second growth forest, at c. 900 m, on cliff. – Frequency in Hunan: Very rare.

Range in China. Wu (2011b) cited specimens only from Taiwan. According to Enroth (1994a), *Pinnatella taiwanensis* grows on tree trunks and rocks. – New to mainland China.

22. *Taiwanobryum guangdongense* (Enroth) S. Olsson, Enroth & D. Quandt

Taxonomy. The best distinguishing characters of this species are the miniature fronds usually with caducous branch leaves. It could be confused with *Taiwanobryum mucronatum* (Bosch & Sande Lac.) S. Olsson, Enroth & D. Quandt and *T. anacamptolepis* (Müll. Hal.) S. Olsson, Enroth & D. Quandt, but they are somewhat more robust and have distinctly squarrose stipe leaves; those of *T. guangdongense* are appressed.

Illustrations. Enroth 1993: 472 (Fig. 1–7).

Range in Hunan. *Taiwanobryum guangdongense* was reported from Hunan (erroneously from Hupingshan) by Enroth and Koponen (2003, Jia & He 2913, as *Caduciella guangdongensis* Enroth). Taoyuandong. 20a. 57217, 57241, on tree trunk at 670 m. – Frequency in Hunan: Very rare.

Range in China. *Taiwanobryum guangdongense* was originally described from Guangdong (Enroth 1993, as *Caduciella guangdongensis*). Wu (2011c) mapped *Taiwanobryum guangdongense* from Guangdong and Taiwan, but it is also known from Hong Kong (So 1995) and Hainan (Zhang 1994; see also Akiyama & Enroth 2016).

Total Range. *Taiwanobryum guangdongense*...
gense is a SE Asian endemic (Wu 2011c, Akiyama & Enroth 2016): As 2: Chi, As 3: Vi.

Taxonomy. *Taiwanobryum speciosum* is a robust species and easy to identify by its 4–5 mm long leaves, which are long-lanceolate from an ovate base and have a strong, single costa. The cells have very strongly incrassate and rose walls nearly throughout the leaves.

Illustrations. Noguchi 1989: 645 (fig. 286); Wu 2011b: 183 (pl. 324, figs. 9–14).

Range in China. Redfearn et al. (1996) listed *Taiwanobryum speciosum* from Fujian, Guizhou, Guangxi, Hunan and Taiwan. Wu (2011b) cited specimens from Fujian, Taiwan and Yunnan and Jia and He (2013) added Zhejiang. The records from Guangxi and Hunan by Redfearn et al. (1996) are obviously based on literature without voucher citations. – Here confirmed for Hunan.

2.9. *Thamnobryum* Nieuwl.

Thamnobryum is a predominantly temperate genus of the Northern Hemisphere. Two SE Asian rheophytic species previously placed here are currently placed in *Touwia* Ochyra (Olsson et al. 2010). In the neckeraceous context *Thamnobryum* can be recognized by the often dull, dark-green, frondose or dendroid plants with closely appressed stipe leaves and a very strong, sometimes abaxially toothed, costa reaching near leaf apex. The seta is long and the peristome is of the unreduced hypnoid type. The closest relatives of the (still partly polyphyletic) *Thamnobryum* are *Homalia*, *Chileobryon* Enroth, *Pendulothecium* Enroth & S. He, *Echinodiopsis* S. Olsson, Enroth & D. Quandt, and the, as yet poorly defined, “Poro-clade” in the Neckeraeae (Olsson et al. 2011).

Wu (2011b) recognized three species of *Thamnobryum* in China. He did not consider *T. neckeroides* (Hook.) E. Lawton, which is known from the country (Mastracci 2003). The revision of the Russian species by Ignatova and Ignatov (2011) is very useful when identifying Chinese specimens.

One, very variable and rather common, species of *Thamnobryum* is known from Hunan.

Taxonomy. In Hunan, *Thamnobryum subserratum* can be recognized by its generic characters mentioned above.

Illustrations. Ignatova and Ignatov 2011: 149 (fig. 6); Wu 2011b: 384 (pl. 391, figs. 1–9).

Habitats and substrates in Hunan. Most of the collections of *Thamnobryum subserratum* were taken in the meridional zone at 550–1400 m (Fig. 2) both in primary and second growth evergreen broadleaf forests. At that elevations it occurs also in bamboo and *Cunninghamia lanceolata* plantations. Above 1400 m up to 1580 m
it was collected in primary mixed evergreen and deciduous and in pure deciduous forests. It favors moist or wet, shady habitats and grows most commonly on rocks, but also on tree bases, stumps and sometimes on tree trunks. The present specimens were growing on rock, stone, or outcrop (43), cliff (12), tree base (4), tree trunk (3), underhang (3), soil (2), rotten stump (2) and log (1). – Frequency in Hunan: Moderately common.

Range in China. Thamnobryum subserratum is known in China from eight provinces (Jia & He 2013). Wu (2011b) gives an altitudinal range of 650–1800 m.

Miyabeaceae was first recognized as a distinct family by Olsson et al. (2009b) and it contains the genera Homaliadelphus, Miyabea Broth. and Bissetia Broth. ex M. Fleisch., of which only Homaliadelphus is known from Hunan. That genus and the unispecific Bissetia have earlier been placed in the Neckерaceae, but the resemblance is only superficial. One distinction between the Neckерaceae and the Miyabeaceae is the frequent presence of dwarf males in the latter family; they have not been found in the Neckерaceae.

3.1. Homaliadelphus Dixon & P. de la Varde

Two species are generally recognized in Homaliadelphus: H. sharpii (R.S. Williams) Sharp and H. targionianus (Mitt.) Dixon & P. de la Varde. Both have been reported from China and several varieties have been described in both. The Hunanese material has larger leaves typical of H. targionianus (cf. Wu 2011a).

25. Homaliadelphus targionianus (Mitt.) Dixon & P. de la Varde

Taxonomy. Due to the small, complanate and irregularly branched plants and fairly similar leaf shape, Homaliadelphus targionianus can be confused with Circulifolium exiguum, which, however, has lobeless leaves with a distinct costa.

Illustrations. Noguchi 1989: 719 (fig. 317A); Wu 2011a: 327 (pl. 371, figs. 1–8).

Habitats, substrates and range in Hunan. Homaliadelphus targionianus was first reported from Hunan by Brotherus (1929) from Changsha City (Handel-Mazzetti 11448, H-Br 1991020) and Xinhua (“Hsinhwa”, Handel-Mazzetti 11870 and 11871, H-Br1991021 and H-Br1991022, respectively, as Homaliopsis targioniana). Badagongshan. Sang-zhi Co. (Wu 2011b). Hupingshan. 58. 53621, mixed with
Homaliodendron papillosum, in primary evergreen broadleaf forest in river valley at 550 m, on climber, 53639, mixed with Neckera setschwaniaca and other mosses. Shunhuangshan. S9. 70695, secondary evergreen broadleaf forest, at c. 850 m, on tree trunk. Taoyuandong. 20a. 57219, mixed with Homaliodendron papillosum and Fissidens dubius, around Zhu-lian waterfall and its brook, at 670 m. 21a. Yan-ling Co. (Wu 2011b, Koponen et al. 55000). 21c. 55007, bamboo forest, at c. 670 m, both on trunk of Tilia. Wulingyuan. 16c, 17a, 18e, 19b, 19c (Koponen et al. 2000). – Frequency in Hunan: Rare.

Total distribution (Noguchi 1989, Tan & Iwatsuki 1993): As 2; Chi Ja Kor, As 3: Bhu (cf. Long 1994) In Ne (Enroth 1994b) Tha Vi.

4. Doubtful and excluded records

Forsstroemia cryphaeoides Cardot

This species was reported from Hunan by Koponen et al. (2004) based on one specimen from Changsha (Koponen et al. 48965) and one from Badagongshan (Koponen et al. 48750). The first author of the present paper re-examined the specimens and they represent Pseudoleskeella sp.; we cannot verify their specific identity at this time. Forsstroemia cryphaeoides is thus excluded from Hunan flora.

Neckeropsis lepineana (Mont.) M. Fleisch.

Jia and He (2013) listed Neckera lepine-

ana from Hunan. It is not listed from Hunan by Wu (2011a) and was not found in our collections.

Pinnatella alopecuroides (Mitt.) M. Fleisch.

Jia and He (2013) listed Pinnatella alopecuroides from Hunan. It is not reported from Hunan by Wu (2011a) and was not found in our collections.

5. Discussion

5.1. Range extensions

New to mainland China and Hunan

Pinnatella taiwanensis

New to Hunan

Forsstroemia noguchii
Neckera konoi
N. setschwaniaca
Taiwanobryum speciosum (confirmed)

New to Vietnam

Neckera decurrens

5.2. Phytogeography; floristic elements

Koponen and Piippo (2004) reviewed the previous literature of the floristic elements in East and Southeast Asia. Since then, the geographical distribution of the Hunanese bryoflora has been discussed and taxa of several families or genera have been grouped to floristic elements by various authors: species of several genera (Koponen et al. 2004), Brachytheciaceae (Ignatov et al. 2005), Jungermanniaceae (Vaña et al. 2005), Othotrichaceae (Guo et al. 2007). Koponen and Piippo (2007) summarized those studies and
Fig. 1. Altitudinal ranges in Hunan. – The altitudinal distribution of collecting localities. The diagonal line marks the appropriate upper border of the meridional zone and, at the same time, the lower border of the orotemperate zone. – Species endemic to China: *Homaliodendron pulchrum* L.Y. Pei & Y. Jia and *Neckera decurrens* Broth. – Southeast Asiatic temperate to meridional species: *Forsstroemia yezoana* (Besch.) S. Olsson, Enroth & D. Quandt, *Homaliodendron papillosum* Broth., *Homaliadelphus targionianus* (Mitt.) Dixon & P. de la Varde, *Neckera flexiramea* Cardot. and *Neckeropsis calcicola* Nog.

The basis of these floristic elements lies in the bioclimatic vegetation zones as defined by Ahti et al. (1974). That system regards disjunct occurrences of a species in southern mountainous areas as occurring in the same corresponding vegetation zone as the northern occurrences, in “oro” zones (e.g., oroboreal, orotemperate etc.). For instance in Hunan the sea level vegetation zone is meridional (subtropical) and on the

mountainous areas the orotemperate zone corresponds to the temperate zone at sea level.

5.2.1. **Taxa ranging only in SE Asia**

1. **Endemic to China**

 - *Homaliodendron neckeroides*
 - *H. pulchrum*
 - *Neckera decurrens* (also in Vietnam)
 - *N. inopinata*
 - *Pinnatella taiwanensis*
 - *Taiwanobryum guangdongense* (also in Vietnam)

2. **Southeast Asiatic temperate to meridional element**

 The species of Southeast Asiatic temperate floristic element have their distribution within the temperate and meridional zones in China, Japan and Korea. Some of them extend their range to Russian Far East or to the Himalaya and they may have disjunct localities in the mountains of the Philippines, Vietnam, or Thailand. This element can be divided into three subelements (Koponen 2014).

 1. **Widely ranging from Japan to Himalaya**
 - *Forsstroemia yezoana*
 - *Homaliodelphus targionianus*

 2. **Bryophytes occurring in Japan and central China but absent in the Himalayan region**
 - *Forsstroemia noguchii*
 - *Neckera flexiramea*
 - *N. konoi*
 - *Neckeropsis calcicola*
 - *N. nitidula*
 - *Taiwanobryum speciosum*

 3. **Species occurring in central China and ranging to the Himalayas**

3. **Southeast Asiatic meridional to subtropical element**

 Taxa belonging to this floristic element are rather widely distributed in the meridional to subtropical parts of Southeast Asia from China or Japan to New Guinea, and some of them occur in the Pacific area. In Hunan their main distribution is within the meridional zone. In more southern areas, such as New Guinea, their distribution is either at higher elevations, in “montane rainforest zones”, or in lowland rain forest, extending from the sea level to c. 1000 m.

 1. **Absent in New Guinea (Malesian element s. str.)**
 - *Pinnatella makinoi*
 - *Thamnobryum subserratum*

 2. **Present in New Guinea**
 - *Circulifolium exiguum* (disjunction in Africa) PNG 100 m
 - *Homaliodendron scalpellifolium* (disjunction in Africa) PNG (incl. *H. flabellatum* and *H. ligulafolium*) 600–3350 m

5.2.2. **Taxa ranging also outside SE Asia**

1. **Holarctic, continuously or discontinuously circumpolar, boreal to temperate element**

 The majority of the bryophytes occurring in the arctic, boreal and temperate zones of the northern hemisphere belong to this group. Of the species of the Neckeraeae occurring in Hunan only one belongs to this floristic element.

 - *Homalia trichomanoides*
2. **Pansubtropical–temperate element**

These species occur in meridional southeast Asia and North America and in tropical continents at high elevations: the only species of this element is:

Forsstroemia trichomitria

3. **Pansubtropical element**

Homaliodendron flabellatum

5.3. **Conservation**

The conservation of the bryoflora of Hunan has been discussed in several of our papers (Koponen et al. 2002, Koponen & Pippo 2004, 2007), and in connection with the Brachytheciaceae (Ignatov et al. 2004), Jungermanniaceae (Vana et al. 2004), Othotrichaceae (Guo et al. 2007), Mniaceae (Koponen 2014), Pottiaceae (Sollman & Koponen 2017) and Sematophyllaceae (Tan & Koponen 2017).

Koponen (2014) discussed the obvious rarity of the taxa in the Mniaceae in Hunan, Sollman and Koponen (2017) on the rarity of the Pottiaceae and Tan and Koponen (2017) on the rarity of the Sematophyllaceae. The Neckeraeaceae shows a similar tendency. Of the total of 25 taxa, 13 were estimated as very rare (collected by us on 1–4 localities), three taxa as rare (5–15 localities) and four as rather rare (16–40 localities). This is easily understood: the habitats of the species of Neckeraeaceae are forests and most of them are epiphytic on old tree stems and branches. The taxa were often collected in primary forests but some of them inhabit second growth forests as well, but only rarely were obtained in more open habitats such as gardens. Only two species, *Homaliodendron papillosum* (48 localities) and *Thamnobryum subserratum* (41 localities) are moderately common. *Homaliodendron papillosum* thrives in addition to tree trunks on rock faces and other substrates, and *Thamnobryum subserratum* was mostly collected from rock outcrops and cliffs, and thus they have different substrate prerequisites than the other species. However, they also favor shady habitats, as do the forest-dwelling epiphytes.

Conclusion

The species in the Neckeraeaceae are so rare since they prefer shady forest habitats. The conclusion as to the conservation is the same as for the other moss families: the species of the Neckeraeaceae in Hunan benefit of, or survive best, in conserved primary forest sites.

Acknowledgements. We thank two unknown referees who made constructive comments on the manuscript.

References

Piippo, S. & Koponen, T. 2014: Bryophyte flora of the Hunan Province, China. 20. Anthocerotae and...

Index of names

The names accepted for Hunan are **in bold**.

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caducielia</td>
<td>152</td>
</tr>
<tr>
<td>guangdongensis</td>
<td>164</td>
</tr>
<tr>
<td>Chileobryon</td>
<td>165</td>
</tr>
<tr>
<td>Circulifolium</td>
<td>152</td>
</tr>
<tr>
<td>exiguum</td>
<td>152</td>
</tr>
<tr>
<td>Echinodiopsis</td>
<td>165</td>
</tr>
<tr>
<td>Forsstroemia</td>
<td>152</td>
</tr>
<tr>
<td>cryphaeoides</td>
<td>167</td>
</tr>
<tr>
<td>noguchii</td>
<td>152</td>
</tr>
<tr>
<td>trichomitria</td>
<td>153</td>
</tr>
<tr>
<td>yezoana</td>
<td>153</td>
</tr>
<tr>
<td>Himantocladium</td>
<td>152</td>
</tr>
<tr>
<td>Homalia</td>
<td>154</td>
</tr>
<tr>
<td>exigua</td>
<td>152</td>
</tr>
<tr>
<td>glabella</td>
<td>154</td>
</tr>
<tr>
<td>nitidula</td>
<td>163</td>
</tr>
<tr>
<td>pennatula</td>
<td>154</td>
</tr>
<tr>
<td>trichomanoides</td>
<td>154</td>
</tr>
<tr>
<td>var. trichomanoides</td>
<td>154</td>
</tr>
<tr>
<td>var. japonica</td>
<td>154</td>
</tr>
<tr>
<td>Homaliodelphus</td>
<td>166</td>
</tr>
<tr>
<td>targionianus</td>
<td>166</td>
</tr>
<tr>
<td>Homaliodiadendron</td>
<td>154</td>
</tr>
<tr>
<td>crassinervium</td>
<td>157</td>
</tr>
<tr>
<td>var. bacvietensis</td>
<td>157</td>
</tr>
<tr>
<td>exigum</td>
<td>152</td>
</tr>
<tr>
<td>flabellatum</td>
<td>155</td>
</tr>
<tr>
<td>fruticosum</td>
<td>155</td>
</tr>
<tr>
<td>handelii</td>
<td>157</td>
</tr>
<tr>
<td>cf. ligulaefolium</td>
<td>156</td>
</tr>
<tr>
<td>microphyllum</td>
<td>156</td>
</tr>
<tr>
<td>montagneanum</td>
<td>157</td>
</tr>
<tr>
<td>neckeroides</td>
<td>157</td>
</tr>
<tr>
<td>papillosum</td>
<td>158</td>
</tr>
<tr>
<td>pulchrum</td>
<td>159</td>
</tr>
<tr>
<td>cf. scalpellifolium</td>
<td>159</td>
</tr>
<tr>
<td>squarrosulum</td>
<td>155</td>
</tr>
<tr>
<td>Homaliopsis</td>
<td>166</td>
</tr>
<tr>
<td>targioniana</td>
<td>166</td>
</tr>
<tr>
<td>Hookeria</td>
<td>155</td>
</tr>
<tr>
<td>flabellata</td>
<td>155</td>
</tr>
<tr>
<td>Leptodon</td>
<td>149</td>
</tr>
<tr>
<td>Leskea</td>
<td>154</td>
</tr>
<tr>
<td>Neckera</td>
<td>159</td>
</tr>
<tr>
<td>bhutanensis</td>
<td>159</td>
</tr>
<tr>
<td>crenulata</td>
<td>159, 163</td>
</tr>
<tr>
<td>coreana</td>
<td>161</td>
</tr>
<tr>
<td>decurrens</td>
<td>160</td>
</tr>
<tr>
<td>var. rupicola</td>
<td>160</td>
</tr>
<tr>
<td>denigricans</td>
<td>159</td>
</tr>
<tr>
<td>enrothiana</td>
<td>159</td>
</tr>
<tr>
<td>flexiramea</td>
<td>160</td>
</tr>
<tr>
<td>humilis</td>
<td>161</td>
</tr>
<tr>
<td>inopinata</td>
<td>161</td>
</tr>
<tr>
<td>konoi</td>
<td>161</td>
</tr>
<tr>
<td>ligulaefolia</td>
<td>156</td>
</tr>
<tr>
<td>montagneana</td>
<td>156</td>
</tr>
<tr>
<td>neckeroides</td>
<td>157</td>
</tr>
<tr>
<td>suberrata</td>
<td>165</td>
</tr>
<tr>
<td>pusilla</td>
<td>159</td>
</tr>
<tr>
<td>scalpellifolia</td>
<td>159</td>
</tr>
<tr>
<td>setschwanica</td>
<td>162</td>
</tr>
<tr>
<td>targioniana</td>
<td>166</td>
</tr>
<tr>
<td>xizangensis</td>
<td>159</td>
</tr>
<tr>
<td>yezoana</td>
<td>153</td>
</tr>
<tr>
<td>Neckerosiphys</td>
<td>162</td>
</tr>
<tr>
<td>calcicola</td>
<td>162</td>
</tr>
<tr>
<td>lepineana</td>
<td>167</td>
</tr>
<tr>
<td>nitidula</td>
<td>163</td>
</tr>
<tr>
<td>Pendulothecium</td>
<td>165</td>
</tr>
<tr>
<td>Pinnatella</td>
<td>163</td>
</tr>
<tr>
<td>alopecuroides</td>
<td>167</td>
</tr>
<tr>
<td>ambigua</td>
<td>164</td>
</tr>
<tr>
<td>anacamptolepis</td>
<td>164</td>
</tr>
<tr>
<td>homaliadelphia</td>
<td>163</td>
</tr>
<tr>
<td>makinoi</td>
<td>163</td>
</tr>
<tr>
<td>mucronata</td>
<td>164</td>
</tr>
<tr>
<td>taiwanensis</td>
<td>164</td>
</tr>
<tr>
<td>Porotrichum</td>
<td></td>
</tr>
<tr>
<td>alopecuroides</td>
<td>167</td>
</tr>
<tr>
<td>makinoi</td>
<td>163</td>
</tr>
<tr>
<td>perplexans</td>
<td>157</td>
</tr>
<tr>
<td>Pseudoleskeella</td>
<td>167</td>
</tr>
<tr>
<td>Pterigynandrum</td>
<td></td>
</tr>
<tr>
<td>trichomitrion</td>
<td>153</td>
</tr>
<tr>
<td>Shevockia</td>
<td>164</td>
</tr>
<tr>
<td>Symphyodon</td>
<td>154</td>
</tr>
<tr>
<td>pennatulus</td>
<td>154</td>
</tr>
<tr>
<td>Taiwanobryum</td>
<td>164</td>
</tr>
<tr>
<td>anacamptolepis</td>
<td>164</td>
</tr>
<tr>
<td>guangdongense</td>
<td>164</td>
</tr>
</tbody>
</table>
mucronatum .. 164
speciosum ... 165

Thamnobryum ... 165
subserratum ... 165
Thamnomalia .. 154