On the mode-segregated aerosol particle number concentration load: contributions of primary and secondary particles in Hyytiälä and Nanjing

Markku Kulmala1, Krista Luoma1, Aki Virkkula2,3,4, Tuukka Petäjä1,2, Pauli Paasonen1, Veli-Matti Kerminen1, Wei Nie1,2,4, Ximeng Qi2,4, Yicheng Shen2,4, Xuguang Chi2,4 and Aijun Ding2,4

1) Department of Physics, P.O. Box 64, FI-00014 University of Helsinki, Finland
2) Finnish Meteorological Institute, Research and Development, FI-00101 Helsinki, Finland
3) Joint International Research Laboratory of Atmospheric and Earth System Sciences & School of Atmospheric Sciences, Nanjing University, 210023 Nanjing, China
4) Institute for Climate and Global Change Research & School of Atmospheric Sciences, Nanjing University, 210023 Nanjing, China

Aerosol particle concentrations in the atmosphere are governed by their sources and sinks. Sources include directly-emitted (primary) and secondary aerosol particles formed from gas-phase precursor compounds. The relative importance of primary and secondary aerosol particles varies regionally and with time. In this work, we investigated primary and secondary contributions to mode-segregated particle number concentrations by using black carbon as a tracer for the primary aerosol number concentration. We studied separately nucleation, Aitken and accumulation mode concentrations at a rural boreal forest site (Hyytiälä, Finland) and in a rather polluted megacity environment (Nanjing, China) using observational data from 2011 to 2014. In both places and in all the modes, the majority of particles were estimated to be of secondary origin. Even in Nanjing, only about half of the accumulation mode particles were estimated to be of primary origin. Secondary particles dominated particularly in the nucleation and Aitken modes.

Introduction

In a modeling framework, the differentiation of sources is straightforward and the relative contributions of primary and secondary sources can be estimated based on emission inventories and modeled meteorology and chemical transformation (e.g. Fontoukis et al. 2012, Posner and Pandis 2015). Global model studies suggest that atmospheric NPF is the dominant source of the particle number load (Yu et al. 2010, Makkonen et al. 2014).
and an important source of cloud condensation nuclei (e.g. Merikanto et al. 2009, Kerminen et al. 2012), in the global troposphere. In continental boundary layers, the relative contributions of primary and secondary particle sources appear to be quite variable, and rather uncertain due to several assumptions inherent to current modeling frameworks (Spracklen et al. 2010, Reddington et al. 2011, Posner and Pandis 2015).

Observational studies of primary and secondary aerosol particle sources are still rather limited, especially in terms of their spatial and temporal extent (e.g. Brines et al. 2015). Experimental methods for the source apportionment typically assume that primary and secondary aerosols can be separated based on their chemical signatures (e.g. Docherty et al. 2008, Jimenez et al. 2009, Yatavelli et al. 2015). Rodríguez and Cuevas (2007) presented a methodology, in which the concentration of primary traffic-related aerosol particles, \(N_1 \), is estimated from measured black (BC) carbon concentrations, [BC], using the relation

\[
N_1 = S_1 \times [\text{BC}],
\]

where \(S_1 \) is the semi-empirical scaling factor derived from concurrent observations of the total aerosol number concentration and BC concentration. Since the total particle number concentration (\(N \)) is the sum of primary (\(N_1 \)) and secondary (\(N_2 \)) particles, the number concentration of secondary particles is obtained from the residual:

\[
N_2 = N - N_1.
\]

The limitations of this method have been discussed in detail by Rodríguez and Cuevas (2007) and Reche et al. (2011), and will be returned to when comparing our results with other studies employing the same approach.

The aim of this study was to explore the relative contributions of primary and secondary sources to the total and mode-segregated particle number concentrations in two distinctively different environments. For this purpose, we utilized Eqs. 1 and 2 not only to the total particle number concentration, as done in previous investigations, but also to different particle size ranges or modes. The work relied on observations made in Hyytiälä (Finland) and Nanjing (China). Based on previous research (e.g. Kulmala et al. 2013, Ding et al. 2013a), Hyytiälä represents an environment where biogenic secondary aerosol particles dominate total particle number concentrations, whereas Nanjing is presumably a location where anthropogenic particle sources are more pronounced.

Material and methods

We performed BC and aerosol number size distribution measurements at the Station for Measuring Ecosystem–Atmosphere Relations (SMEAR II; see Hari and Kulmala 2005) station in Hyytiälä, Finland, and at the Station for Observing Regional Processes of the Earth System (SORPES, Ding et al. 2013a) in Nanjing, China. The observation periods used in the analysis conducted here were 1 Jan. 2011–22 Oct. 2014 for SMEAR II (76,628 data points representing 10-min averages) and 28 Apr. 2013–6 Aug 2014 for SORPES (24,418 data points).

Observation sites

The SMEAR II station is located in Hyytiälä (61°51’N, 24°17’E, 181 m a.s.l.), southern Finland, in the middle of a boreal forest, surrounded by a fairly homogeneous Scots pine (Pinus sylvestris) population. Areas to the north and northeast are comprised of small lakes and wetlands. The station was opened in 1995 and has been providing research facilities to many researchers ever since. Hyytiälä has a comprehensive measurement set-up for the observations of the ecosystem–atmosphere interactions. It is located about 60 km NE from the third largest city in Finland, Tampere. Most pollution transported to the measurement site originate either from the Tampere area or from the saw mill located in Korkeakoski, about 10 km SE from SMEAR II. Detailed information on the SMEAR II station can be found in Hari and Kulmala (2005).

In Nanjing, China, the measurements were conducted at the SORPES station (118°57’E, 32°07’N, 40 m above mean sea level) in the Xianlin campus of the Nanjing University. The site is a suburban background station, with a little
influence from local emissions yet in the middle of heavy regional pollution (Ding et al. 2013a, 2013b, Herrmann et al. 2014, Xie et al. 2015).

Instrumentation

Aerosol number size distributions were measured with a Differential Mobility Particle Sizer (DMPS) in both Hyytiälä and Nanjing. The time resolution of the instrument was 10 min. More detailed descriptions of the aerosol instrumentation used at the SMEAR II and SORPES stations can be found in Aalto et al. (2001) and Qi et al. (2015), respectively. The measured particle number size distributions were divided into three modes according to the particle size: the nucleation mode (particle diameter in the range 3–25 nm), Aitken mode (25–100 nm) and accumulation mode (100–1000 nm).

At the SMEAR II station, BC concentrations were measured with a Magee Scientific 7-wavelength aethalometer (AE-31) and with a Multiangle Absorption Photometer (MAAP) at a 5 min averaging time. At the SORPES station, BC concentrations were measured with a 7-wavelength aethalometer (AE-31) (Virkkula et al. 2015). At SMEAR II the sample air to the optical instruments was taken through a common PM$_{10}$ inlet. At SORPES there were two separate inlets: the nephelometer had a PM$_{10}$ inlet and aethalometer had a PM$_{2.5}$ inlet.

In order to process aethalometer data, also scattering coefficient (σ_{sp}) measurements are needed. At SMEAR II, σ_{sp} was measured with a TSI model 3565 nephelometer at the wavelengths $\lambda = 450$, 550, and 700 nm (Virkkula et al. 2011), and at SORPES it was measured with an Ecotech Aurora 3000 nephelometer at $\lambda = 450$, 525 and 635 nm (Virkkula et al. 2015). The data were corrected for truncation according to Anderson and Ogren (1998) and Müller et al. (2011a), and then interpolated and extrapolated to the aethalometer wavelengths. In addition to deriving scattering-corrected BC concentrations, σ_{sp} was used to calculate the single-scattering albedo $\omega_0 = \sigma_{ap}/(\sigma_{ap} + \sigma_{sp})$, where σ_{ap} is the absorption coefficient.

In this study, only the data which were collected when the relative humidity (RH) of the sample air was < 50% were used. At higher RH values particles grow notably in size and affect all optical measurements. The World Meteorological Organization Global Atmosphere Watch (WMO/GAW) recommends for aerosol monitoring stations to keep RH of the sample air at 45% ± 5% (WMO 2003).

Data processing of the BC measurements

The aethalometer reports BC mass concentrations calculated from the rate of change of light attenuation, but it is well known that its signal is also affected by scattering aerosol and that the relationship varies with the loading of the filter. Various methods for correcting for these have been developed (e.g. Weingartner et al. 2003, Arnott et al. 2005, Virkkula et al. 2007, Collaud Coen et al. 2010). Of these methods, the ones of Arnott et al. (2005) and Collaud Coen et al. (2010) take the scattering coefficients explicitly into account. Therefore, we used those two algorithms to calculate σ_{ap} at the aethalometer wavelengths. In those algorithms, the multiple scattering correction factor was set to equal 4.12 for the Arnott et al. (2005) version, and to equal 4.26 for the Collaud Coen et al. (2010) version, as obtained for the Cabauw data by Collaud Coen et al. (2010).

We calculated the corrected BC concentrations from $[BC] = \sigma_{ap}/MAC$, where MAC is the mass absorption coefficient. The firmware of the MAAP uses the value of MAC = 6.6 m2 g$^{-1}$. It measures σ_{ap} at $\lambda = 637$ nm (Müller et al. 2011b), so to keep the results of the two methods as comparable as possible, we used the aethalometer data at $\lambda = 660$ nm here. We assumed that MAC depends inversely on wavelength, so we used the value of MAC ($\lambda = 660$ nm) = 6.4 m2 g$^{-1}$ for converting σ_{ap} to the BC concentrations.

Results and discussion

General results and comparison to earlier studies

While particle number and BC concentrations...
during the measurement periods considered here varied considerably at both sites, the typical concentration levels were clearly higher at SORPES than at SMEAR II (Table 1), as expected due to the overall environmental differences between these sites. The median concentrations differed by about an order of magnitude for the accumulation, Aitken and total particle number concentration, and by almost a factor of 20 for the BC concentration.

When looking at the whole measurement data set, the accumulation mode particle number concentration correlated strongly or moderately with the BC concentration at the two sites (Table 2), whereas the Aitken and nucleation mode particle number concentration had weak or no correlation with [BC]. The weak negative correlation between [BC] and nucleation mode particle number concentrations at SMEAR II can be explained by the fact that atmospheric NPF responsible for most of the nucleation mode particles at this site tends to be associated with clean air masses, with only a marginal contribution from anthropogenic BC sources (e.g. Kulmala et al. 2007, Virkkula et al. 2011). Because of this negative correlation and of the fact that a very small fraction of the BC particles is in the nucleation mode size range, the division of nucleation mode particles into primary or secondary with the applied method is unreliable.

In the previous studies using Eqs. 1 and 2 to differentiate between primary and secondary particle sources, roughly 1% of the data points in the \(N \) vs. [BC] scatter plot were located below the line \(S_1 \times [BC] \) (e.g. Rodríguez and Cueva 2007). Because of the ambiguities in determining the value of \(S_1 \) that would best scale the primary particle number concentration to the BC concentration, we tested three different constrains to this quantity, namely that 0.2%, 1% or 5% of the data points need to be located below the line \(S_1 \times [BC] \) (Fig. 1). We determined \(S_1 \) not only for the total particle number concentration, as was done in previous studies, but also for each particle mode separately (Figs. 2 and 3; also the seasonal variation can be seen in those figures).

When using all the data from the two stations, the obtained values of \(S_1 \) were greater for SORPES, especially for the accumulation mode, as well as for the total particle number concentration (Table 3). Earlier studies using the same approach for the total particle number concentration have reported values of \(S_1 \) ranging between about \(3 \times 10^6 \) and \(10 \times 10^6 \) particles ng(BC)\(^{-1}\) (Rodríguez and Cueva 2007, Fernandez-Camacho et al. 2010, Gonzáles et al. 2011, Reche et al. 2011, Gonzáles and Rodríguez 2013). The reason for the consistently greater values of \(S_1 \) in those earlier studies than in our study is unclear, but could be related to the fact that those sites are typically closer to fresh traffic emissions than either SMEAR II or SORPES. Particle growth by coagulation processes during the atmospheric transport from the urban source areas affected by fresh vehicle exhaust emissions to the urban

Table 1. Median and 25th and 75th percentiles of mode-segregated particle number concentrations (cm\(^{-3}\)) and black carbon (BC) concentrations (µg m\(^{-3}\)) for the periods from 1 Jan. 2011–22 Oct. 2014 in Hyytiälä and 28 Apr. 2013–6 Aug. 2014 in Nanjing.

<table>
<thead>
<tr>
<th></th>
<th>SMEAR II</th>
<th>SORPES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nucleation mode</td>
<td>75.1</td>
<td>1000</td>
</tr>
<tr>
<td>Aitken mode</td>
<td>387</td>
<td>4160</td>
</tr>
<tr>
<td>Accumulation mode</td>
<td>167</td>
<td>3390</td>
</tr>
<tr>
<td>Total concentration</td>
<td>910</td>
<td>3390</td>
</tr>
<tr>
<td>BC</td>
<td>0.068</td>
<td>1.34</td>
</tr>
</tbody>
</table>

Table 2. Correlation coefficients (\(r \)) for correlations between the BC concentration and particle number concentrations in different modes; in all cases \(p < 0.001 \).

<table>
<thead>
<tr>
<th></th>
<th>SMEAR II</th>
<th>SORPES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nucleation mode</td>
<td>-0.24 ((n = 74750))</td>
<td>-0.02 ((n = 25950))</td>
</tr>
<tr>
<td>Aitken mode</td>
<td>0.08 ((n = 74741))</td>
<td>0.35 ((n = 25950))</td>
</tr>
<tr>
<td>Accumulation mode</td>
<td>0.62 ((n = 74470))</td>
<td>0.87 ((n = 25950))</td>
</tr>
<tr>
<td>Total number concentration</td>
<td>0.10 ((n = 74855))</td>
<td>0.48 ((n = 25905))</td>
</tr>
</tbody>
</table>
Fig. 1. Accumulation mode number concentration at the SORPES station as a function of BC concentrations illustrates the way, how the value of S_1 is determined. In the constrained fittings, 0.2%, 1% or 5% of the data points are located below the lines determining the values of S_1.

Fig. 2. Particle number concentration as a function of black carbon concentration in the nucleation mode, Aitken mode, accumulation mode and total concentration at the SMEAR II station in Hyytiälä. The lines represent those fittings for S_1 in which 1% of the data points are located below the line.

Table 3. Values of S_1 (106 particles ng(BC)$^{-1}$) for different particle modes and total particle number concentrations at SMEAR II and SORPES by assuming that 0.2%, 1% or 5% of the data points in the particle number concentration vs. [BC] are below the line $S_1 \times [BC]$.

<table>
<thead>
<tr>
<th></th>
<th>Nucleation mode</th>
<th>Aitken mode</th>
<th>Accumulation mode</th>
<th>Total number concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMEAR II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2%</td>
<td>0.007</td>
<td>0.257</td>
<td>0.241</td>
<td>0.638</td>
</tr>
<tr>
<td>1%</td>
<td>0.021</td>
<td>0.401</td>
<td>0.457</td>
<td>1.28</td>
</tr>
<tr>
<td>5%</td>
<td>0.071</td>
<td>0.768</td>
<td>0.769</td>
<td>2.02</td>
</tr>
<tr>
<td>SORPES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2%</td>
<td>0.014</td>
<td>0.327</td>
<td>0.714</td>
<td>1.30</td>
</tr>
<tr>
<td>1%</td>
<td>0.037</td>
<td>0.473</td>
<td>0.870</td>
<td>1.67</td>
</tr>
<tr>
<td>5%</td>
<td>0.116</td>
<td>0.760</td>
<td>1.06</td>
<td>2.20</td>
</tr>
</tbody>
</table>
background (e.g. Nanjing) or rural areas (e.g. Hyytiälä) probably contributed to the decreased value of S_1 observed in this study. The size of the BC cores from fresh traffic emissions is usually rather small compared with that from many other primary particle sources, or in primary particle populations undergone atmospheric aging through coagulation of BC-containing particles (see Bond et al. 2003 and references therein). A small size of the BC core in primary particles tends to increase the value of S_1. In the next section, we discuss the sensitivity of our results to the assumptions made in treating BC in more detail.

The estimated fraction of primary particles in the Aitken and accumulation modes, as well as in the total particle population, varied by a factor of 2–3 depending on the constraint chosen to determine S_1 (Table 4). In spite of this uncertainty, secondary sources seem to dominate the particle budget at both sites. At the boreal forest site (SMEAR II), primary particles very likely accounted for less than 20% of the total particle population, with a slightly greater share of accumulation mode particles and clearly smaller share of both Aitken and nucleation mode particles. The estimated contribution of primary particles was greater at the polluted urban background site.

Table 4. Estimated fraction of primary particles in different modes and total particle population obtained using the values of S_1 given in Table 3. The values obtained for the nucleation mode are very rough estimates (see the main text), so these values are given in parentheses.

<table>
<thead>
<tr>
<th></th>
<th>Nucleation mode</th>
<th>Aitken mode</th>
<th>Accumulation mode</th>
<th>Total number concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMEAR II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2%</td>
<td>(0.003)</td>
<td>0.05</td>
<td>0.11</td>
<td>0.07</td>
</tr>
<tr>
<td>1%</td>
<td>(0.01)</td>
<td>0.08</td>
<td>0.20</td>
<td>0.13</td>
</tr>
<tr>
<td>5%</td>
<td>(0.03)</td>
<td>0.16</td>
<td>0.34</td>
<td>0.21</td>
</tr>
<tr>
<td>SORPES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2%</td>
<td>(0.02)</td>
<td>0.14</td>
<td>0.41</td>
<td>0.26</td>
</tr>
<tr>
<td>1%</td>
<td>(0.04)</td>
<td>0.20</td>
<td>0.50</td>
<td>0.33</td>
</tr>
<tr>
<td>5%</td>
<td>(0.12)</td>
<td>0.32</td>
<td>0.60</td>
<td>0.43</td>
</tr>
</tbody>
</table>
On the mode-segregated aerosol particle number concentration load

(SORPES), as one would expect, yet even there the contribution of secondary sourced very likely exceeded 50% for all the particle modes.

It should be noted that the used method erroneously classifies a large fraction of such primary particles that contain little or no BC as secondary particles. Particles belonging to this category include, for example, sea salt and dust particles. These two particle types may account for a notable fraction of the particle mass concentration at both SMEAR II and SORPES, but their contributions to the particle number budgets are expected to be minor. Even some combustion sources produce relatively large primary particles having a very small fraction of BC (e.g. Kleeman et al. 1999). Although we could not estimate the contribution of such sources in our data sets, it is very unlikely that such sources would change our main conclusion, i.e. that secondary sources clearly dominate the particle number budget at both sites.

As discussed by Rodríguez and Cuevas (2007), particles formed rapidly during the dilution of a vehicle exhaust into the ambient air make a special case in the methodology applied here. These particles belong mostly to the nucleation mode, partly to the Aitken mode, and contain no BC. Current emission inventories typically consider these particles as primary particles, whereas with Eqs. 1 and 2 they are mainly determined as secondary. As a result, one should be very careful in interpreting the share of primary and secondary nucleation mode particles based on the results given in Table 4.

Finally, we investigated the diurnal behavior of primary and secondary particle concentrations at SMEAR II and SORPES (Figs. 4 and 5). The overall result is that the secondary contribution is greater than the primary one during all times of the day and for all particle size ranges. Only during morning and afternoon rush hours at SORPES, the primary accumulation mode particle number concentration approached the corresponding secondary particle number concentrations.

Sensitivity to the properties of BC

Assuming that the lowest edge of the N_1 vs. $[BC]$
scatter plot (S_1 in Eq. 1 and Figs. 1–3) represents primary particles containing a BC core, a crude estimate of the size of this core can be obtained. Assuming further that the core is spherical, its diameter can be written as:

$$D_p = \left[\frac{6}{\pi S_1 \rho}\right]^{1/3} \quad (3)$$

where ρ is the core density. Park et al. (2004) showed that the density of non-volatile components of diesel soot is 1.7–1.8 g cm$^{-3}$ and that the bulk density of a BC-sulfuric acid mixture has been estimated to be ≈ 1.7 g cm$^{-3}$ (Zhang et al. 2008). By assuming this density and varying the N_1 vs. [BC] slope (i.e. S_1) using the values given in Table 3 for the total particle number concentrations, the diameter of the BC core can be estimated to be in the range of 82–121 nm for the SMEAR II station, and in the range of 80–95 nm for the SORPES station. This size estimate is consistent with general knowledge of BC particle size obtained with more sophisticated methods. For example, Schwarz et al. (2008) measured BC size distributions with a single-particle soot photometer (SP2) and found that the mass median diameter (MMD) and geometric standard deviation (σ_g) of these distributions were 170 nm and 1.71, respectively, in an urban air, and 210 nm and 1.55, respectively, in a continental background air. These values yield the number mean BC diameters of 72 nm and 118 nm for urban and continental background air, respectively, when using the Hatch-Choate conversion equations (Hinds 1999). Moteki et al. (2007) followed a pollution plume downwind of Tokyo and measured BC size distributions with an SP2 in an aircraft. The resulting MMD and σ_g of the measured distributions were 190 nm and 1.55, respectively, at two hours downwind of Tokyo, and 210 nm and 1.45, respectively, at 14 hours downwind of Tokyo. The corresponding number mean BC diameters are 107 nm and 139 nm.

The particles that were detected when the number concentrations were above the lowest edge of the N vs. [BC] scatter plot, i.e. above the line S_1, could also contain a BC core, provided that this core is small. Earlier, we assumed that all the particles that were observed when the number concentrations were above the line S_1 were secondary. However, the color-coding in Fig. 1 shows that there are also particles with a low single-scattering albedo ($\omega_p < 0.8$) indicative of primary particles above this line. It is possible that these particles represent fresh BC-containing particles that are much smaller than the
above estimated 99 nm. There are, for example, cases of dark particles with \(N \approx 10,000 \text{ cm}^{-3} \) and \([\text{BC}] \approx 1 \mu \text{g m}^{-3}\). This would yield a count mean diameter of 47 nm for the BC core, which is in reasonable agreement with freshly-emitted BC particle agglomerates (e.g. Zhang et al. 2008). Therefore, we repeated the calculation of \(N_1 \) and \(N_2 \) by subtracting the number concentrations of particles having \(\omega_0 < 0.8 \) from \(N_2 \) and added them to \(N_1 \):

\[
N_2 = N - S_1 \times [\text{BC}] - N(\omega_0 < 0.8) \quad (3)
\]

and

\[
N_1 = S_1 \times [\text{BC}] + N(\omega_0 < 0.8) \quad (4)
\]

The comparison of the relative contributions of primary and secondary particles calculated this way (Eqs. 3 and 4, Table 5) with our original method (Eqs. 1 and 2, Table 4) shows that the overall conclusion made in the previous section will not change: the majority of particles are still of secondary origin.

We finally investigated how sensitive our results are to the method used to determine the BC concentration (Tables 6 and 7). The values of the slopes \(S_1 \) varied by tens of per cents: at SORPES, for example, the values of \(S_1 \) were \(1.11 \times 10^6 \) particles ng(BC)\(^{-1}\) and \(1.67 \times 10^6 \) particles ng(BC)\(^{-1}\) when using the Weingartner et al. (2003) and Arnott et al. (2005) corrections, respectively (Table 6). However, while the latter value of \(S_1 \) was about 50% greater than the former one, the final result was affected only little. The reason is that when \(N_1 \) is calculated with Eq. 1, not only \(S_1 \) but also the BC concentration is affected by the same algorithm. As a result, the primary fractions are relatively insensitive to the algorithm used for processing the aethalometer data, the differences being on the order of a few percentage points in our case (Table 7). With the same reasoning, the method is also insensitive to the use of different MAC values.

Conclusions

We investigated the contributions of primary and secondary aerosol production to the size-segregated particle number load by using the black

Table 5. Estimated fraction of primary particles at SMEAR II and SORPES when including the single scattering albedo correction (Eqs. 3 and 4). Only the cases with 1% of the data points locating below the line \(S_1 \times [\text{BC}] \) are shown. The values obtained for the nucleation mode are very rough estimates (see the main text), so these values are given in parenthesis.

<table>
<thead>
<tr>
<th></th>
<th>Nucleation mode</th>
<th>Aitken mode</th>
<th>Accumulation mode</th>
<th>Total number concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMEAR II</td>
<td>(0.11)</td>
<td>0.18</td>
<td>0.25</td>
<td>0.21</td>
</tr>
<tr>
<td>SORPES</td>
<td>(0.04)</td>
<td>0.20</td>
<td>0.50</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Table 6. The values of \(S_1 \) (10\(^6\) particles ng(BC)\(^{-1}\)) obtained when using different ways to determine the BC concentration. Only the cases with 1% of the data points locating below the line \(S_1 \times [\text{BC}] \) are shown.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SMEAR II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nucleation mode</td>
<td>0.021</td>
<td>0.029</td>
<td>0.019</td>
<td>0.015</td>
</tr>
<tr>
<td>Aitken mode</td>
<td>0.401</td>
<td>0.469</td>
<td>0.363</td>
<td>0.367</td>
</tr>
<tr>
<td>Accumulation mode</td>
<td>0.457</td>
<td>0.506</td>
<td>0.460</td>
<td>0.512</td>
</tr>
<tr>
<td>Total number concentration</td>
<td>1.279</td>
<td>1.512</td>
<td>1.201</td>
<td>1.130</td>
</tr>
<tr>
<td>SORPES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nucleation mode</td>
<td>0.037</td>
<td>0.026</td>
<td>0.022</td>
<td></td>
</tr>
<tr>
<td>Aitken mode</td>
<td>0.473</td>
<td>0.330</td>
<td>0.284</td>
<td></td>
</tr>
<tr>
<td>Accumulation mode</td>
<td>0.890</td>
<td>0.739</td>
<td>0.664</td>
<td></td>
</tr>
<tr>
<td>Total number concentration</td>
<td>1.670</td>
<td>1.260</td>
<td>1.110</td>
<td></td>
</tr>
</tbody>
</table>
carbon concentration as a tracer for primary particles. Our analysis was based on the long-term observations performed at a boreal forest site (SMEAR II in Hyytiälä, Finland) and highly-polluted urban background site (SORPES in Nanjing, China). We found that at the boreal forest site, primary particles contributed only 10%–20% to the total aerosol number load and about 20%–30% to the accumulation mode particle number concentration. The contribution of primary particles to the nucleation and Aitken modes was estimated to be smaller, likely below 10%. In the polluted site affected heavily by anthropogenic sources, the relative fraction of primary particles was greater, yet most of the particles appeared to be of secondary origin even in the accumulation mode.

Our results indicate that the particle number concentrations, and therefore the aerosol number budget, is dominated by the secondary pathways. Even in a highly-polluted environment like Nanjing, secondary aerosol formation is very pronounced during the daytime, and particularly in summer months when the typical BC concentration is of the order of 1 µg m⁻³ (see Fig. 3). This result is in line with other studies in China, determined from aerosol chemical composition measurements (e.g. Guo et al. 2014, Huang et al. 2014). Furthermore, signatures of frequent NPF have been observed in Chinese megacities (e.g. Wu et al. 2007, Xiao et al. 2015) under conditions where this phenomenon would not be observed in moderately polluted environments (e.g. Nie et al. 2014, Kulmala et al. 2014, Kulmala 2015). Our analysis demonstrates the importance and effectiveness of making continuous and comprehensive observations, allowing one to explore the validity hypotheses like the one investigated here.

Acknowledgements: The work was partly supported by the European Commission via projects ACTRIS, ACTRIS2 and BACCHUS, Academy of Finland Centre of Excellence (project number 272041) and Nordforsk via Cryosphere-Atmosphere Interactions in a Changing Arctic Climate, CRAICC. This work was partly supported by the National Natural Science Foundation of China (D0512/41422504 and D0512/41305123) and by the Jiangsu Provincial Science Fund (no. BK20140021). The SORPES was supported by the 985 program of the Ministry of Education and by the Collaborative Innovation Center of Climate Change in Jiangsu Province, China. The authors gratefully acknowledge the technical support of the SMEAR II and SORPES staff.

References

Kulmala M., Petäjä T., Ehn M., Thornton J., Sipilä M.,

