Non-alcoholic fatty liver disease and risk of type 2 diabetes

S. Lallukka, MD, PhD student a, b, *, H. Yki-Järvinen, MD, FRCP, Professor a, b

a Department of Medicine, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
b Minerva Foundation Institute for Medical Research, Helsinki, Finland

Non-alcoholic fatty liver disease (NAFLD) covers a spectrum of liver disease from simple steatosis to non-alcoholic steatohepatitis (NASH) and cirrhosis. NAFLD is commonly associated with features of the metabolic/insulin resistance syndrome (‘Metabolic/Obese NAFLD’) and may therefore predict type 2 diabetes (T2DM). For this review, we searched for prospective studies examining whether NAFLD predicts T2DM, and if so, whether this occurs independently of factors such as age and obesity. These studies included NAFLD diagnosed by ultrasonography (n = 6) or liver enzymes (n = 14). All ultrasonography studies found NAFLD to predict the risk of T2DM independently of age, and in 4 out of 6 studies NAFLD was also a predictor independently of BMI. NAFLD was a predictor of T2DM in all 14 studies where NAFLD was diagnosed by liver enzymes. In 12 of these studies, ALT or AST or GGT were significant predictors of T2DM risk, independently of age and BMI. NAFLD, however, is heterogeneous and may also be caused by common genetic variants. The I148M variant in PNPLA3 and the E167K variant in TM6SF2 are both associated with increased liver fat content, but not features of the metabolic/insulin resistance syndrome. These genetic forms of NAFLD predict NASH and cirrhosis but not T2DM. Taken together these data imply...
that ‘Metabolic/Obese NAFLD’ predicts T2DM independently of age and obesity and support the role of hepatic insulin resistance in the pathogenesis of this disease.

© 2016 Elsevier Ltd. All rights reserved.

Introduction

Non-alcoholic fatty liver disease (NAFLD) is defined as hepatic steatosis not caused by excess use of alcohol (>20 g/day in women, >30 g/day in men), viruses such as hepatitis B or C, autoimmune hepatitis, use of hepatotoxic drugs or other compounds, or rare genetic forms [1]. It covers a range of conditions from simple steatosis to non-alcoholic steatohepatitis (NASH) and cirrhosis. NAFLD is currently the most common liver disorder with an estimated worldwide prevalence of 25% [2]. Depending on the method of diagnosis, 65–87% of patients with type 2 diabetes (T2DM) have NAFLD [3,4]. NAFLD is the second most common cause of being on a waiting list for a liver transplant in the US [5] and the most common cause of hepatocellular carcinoma (HCC) in both US [6] and UK [7].

The metabolic/insulin resistance syndrome is a well-established predictor of T2DM, although overt hyperglycemia only develops in those whose beta-cells fail to sustain hyperinsulinemia in the face of insulin resistance [8]. The liver is the site of production of glucose and very low-density lipoprotein (VLDL)-triglycerides. In subjects with ‘metabolic/obese NAFLD’, the liver is insulin resistant leading to overproduction of both glucose and VLDL [8]. Glucose in turn stimulates insulin secretion thereby inducing hyperinsulinemia. The increase in VLDL leads to lowering of the concentration of high-density lipoprotein (HDL) cholesterol. These changes are often observed in obese subjects, but are also observed independently of obesity [9]. NAFLD is thus closely linked to the pathogenesis of the metabolic syndrome raising the possibility that NAFLD predicts T2DM, even independently of obesity.

In addition to the association of NAFLD with the metabolic/insulin resistance syndrome, two common genetic variants increase the risk of NAFLD. A variant in the patatin-like phospholipase domain-containing 3 (PNPLA3) (rs738409[G], encoding I148M) confers to NAFLD susceptibility by increasing liver fat content, risk of inflammation, and fibrosis (‘PNPLA3 NAFLD’) [10,11]. Genetic variation in the transmembrane 6 superfamily member 2 (TM6SF2) (rs58542926[T], encoding E167K) is also associated with liver fat accumulation and increased risk of NASH (‘TM6SF2 NAFLD’) [12,13]. Insulin resistance is not a characteristic of these two conditions [14], although genetic and metabolic causes of NAFLD may both exist in the same person [15].

The ensuing discussion is focused on reviewing studies which have examined whether NAFLD, diagnosed either by liver enzymes, ultrasonography, other imaging techniques, or by liver biopsy, predicts T2DM, and if so, whether this is observed independently of obesity and other established predictors of T2DM. We will also briefly comment on whether and why NAFLD should be screened for in the diabetes clinic.

Methods

Data sources and searches

This systematic review was performed as suggested by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) group [16]. We searched MEDLINE using the terms “fatty liver”, “diabetes”, and “ultrasound” for publications with NAFLD diagnosed by ultrasonography, “magnetic resonance spectroscopy” for those with NAFLD diagnosed by 1H-MRS, and “biopsy” for those with NAFLD diagnosed by biopsy. In addition, we used the terms “fatty liver”, “steatosis”, “liver enzymes”, “transaminases”, “alanine aminotransferase” (ALT), “aspartate aminotransferase” (AST), “gamma-glutamyltransferase” (GGT), and “diabetes incidence” while searching for publications in which NAFLD had been diagnosed by using liver enzymes. All searches were performed by the end of February 2016.
Study selection

Inclusion criteria

We included prospective longitudinal cohort studies investigating whether baseline NAFLD predicts the development of T2DM. We included only publications in English.

Exclusion criteria

Since serum or plasma liver enzyme concentrations and liver fat content may increase due to other reasons than NAFLD [17,18], we excluded studies which did not mention exclusion of subjects with hepatitis B or C, cirrhosis or malignancy, and those in which alcohol consumption was not assessed or the analyzes were not adjusted for alcohol consumption.

Results

Study selection

The searches resulted in 1718 potentially relevant citations; NAFLD was defined using liver enzymes in 810, 1H-MRS in 247, and liver biopsy in 56. After screening the titles and abstracts of these citations, 54, 30, one and four, respectively, remained for further evaluation. Based on full-text judgment, we excluded i) 30 articles which were not prospective cohort studies, ii) 22 articles which did not adjust their analyzes for alcohol use or exclude other liver diseases, iii) 15 articles in which the above listed methods were not used to diagnose NAFLD, and iv) two citations which only had an abstract available. Thus, we included a total of 20 publications which are listed in Tables 1 and 2. We did not identify any longitudinal studies investigating whether 1H-MRS-determined liver fat content or liver histology predict T2DM.

Study characteristics

Table 1 shows details of the six studies that used ultrasonography to diagnose NAFLD. All except one small study included subjects of Asian origin (Table 1). The mean age of study subjects ranged from 37 to 49 years and BMI from 23 to 27 kg/m². Duration of follow-up varied from three to 10 years. In four of the six studies [19–22], T2DM was diagnosed based on a fasting plasma or serum glucose ≥ 7.0 mmol/L, HbA1c ≥ 6.5%, a 2-hour glucose concentration ≥ 11.1 mmol/L during a 75 gr oral glucose tolerance test (OGTT), and/or use of glucose-lowering therapy. Okamoto et al. defined hyperglycemia as a fasting plasma glucose concentration > 6.1 mmol/L or HbA1c > 6.4% [23], whilst Zelber-Sagi et al. used cut-offs of ≥ 5.6 mmol/L and ≥ 5.7%, respectively [24].

Table 2 shows details of the 14 studies in which used liver enzymes to diagnose NAFLD. The mean age of study subjects ranged from 44 to 61 years and BMI from 23 to 28 kg/m². The duration of follow-up ranged from two to 20 years. Half of the studies included only men. T2DM was defined as a fasting glucose ≥ 7.0 mmol/L or use of diabetes medication in nine studies [25–33]. An OGTT was performed in three studies [29,32,34] and HbA1c measured in one study [33]. Questionnaires or patient records were used for diagnosis of T2DM in four studies [35–38]. Most of the studies divided the subjects at baseline by quartiles or quintiles of liver enzymes and compared the risk of diabetes in highest quarter/fifth with the lowest quarter/fifth. Two studies with slightly different study designs included subjects from the same cohort [26,27].

Ultrasonography-diagnosed NAFLD and T2DM

Each of the six studies using ultrasonography to diagnose NAFLD showed that NAFLD predicted T2DM independently of baseline age. NAFLD also remained a significant predictor of T2DM in four out of the five studies, after adjustment for BMI (Table 1). NAFLD also predicted T2DM independently of several other factors such as sex, family history of diabetes, HDL-cholesterol, triglycerides, high-sensitivity C-reactive protein, insulin resistance by Homeostasis Model Assessment for insulin resistance (HOMA-IR), physical activity, and smoking status (Fig. 1).
Table 1
NAFLD as a predictor of type 2 diabetes diagnosed by ultrasonography in prospective studies.

<table>
<thead>
<tr>
<th>Cohort and year</th>
<th>N (men, %)</th>
<th>Age (years)</th>
<th>BMI (kg/m²)</th>
<th>Follow up (years)</th>
<th>Outcome</th>
<th>Independent of BMI</th>
<th>Independent of other confounders</th>
<th>Effect estimate (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japanese 2003 [23]</td>
<td>840 (55.6%)</td>
<td>42.7</td>
<td>22.5</td>
<td>10</td>
<td>T2DM +IFG</td>
<td>No</td>
<td>No (age, gender, FPG, HbA1c, alcohol, family history of T2DM)</td>
<td>OR 2.62 (1.58–4.34)^a</td>
</tr>
<tr>
<td>Japanese 2007 [19]</td>
<td>3189 (100.0%)</td>
<td>48.0</td>
<td>23.1</td>
<td>4</td>
<td>T2DM</td>
<td>Yes</td>
<td>Age</td>
<td>HR 4.8 (3.3–7.1)</td>
</tr>
<tr>
<td>Koreans 2013 [20]</td>
<td>25,232 (100.0%)</td>
<td>42.5</td>
<td>24.2</td>
<td>3.8</td>
<td>T2DM</td>
<td>–</td>
<td>Age, WC, TG, HDL, systolic BP, hsCRP, HOMA, creatinine, family history T2DM, exercise, MetS</td>
<td>mild NAFLD HR 1.09 (0.81–1.48) moderate/severe NAFLD HR 1.73 (1.00–3.01)</td>
</tr>
<tr>
<td>Sri Lankans 2013 [21]</td>
<td>1842 (2880^b; 43.2%)</td>
<td>–(52.5)</td>
<td>–(24.0)</td>
<td>3</td>
<td>T2DM</td>
<td>Yes</td>
<td>Age, gender, WC, ALT, family history of T2DM, hypertension</td>
<td>HR 1.64 (1.20–2.23)</td>
</tr>
<tr>
<td>Koreans 2013 [22]</td>
<td>38,291 (62.5%)</td>
<td>36.8</td>
<td>23.3</td>
<td>5.1</td>
<td>T2DM</td>
<td>Yes</td>
<td>Age, gender, smoking, alcohol, exercise, family history of T2DM, cholesterol, TG, HDL, HOMA, hsCRP</td>
<td>Low NFS HR 1.81 (1.61–2.04) High NFS HR 3.84 (2.93–5.02)</td>
</tr>
<tr>
<td>Israelis 2013 [24]</td>
<td>141 (50.4%)</td>
<td>48.8</td>
<td>26.6</td>
<td>6.8</td>
<td>T2DM +IFG</td>
<td>Yes</td>
<td>Age, gender, family history of T2DM, IS-insulin, adiponectin, fS-glucose, physical activity</td>
<td>Normal US OR 2.95 (1.03–8.44) HRI OR 7.77 (1.82–33.26)</td>
</tr>
</tbody>
</table>

ALT, alanine transferase; BP, blood pressure; DM, diabetes mellitus, fS, fasting serum; FPG, fasting plasma glucose; HbA1c, glycosylated hemoglobin A1c; HDL, high-density lipoprotein cholesterol; HOMA, homeostasis model assessment for insulin resistance; HR, hazard ratio; HRI, hepato-renal ultrasound index; hsCRP, high-sensitivity C-reactive protein; IFG, impaired fasting glucose; MetS, metabolic syndrome; NAFLD, non-alcoholic fatty liver disease; NFS, NAFLD fibrosis score; OR, odds ratio; T2DM, type 2 diabetes; TG, triglyceride; US, ultrasonography; WC, waist circumference.

^a Unadjusted estimate.

^b More subjects at baseline than at follow up.
Table 2
NAFLD diagnosed by liver function tests as a predictor of T2DM. Prospective studies.

<table>
<thead>
<tr>
<th>Cohort, study and year</th>
<th>N (men, %)</th>
<th>Age (years)</th>
<th>BMI (kg/m²)</th>
<th>Follow up (years)</th>
<th>Predictive liver function test</th>
<th>Independent of BMI</th>
<th>Independent of other confounders</th>
<th>Effect estimate (95% CI) a</th>
</tr>
</thead>
<tbody>
<tr>
<td>British men, BRHS, UK, 1998 [35]</td>
<td>7458 (100.0%)</td>
<td>40–59</td>
<td>–</td>
<td>12.8</td>
<td>GGT</td>
<td>Yes</td>
<td>Age, physical activity, alcohol, smoking, prevalent CHD</td>
<td>Quintiles Q5 vs. Q1 RR 4.7 (2.4–9.4) Highest vs. lowest concentration group with alcohol <90 g/week GGT RR 3.6 (1.1–2.0)</td>
</tr>
<tr>
<td>Korean men, 2003 [25]</td>
<td>4088 (100.0%)</td>
<td>25–55</td>
<td>–</td>
<td>4</td>
<td>GGT, ALT</td>
<td>Yes</td>
<td>Age, smoking, exercise, family history of T2DM, FPG, alcohol</td>
<td>Quarters Q4 vs. Q1 RR 3.44 (1.69–6.70)</td>
</tr>
<tr>
<td>Japanese men, 2003 [26]</td>
<td>2918 (100.0%)</td>
<td>46.5</td>
<td>23.3</td>
<td>7</td>
<td>GGT</td>
<td>Yes</td>
<td>Age, family history of T2DM, alcohol, smoking, physical activity, systolic BP, cholesterol, TG, FPG, white blood count</td>
<td>Quartiles Q5 vs. Q1 GGT HR 2.44 (1.34–4.46)</td>
</tr>
<tr>
<td>Japanese men, 2004 [27]</td>
<td>3260 (100.0%)</td>
<td>–</td>
<td>–</td>
<td>7</td>
<td>GGT, ALT</td>
<td>Yes</td>
<td>Age, family history of T2DM, alcohol, smoking, physical activity, FPG, white blood count, other liver enzymes</td>
<td>Quartiles Q4 vs. Q1 HR 2.04 (1.16–3.58)</td>
</tr>
<tr>
<td>Scotsmen with hypercholesterolemia, WOSCOPS, Scotland, 2004 [28]</td>
<td>5974 (100.0%)</td>
<td>55.4</td>
<td>26.0</td>
<td>4.9</td>
<td>ALT</td>
<td>Yes</td>
<td>Age, smoking, systolic BP, cholesterol/HDL ratio, TG, alcohol, FPG</td>
<td>Quartiles Q4 vs. Q1 RR 2.88 (1.58–5.29)</td>
</tr>
<tr>
<td>Mexican men, Mexico City Diabetes Study, 2005 [29]</td>
<td>1441 (38.8%)</td>
<td>47.1</td>
<td>28.0</td>
<td>7</td>
<td>AST</td>
<td>Yes</td>
<td>Age, gender, WC, alcohol, FSI</td>
<td>Quartile Q4 vs. Q1–3 OR 1.67 (1.06–2.64)</td>
</tr>
<tr>
<td>British men, BRHS, UK, 2005 [36]</td>
<td>3500 (100.0%)</td>
<td>60–79</td>
<td>–</td>
<td>5</td>
<td>GGT, ALT</td>
<td>Yes</td>
<td>Age, social class, physical activity, smoking, alcohol, preexisting CHD/stroke, use of statins</td>
<td>Quartiles: Q4 vs. Q1 GGT RR 3.68 (1.68–8.04)</td>
</tr>
<tr>
<td>Koreans, 2007 [34]</td>
<td>8750 (46.6%)</td>
<td>51.8</td>
<td>24.4</td>
<td>2</td>
<td>ALT, GGT</td>
<td>Yes</td>
<td>Age, systolic BP, family history of T2DM, smoking, alcohol, exercise, FPG, TG, HDL, HOMA, high-sensitivity CRP</td>
<td>Quartiles Q4 vs. Q1 ALT RR 2.20 (1.28–3.73) in men RR 1.97 (1.03–3.77) in women Per +1 SD in logALT ALT OR 1.48 (1.30–1.69)</td>
</tr>
<tr>
<td>Framingham Offspring Heart Study, US, 2008 [30]</td>
<td>2812 (44.4%)</td>
<td>44.0</td>
<td>25.6</td>
<td>20</td>
<td>ALT, AST</td>
<td>Yes</td>
<td>Age, gender, smoking, menopause, alcohol</td>
<td>Quartiles Q5 vs. Q1 GGT HR 2.61 (1.59–4.28)</td>
</tr>
<tr>
<td>Germans, 2008 [37]</td>
<td>2298 (38.3%)</td>
<td>49.5</td>
<td>26.0</td>
<td>7.0</td>
<td>GGT, ALT</td>
<td>Yes</td>
<td>Age, gender, education, smoking, alcohol, physical activity, WC, systolic BP, cholesterol, HDL, CRP, FPG</td>
<td>Per +10 U/l GGT HR 1.09 (1.04–1.15)</td>
</tr>
<tr>
<td>Italians, FIBAR, IT, 2009 [38]</td>
<td>2662 (42.9%)</td>
<td>54.3</td>
<td>25.9</td>
<td>3.3</td>
<td>GGT, ALT, AST</td>
<td>–</td>
<td>Age, gender, alcohol, smoking</td>
<td>(continued on next page)</td>
</tr>
<tr>
<td>Cohort, study and year</td>
<td>N (men, %)</td>
<td>Age (years)</td>
<td>BMI (kg/m²)</td>
<td>Follow up (years)</td>
<td>Predictive liver function test</td>
<td>Independent of BMI</td>
<td>Independent of other confounders</td>
<td>Effect estimate (95% CI) a</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------</td>
<td>-------------</td>
<td>-------------</td>
<td>------------------</td>
<td>-------------------------------</td>
<td>------------------</td>
<td>-------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Australians 2009 [31]</td>
<td>358 (68.4%)</td>
<td>59.9</td>
<td>27.1</td>
<td>11.1</td>
<td>ALT</td>
<td>No (age, WC, HOMA, HDL, TG)</td>
<td>ALT >40 vs. <40 U/l</td>
<td>RR 5.1 unadjusted</td>
</tr>
<tr>
<td>Asian Indian men with IFG 2014 [32]</td>
<td>537 (100.0%)</td>
<td>46.0</td>
<td>25.8</td>
<td>2</td>
<td>GGT</td>
<td>Yes</td>
<td>Age, family history of T2DM, smoking, alcohol, ALT, OGTT, FPG, HbA1c, TG, HOMA</td>
<td>Above vs. below median GGT</td>
</tr>
<tr>
<td>Koreans 2014 [33]</td>
<td>6926 (37.6%)</td>
<td>61.4</td>
<td>24.3</td>
<td>4.2</td>
<td>GGT, ALT</td>
<td>Yes</td>
<td>Age, WC, cholesterol, HDL, TG, alcohol, smoking, physical activity, follow-up time, CRP</td>
<td>Quartiles Q4 vs. Q1</td>
</tr>
</tbody>
</table>

ALT, alanine aminotransferase; AST, aspartate aminotransferase; BP, blood pressure; CHD, coronary heart disease; FG, fasting plasma or serum glucose; FSI, fasting serum insulin; GGT, gamma-glutamyltransferase; HDL, high-density lipoprotein cholesterol; HOMA, homeostasis model assessment for insulin resistance; HR, hazard ratio; IFG, impaired fasting glucose; NAFLD, non-alcoholic fatty liver disease; OGTT, 2-hour oral glucose tolerance test; OR, odds ratio; RR, risk ratio; T2DM, type 2 diabetes; TG, triglyceride; US, ultrasonography; WC, waist circumference.

a The column represents the effect estimate of the best predictor of type 2 diabetes in the respective study.
Liver enzymes and T2DM

In 12 of the 14 studies, either GGT or ALT or AST or a combination of these enzymes was a significant predictor of T2DM independently of age, BMI and alcohol consumption (Table 2). GGT was a significant predictor in 10 of 11, ALT in 10 of 13 and AST in three of seven studies (Table 2). GGT and ALT predicted T2DM even in the normal range (Fig. 2).

Discussion

The data from the multiple available large studies document that NAFLD, diagnosed either by ultrasonography or elevated liver enzymes, predicts an increased risk of T2DM independently of age and obesity. These results raise the question as to whether the presence of NAFLD should be used in clinical practice to identify patients at risk for T2DM.

Ultrasonography-diagnosed NAFLD predicted T2DM in all studies, and in most studies after adjustment for potential confounders. These studies were, however, performed in Asian subjects, with the exception of one small study in Israelis (Table 1). Asian subjects, both those with NAFLD [39] and those with T2DM [40,41] are leaner than Europid or American subjects. It is therefore uncertain whether these data apply to non-Asian subjects. Since ultrasonography is unreliable and difficult to use in obese subjects [42], it is possible that it is more sensitive to detecting T2DM risk in Asian subjects. Ultrasonography is also inaccurate at quantifying liver fat percentages below 20–30% [43] which may influence estimation of disease risk. On the other hand, ultrasonography is widely available and can detect focal lesions in addition to providing a semi-quantitative estimate of steatosis.

Of the liver enzymes, it is well established that GGT is more sensitive to alcohol intake than ALT [44,45]. Nevertheless, both GGT and ALT predicted T2DM even in studies which excluded excessive alcohol use already at baseline [29–31], as well as in those statistically adjusting for alcohol intake [25–30,32–38]. The relationship between ALT and risk of T2DM was linear and observed within the normal range of ALT (Fig. 2B). Although ALT and GGT predicted T2DM on average, the correlation between liver fat quantified by 1H-MRS, the state-of-the-art technique, and ALT is sex-dependent and weaker than between liver fat and fasting serum insulin [46]. From the relationship between liver fat and ALT, we could calculate that ALT is normal in 48% of subjects with NAFLD diagnosed by 1H-MRS (liver fat content equal or greater than 5.56%), and 23% of subjects without NAFLD have increased ALT (ALT >30 U/L in women, >40 U/L in men) [46]. This implies that ALT has major limitations as a predictor of T2DM for individuals. AST is not very helpful either as it is less liver specific than ALT [47]. Consistent with the present data (Fig. 2B and C), meta-analysis of prospective longitudinal studies found ALT but not AST to increase the risk of T2DM [48].
NAFLD is closely linked to the pathogenesis of the metabolic/insulin resistance syndrome but it can also be caused by genetic variations in PNPLA3 [10] and TM6SF2 [12]. Neither ‘PNPLA3 NAFLD’ [10,49–57] nor ‘TM6SF2 NAFLD’ [12,58–60] are associated with insulin resistance. We did not identify any studies, which examined whether NAFLD caused by these gene variants influenced the future risk of T2DM. These variants do predict NASH, cirrhosis and HCC worldwide [14,61], but have not turned out to be significant predictors of T2DM in the multiple genome-wide association studies searching for genetic risk markers for T2DM [62].

In conclusion, abundant longitudinal studies especially in Asian populations using ultrasonography have shown NAFLD to predict T2DM independently of confounders such as age and obesity. Liver enzymes, especially ALT and GGT are also independent predictors of T2DM. While these studies...
support the view that hepatic insulin resistance is an important feature of the pathogenesis of T2DM, they are not particularly useful in the clinic because of limitations in both ultrasonography and liver enzymes as diagnostic tools, and because of the heterogeneity of NAFLD. Indeed, established methods such measurement of features of the metabolic syndrome and assessment of family history [63] remain the gold standard for predicting risk of T2DM. On the other hand, physicians treating T2DM should not forget to think of the liver and should measure at least liver enzymes in all patients as patients with T2DM have a markedly increased risk of developing NASH [64] and cirrhosis [65] and even HCC [66,67].

Practice points
- Non-alcoholic fatty liver disease (NAFLD) is defined as hepatic steatosis not caused by excess use of alcohol (>20 g/day in women, >30 g/day in men), viruses such as hepatitis B or C, autoimmune hepatitis, use of hepatotoxic drugs, or rare genetic forms.
- NAFLD is currently the most common liver disorder with a prevalence of 25%.
- NAFLD closely linked to the metabolic/insulin resistance syndrome is often observed in obese subjects, but also independently obesity.
- Insulin resistance is not a characteristic of NAFLD due to the common genetic variations in PNPLA3 or TM6SF2.
- ‘Metabolic/Obese NAFLD’ predicts T2DM independently of age and obesity and support the role of hepatic insulin resistance in the pathogenesis of T2DM.

Research agenda
- Cost-effectiveness of imaging the liver in patients with the metabolic syndrome or type 2 diabetes
- Cost-effectiveness of genotyping for PNPLA3 and TM6SF2 variants in the identification of subjects at risk for advanced liver disease in the clinic

Conflict of interest

None.

Acknowledgments

This study was supported by University of Helsinki, the Doctoral Programme in Clinical Research (S. Lallukka) and research grants (H. Yki-Järvinen) from the Academy of Finland, EU/EFPIA Innovative Medicines Initiative Joint Undertaking (EMIF grant no. 115372), EU H2020 EPoS 634413, the Sigrid Juselius Foundation, the EVO grant from the Finnish government, and personal grants (S. Lallukka) from the Diabetes Research, Biomedicum Helsinki, and Orion Research Foundations.

References

[13] Liu YL, Reeves HL, Burt AD, et al. TM6SF2 rs58542926 in

