Childhood predictors of adult fatty liver. The Cardiovascular Risk in Young Finns Study

Suomela, Emmi

2016-10

http://hdl.handle.net/10138/225834
https://doi.org/10.1016/j.jhep.2016.05.020

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.
Childhood predictors of adult fatty liver. The Cardiovascular Risk in Young Finns Study

Emmi Suomela1,*, Mervi Oikonen1, Niina Pirkkänen1, Ari Ahola-Olli1, Johanna Virtanen2, Riitta Parkkola2, Eero Jokinen3, Tomi Laitinen4, Nina Hutri-Kähönen5, Mika Kähönen6, Terho Lehtimäki7, Leena Taittonen8, Päivi Tossavainen9, Antti Jula10, Britt-Marie Loo10, Vera Mikkilä1,11, Risto Telama12, Jorma S.A. Viikari13, Markus Juonala13, Olli T. Raitakari1,14

1Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland; 2Department of Radiology, Turku University Central Hospital, Medical Imaging Centre of Southwest Finland, Turku, Finland; 3Department of Pediatric Cardiology, Hospital for Children and Adolescents, University of Helsinki, Helsinki, Finland; 4Department of Clinical Physiology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland; 5Department of Pediatrics, University of Tampere and Tampere University Hospital, Tampere, Finland; 6Department of Clinical Physiology, Tampere University Hospital and University of Tampere, Tampere, Finland; 7Finlab Laboratories and Department of Clinical Chemistry, School of Medicine, University of Tampere, Tampere, Finland; 8Vaasa Central Hospital, Vaasa, Finland and Department of Pediatrics, University of Oulu, Oulu, Finland; 9Department of Children and Adolescents, Oulu University Hospital, PEDEGO Research Unit and Medical Research Centre Oulu, University of Oulu, Oulu, Finland; 10Department of Chronic Disease Prevention, National Institute for Health and Welfare, Turku, Finland; 11Division of Nutrition, Department of Applied Chemistry and Microbiology, University of Helsinki, Helsinki, Finland; 12LIKES-Research Centre for Sport and Health Sciences, Jyväskylä, Finland; 13Department of Medicine, University of Turku, and Division of Medicine, Turku University Hospital, Turku, Finland; 14Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland

Keywords: Longitudinal study; Hepatic steatosis; Risk factors; Population study.

Introduction

Fatty liver without excessive alcohol intake is the most common form of chronic liver disease in Western countries with prevalence between 20–30% and 70–90% in the obese and diabetics [1]. One of the major modifiable risk factors for fatty liver disease is obesity which often begins in childhood [2,3]. There is no
effective cure for advanced fatty liver, and thus the increase in pediatric obesity emphasizes the importance of identification of children and adolescents at high risk of fatty liver in adulthood.

Fatty liver is the result of accumulation of triacylglycerol in the hepatocytes [4–7]. Although evidence that hepatic fat accumulation determines insulin resistance is still lacking in humans [7], it has been hypothesized that hepatic accumulation of the diacylglycerols may lead to activation of protein kinase Cε, resulting in hepatic insulin resistance. Additionally, intracellular compartmentation of diacylglycerols is a critical factor in determining whether increased hepatic diacylglycerol content results in hepatic insulin resistance and will likely explain why some patients with fatty liver are not associated with hepatic insulin resistance [8,9]. Besides obesity and diabetes, recently also genetic factors have been shown to be associated with fatty liver [7]. Romeo et al. [10] were the first to report that the rs738409 C>G SNP in the patatin-like phospholipase domain-containing 3 (PNPLA3) gene, encoding the isoleucine to methionine variant at protein position 148, was strongly associated with increased liver fat content [10]. Since then, several other pieces of evidence have highlighted the major role of PNPLA3 in the development and progression of NAFLD [11,12]. Mutated PNPLA3 variant is attached on the surface of lipid droplets reducing triglyceride breakdown leading to lipid retention in the hepatocyte lipid droplet [7]. In addition to PNPLA3, we examined other single nucleotide polymorphisms that have been linked to fatty liver: TM6SF2, GCKR and LYPLAL1 [12]. The low-frequency rs58542926 C>T polymorphism of TM6SF2 encodes the loss-of-function E167K variant, which leads to reduced secretion of very low-density lipoproteins (VLDL) resulting in intrahepatic retention of triglycerides and steatosis [13–17]. The common glucokinase regulator (GCKR) regulates glucose uptake by hepatocytes [18]. In this study, we used the rs1260326 encoding for the P446L protein variant. The P446L variant affects GCKR ability to negatively regulate glucokinase in response to fructose-6-phosphate, thereby determining constitutive activation of hepatic glucose uptake [19]. Single nucleotide polymorphism in the lysophospholipase-like 1 locus (LYPLAL1, rs12137855) encodes an enzyme likely involved in triglycerides catabolism in the liver.

The present study aimed to identify the childhood physical and environmental predictors of adult fatty liver. We used data from the longitudinal Cardiovascular Risk in Young Finns Study to examine the associations of childhood (3–18 years) risk variables with fatty liver assessed in adulthood at the age of 34–49 years. We also examined whether adding information on the genetic variants in PNPLA3, TM6SF2, GCKR and LYPLAL1 enhances early identification of children who may be at risk for adult fatty liver.

Materials and methods

Study population

The Cardiovascular Risk in Young Finns Study is an ongoing population-based follow-up study of atherothrombotic precursors. In 1980, a total of 4320 Finnish children in 6 age cohorts (3, 6, 9, 12, 15, and 18 years of age) were invited, and 3596 (83.2%) participated in the first cross-sectional survey [20]. Participants were randomly chosen from the national population register. Since then, follow-ups have been conducted in the whole population in 1983, 1986, 2001, 2007 and 2011. In the latest follow-up in 2011, a total of 2,042 (age, 34–49 years) participants were reexamined. All participants provided written informed consent, and the study was approved by Ethics Committee of Hospital District of Southwest Finland in agreement with the Declaration of Helsinki.

Ultrasound imaging of liver

Ultrasound imaging of the liver was performed for 2,042 study participants using a validated protocol [21] and Sequoia 512 ultrasound mainframes (Acuson, Mountain View, CA, USA) with 4.0 MHz adult abdominal transducers. Evaluation of hepatic steatosis was performed according to liver-to-kidney contrast, parenchymal brightness, deep beam attenuation and bright vessel walls [22]. According to these criteria the presence of hepatic steatosis was assessed visually by a one trained ultrasonographer masked to participant's characteristics.

Clinical characteristics

Height and weight were measured and body mass index (BMI) was calculated as weight in kilograms divided by height in meters squared. Blood pressure was measured from the brachial artery with a standard mercury sphygmomanometer. The average of three measurements was used in statistical analysis.

Questionnaires were used to obtain data on smoking, age at menarche, physical activity, birth weight, birth height, length of gestation, breastfeeding, family history of coronary heart disease, parental hypertension (self-reported diagnosis of hypertension in either parent at baseline) and parental occupational status. Data on birth weight and birth height was verified by well-baby clinic records. In 1980, 1983 and 1986, questionnaire information on cigarette smoking was collected in participants aged 12 years or older. Individuals who had reported daily smoking at any age between ages 12 and 18 were defined as smokers. Excess alcohol intake was available in participants aged 9 years or older. The physical activity index was calculated as previously described (range 5–15) [23]. In 2001, 2007 and 2011 follow-ups, adulthood alcohol consumption data were acquired by standardized questionnaires. Excess alcohol intake was defined as consuming >6 alcohol doses all at once at least once a week. By using data collected from national hospital discharge registries were able to verify that none of the participants had viral or autoimmune causes of fatty liver. Furthermore, all results remained similar after excluding participants with history of cancer (N = 4) and psychiatric disorders (N = 3), who may potentially have medications influencing liver fat metabolism.

Venous blood samples were drawn after an overnight fast for determination of serum lipid levels, insulin, CRP. Serum insulin was measured with immunosay [24]. Standard enzymatic methods were used for serum total cholesterol, triglycerides, and high-density lipoprotein cholesterol [25,26]. Low-density lipoprotein cholesterol concentration was calculated by the Friedewald formula in subjects with triglycerides <4.0 mmol/L. Serum high-sensitivity C-reactive protein (CRP) was analyzed by immunosay [27].

Genetic analyses

In the present study, we used the SNPs rs738409 near the PNPLA3 gene, rs58542926 near the TM6SF2 gene, rs12137855 near the gene LYPLAL1 and rs780094 near the GCKR gene, associated with fatty liver in recently genome-wide association analyses [10,12,13,17–22], as the genetic marker for susceptibility for fatty liver. Genotyping was performed with the custom-built Illumina BeadChip 670K. Missing genotypes have been imputed to the 1,000 genomes reference panel and imputed single nucleotide polymorphism have been filtered based on low call-rate (<0.95), low-information score (<0.4), minor allele frequency <1%, and deviation from Hardy-Weinberg equilibrium (p < 5.0 × 10−6).

Statistical analyses

The participants were classified into fatty liver and normal liver groups. The risk allele count for the SNP rs738409 was coded 0/1/2, where 2 denotes a GG and 1 a GC genotype. Birth weight and height were treated as continuous variables. Preterm birth was defined as birth before 37 weeks' gestation. Small for gestational age was defined as birth weight below the 10th percentile, appropriate birth weight at gestational age as birth weight in the 50th–90th percentiles and large for gestational age as birth weight over the 90th percentile. At baseline, the participants were classified as smokers if they smoked daily. Parental occupational status was divided into 3 categories: manual, lower-grade non-manual, and higher-grade non-manual. Values for triglycerides and CRP were log-transformed before analyses because of skewed distributions. The distribution of physical activity index was strongly skewed. Thus, the physical activity index was divided to quartiles. Alcohol consumption data were calculated in standard
Research Article

A retraction of birth weight and the genetic variant in the discrimination index were calculated to determine the extent to which incorporated alcohol doses (12 g pure ethanol) per day by dividing the total number of doses consumed per week (0.33 L doses of beer or cider, 0.12 L doses of wine, and 0.04 L doses of hard liquor) by 7.

An attrition analysis was performed to determine whether the representativeness of the baseline sample was maintained in the present cohort; baseline characteristics were compared between those who participated and those who did not participate at follow-up.

Logistic regression was used to examine the odds ratios (OR) of adult fatty liver for a 1-SD increase for each of the continuous childhood variables. The variables that were significant in age-, sex- and BMI-adjusted analyses were then added to a multivariable logistic regression model to determine the independent childhood predictors of adult fatty liver. To examine whether gene variant status modifies the associations between the predictor variables and fatty liver, we included predictor variable x gene variant interaction terms in regression models. The incremental value of adding risk variables to predict adult fatty liver was examined through the use of alcohol consumption adjusted multivariate logistic regression models. Additionally, birth weight was selected to the final multivariable model and model comparison analysis, and the ORs of birth height, small for gestational age and preterm birth were assessed in separate models. The ability of several models to predict fatty liver risk was estimated with alcohol consumption adjusted C statistics by calculating the area under the receiver-operating characteristic curve, the net reclassification improvement, and the integrated discrimination index [29]. The net reclassification improvement and integrated discrimination index were calculated to determine the extent to which incorporation of birth weight and the genetic variant in PNPLA3 reassigned individuals to risk categories that more correctly reflected whether the subjects developed fatty liver in adulthood.

Two-tailed p values less than 0.05 were considered statistically significant. All statistical analyses were performed with the Statistical Analysis System 9.4 (SAS Institute Inc., Cary, NC, USA).

Results

Baseline characteristics of the study participants (n = 2,042) are shown in Table 1. The prevalence of adult fatty liver was 19% (n = 385). To determine whether the representativeness of the baseline sample was maintained in the present cohort, we compared the baseline characteristics between those who participated and those who did not participate at follow-up. Non-participants were younger (9.9 vs. 10.9 years; p < 0.0001, sex-adjusted analysis of variance) and more often male (54% vs. 45%; p < 0.0001, Chi-squared test) than participants. No statistically significant differences were observed for other baseline study variables.

Childhood risk factors for adult fatty liver

Age-, sex- and BMI-adjusted ORs and confidence intervals (CI) for adult fatty liver according to childhood variables are shown in Table 2. Male sex, preterm birth, small for gestational age, TM6SF2, PNPLA3, age- and sex-adjusted BMI and insulin levels, low birth weight and low birth height showed significant ORs for adult fatty liver.

Multivariable logistic regression models adjusted with adulthood long term alcohol consumption were constructed to examine the independent contributions of childhood risk variables to the development of the adult fatty liver. Significant variables from the Table 2 were selected in the models. In a model containing age, sex, insulin, BMI, birth weight, TM6SF2 and PNPLA3, the independent predictors of adult fatty liver included male sex, variant in PNPLA3, variant in TM6SF2, insulin, BMI and birth weight (Table 3). We also determined in separate multivariable models the ORs for small-for-gestational age (OR 1.71, 95% CI 1.07–2.72, p = 0.02), birth height (0.87, 0.75–1.01, p = 0.06) and preterm birth (2.03, 1.08–3.84, p = 0.03). In the interaction analyses, there were no statistically significant predictor variable x gene variant interactions. Excluding participants with excess alcohol intake did not change the results.

Multiple childhood risk factors in predicting adult fatty liver

We studied the ability of multiple childhood risk factors to predict adult fatty liver with several models (Table 4). Models were adjusted with long term alcohol consumption. A model that included age, sex, BMI, insulin and birth weight (model 2) performed better than a model including only age, sex, BMI, and insulin (model 1) (p = 0.03 model 2 vs. 1). When both PNPLA3 and TM6SF2 were included in the model (model 3), the area under the curve value increased significantly (p = 0.002 when compared to model 1, and p = 0.05 when compared to model 2). Consistent improvements were also seen for the net reclassification improvement and integrated discrimination index between mod-

| Table 1. Baseline characteristics of participants with and without fatty liver diagnosis in adulthood (N = 2,042). |
|---------------------------------|-----------------|-----------------|----------|
| Adult fatty liver status in 2011 | Normal liver | Fatty liver | p value |
| No. | 1657 | 385 | 10.7 ± 0.1 | 12.3 ± 0.3 | <0.0001 |
| Age (yr) | 1657 | 385 | 0.40 | 0.63 | <0.0001 |
| BMI (kg/m²) | 1657 | 385 | 17.7 ± 0.1 | 19.0 ± 0.2 | <0.0001 |
| z-BMI | 1657 | 385 | -0.07 | 0.14 | <0.0001 |
| Systolic blood pressure (mmHg) | 1657 | 385 | 112.1 ± 0.3 | 115.7 ± 0.6 | <0.0001 |
| Diastolic blood pressure (mmHg) | 1657 | 385 | 68.3 ± 0.3 | 69.7 ± 0.5 | 0.01 |
| Total cholesterol (mmol/L) | 1657 | 385 | 5.3 ± 0.0 | 5.1 ± 0.0 | 0.0006 |
| LDL cholesterol (mmol/L) | 1657 | 385 | 3.5 ± 0.0 | 3.3 ± 0.0 | 0.0008 |
| HDL cholesterol (mmol/L) | 1657 | 385 | 1.6 ± 0.0 | 1.5 ± 0.0 | 0.03 |
| Triglycerides (mmol/L) | 1657 | 385 | 0.66 ± 0.0 | 0.70 ± 0.0 | 0.03 |
| Insulin (mU/L) | 1657 | 385 | 9.5 ± 0.1 | 11.4 ± 0.3 | <0.0001 |
| CRP (mg/L) | 1657 | 385 | 1.0 ± 0.1 | 1.0 ± 0.2 | 0.9 |
| Birth weight (g) | 1657 | 385 | 3529 ± 15 | 3441 ± 32 | 0.01 |
| Birth height (cm) | 1657 | 385 | 50.4 ± 0.1 | 50.2 ± 0.1 | 0.2 |
| Large for gestational age (%) | 1657 | 385 | 9.4 | 8.8 | 0.7 |
| Small for gestational age (%) | 1657 | 385 | 9.1 | 14.8 | 0.005 |
| Appropriate for gestational age (%) | 1657 | 385 | 81.5 | 76.4 | 0.06 |
| Preterm birth (%) | 1657 | 385 | 3.1 | 6.9 | 0.002 |
| Breast-feeding (%) | 1657 | 385 | 85.9 | 78.8 | 0.005 |
| Daily smoking (%) | 1657 | 385 | 18.5 | 23.6 | 0.03 |
| Physical activity index | 1657 | 385 | 8.4 ± 0.1 | 8.6 ± 0.1 | 0.3 |
| Mother’s BMI | 1657 | 385 | 23.8 ± 0.1 | 24.7 ± 0.2 | <0.0001 |
| Father’s BMI | 1657 | 385 | 25.4 ± 0.1 | 25.8 ± 0.2 | 0.05 |
| Parental occupational status (%) | 1657 | 385 | 38/43/19 | 44/42/14 | 0.03 |
| Parental hypertension prevalence (%) | 1657 | 385 | 13.6 | 20.1 | 0.003 |
| Age at menarche (yr) | 1657 | 385 | 13.1 ± 0.1 | 12.7 ± 0.1 | 0.02 |
| Variant in PNPLA3 (CC/CG/GG) (%) | 1657 | 385 | 60/36/4 | 54/38/8 | 0.003 |
| Variant in TM6SF2 (CC/CT/TT) (%) | 1657 | 385 | 90/10/0 | 82/17/1 | 0.002 |
| Variant in GCKR (CC/CT/TT) (%) | 1657 | 385 | 42/46/12 | 38/43/19 | 0.004 |
| Variant in LYPLA1 (CC/CT/TT) (%) | 1657 | 385 | 53/41/6 | 50/41/9 | 0.1 |

BMI, body mass index; CRP, C reactive protein; CHD, coronary heart disease. Values are least squares means ± standard error for continuous variables and percentages for categorical variables. *Breastfed = 1, not breastfed = 0. The three categories according to a parental occupation (manual, lower-grade nonmanual, higher-grade nonmanual). a Data available from 12–18 years old participants. z-BMI, age and sex adjusted body mass index z-score.
In this study, we were able to take into account several potential childhood risk factors for adult fatty liver in a large cohort of children followed up over 30 years. We have recently shown in this cohort that adulthood determinants of fatty liver are waist circumference, alanine aminotransferase, BMI, male sex, and childhood BMI and insulin levels. Our results also suggest that the prediction of adult fatty liver is improved by the use of data on birth weight.

In this study, we observed that the prediction of fatty liver in adulthood can be improved significantly by the use of single nucleotide polymorphism in the PNPLA3 and TM6SF2 genes compared with prediction models consisting of only age, sex, and childhood BMI and insulin levels. Our results also suggest that the prediction of adult fatty liver is improved by the use of data on birth weight.

Interestingly, low birth weight was an independent predictor of adult fatty liver. This is in line with one previous study of 2,003 Finnish adults: a significant association between adulthood liver fat score (based on five variables: presence of metabolic syndrome, presence of type 2 diabetes, fasting serum insulin and aspartate aminotransferase levels, and aspartate aminotransferase/alanine aminotransferase ratio) and birth weight was seen in women [32]. This may be influence of rapid weight catch-up growth [33,34]. Catch-up growth is recognized as a major risk factor for later development of insulin-related complications and chronic diseases like abdominal obesity, type 2 diabetes and cardiovascular disease [35]. In a longitudinal study of 51 Spanish children, small for gestational age children gained progressively more body fat and abdominal fat mass than appropriately for gestational age children between ages 2 and 4 years. These differences occurred despite the small for gestational age children having already completed their catch-up growth and weight gain by age 2 years [36]. On the other hand, low birth weight was associated with adult fatty liver even when adjusted with childhood BMI. This could be explained by the model for the origins of disease that proposes that nutrition during fetal life, infancy, and early childhood establish gene expression and thereby permanently set functional capacity, metabolic competence, and responses to the later environment [37]. Furthermore, it is known that liver growth may be reduced as part of the adaptive response to a poor fetal substrate supply [38].

In this study, we used the genetic variants in PNPLA3, TM6SF2, GCKR and LYPLAL1 genes recognized to being involved in determining the risk of fatty liver [7,39]. The value of these novel
genetic markers in identifying young individuals at risk for adult fatty liver disease is unknown. We observed that a combined risk score based on childhood BMI and insulin levels, birth weight and the genetic variants in PNPLA3 and TM6SF2 was superior to a model including only BMI and insulin values in predicting adult fatty liver. In PNPLA3 gene, rs738409 is a C/G single nucleotide variation on human chromosome 22. A cytosine to guanine DNA substitution (rs738409) encodes an isoleucine to methionine change in the amino acid residue 148 of the PNPLA3 protein [40]. Mutated PNPLA3 variant is attached on the surface of lipid droplets reducing triglyceride breakdown leading to lipid retention in the hepatocyte lipid droplet [7,41]. Alternatively, it may stimulate the hepatic triglycerides synthesis [42,43]. The variant increases the risk of fatty liver, but is not associated with increased risk of type 2 diabetes or cardiovascular disease [44]. However, as the carriers of the variant allele are at high risk of developing advanced liver disease, they may be an important target group for lifestyle intervention [45]. The low-frequency rs58542926 polymorphism of TM6SF2 encodes the loss-of-function E167K variant that has been linked with fatty liver and lower serum lipoproteins [7]. The mechanism is related to reduced secretion of VLDL resulting in intrahepatic retention of triglycerides [7]. Altogether, the present data suggest that a multifactorial approach if implemented could improve the identification of children with a high risk of adult fatty liver. Moreover, these data demonstrate that the prediction of adult fatty liver was enhanced by taking into account genetic variants.

Strengths and limitations

We studied a large, randomly selected, and carefully phenotyped cohort of young men and women prospectively followed up for up to 31 years since early childhood. Extensive data were available on several possible childhood physical, environmental, and genetic determinants of fatty liver that could be comprehensively taken into account in multivariable models. Because our study cohort was homogeneous ethnic group, the generalizability of our results is limited to Caucasians. The limitations of this study include the loss of original participants during the long term follow-up. We found that non-participants were younger and more often male in childhood than participants. Therefore, the rates of adult fatty liver in our cohort might be underestimated of the real rates. One limitation of our study was that we did not have data on liver enzymes measured in childhood.

Liver biopsy is at present the gold standard for diagnosing fatty liver, because it is the only way to detect inflammation or fibrosis [46]. However, it is an invasive procedure with potential risk of bleeding, and it is not suitable for large-scale population studies of fatty liver [47,48]. Ultrasound imaging has also its limitations: while the test shows high specificity, it has low sensitivity [49]. It has been estimated that conventional ultrasound imaging can only detect steatosis when more than 30% of the liver is affected [50]. However, a large meta-analysis [51] concluded that ultrasonography allows for reliable and accurate detection of moderate-severe fatty liver, compared to histology. Liver ultrasound is an operator-dependent modality with varying results between operators. In the meta-analysis by Hernaez et al., the range of kappa values for intra-rater evaluation was 0.54–0.92 [51]. In our study, all ultrasound images were graded by one trained operator who was masked for participant’s clinical characteristics. Because ultrasound imaging is non-invasive, widely accessible, and cost-effective, it is likely a reasonable choice for population-based studies into the etiogenesis of fatty liver [51].

Conclusions

We found that low birth weight, the SNP rs738409 in the PNPLA3 gene, the SNP rs58542926 in the TM6SF2 gene and insulin and BMI levels measured in childhood were independently related to fatty liver detected 31 years later in adulthood. Including information on birth weight, rs738409 and rs58542926 in addition to childhood BMI and insulin levels significantly improved the ability of the statistical model to predict adult fatty liver. Therefore, the present findings suggest that a multifactorial approach if implemented would improve early identification of children with a high risk of adult fatty liver.

Financial support

The Young Finns Study has been financially supported by the Academy of Finland: grants 286284, 134309 (Eye), 126925, 121584, 124282, 129378 (Salve), 117787 (Gendi), and 41071 (Skidi); the Social Insurance Institution of Finland: Kuopio, Tampere and Turku University Hospital Medical Funds; Juho Vainio Foundation; Paavo Nurmi Foundation; Finnish Foundation of Cardiovascular Research; Finnish Cultural Foundation; Tampere Tuberculosis Foundation; Emil Aaltonen Foundation; and Yrjö Jahnsson Foundation.
Conflict of interest

The authors who have taken part in this study declared that they do not have anything to disclose regarding funding or conflict of interest with respect to this manuscript.

Authors’ contributions

Emmi Suomela: study concept and design; analysis and interpretation of data; statistical analysis; drafting of the article. Mervi Oikonen: study concept and design; acquisition of data; analysis and interpretation of data; drafting of the article; critical revision of the manuscript for important intellectual content. Antti Jula: analysis and interpretation of data; critical revision of the manuscript for important intellectual content. Riitta Parkkola: analysis and interpretation of data; critical revision of the manuscript for important intellectual content. Eero Jokinen: analysis and interpretation of data; critical revision of the manuscript for important intellectual content. Tomi Laitinen: analysis and interpretation of data; critical revision of the manuscript for important intellectual content. Nina Nutri-Kähönen: analysis and interpretation of data; critical revision of the manuscript for important intellectual content. Mika Kähönen: analysis and interpretation of data; critical revision of the manuscript for important intellectual content. Leena Taittonen: analysis and interpretation of data; critical revision of the manuscript for important intellectual content. Jorma S. A. Viikari: study concept and design; acquisition of data; analysis and interpretation of data; critical revision of the manuscript for important intellectual content. Markus Juonala: analysis and interpretation of data; critical revision of the manuscript for important intellectual content. Tomi Lehtimäki: analysis and interpretation of data; critical revision of the manuscript for important intellectual content. Nina Pietikäinen: study concept and design; analysis and interpretation of data; statistical analysis; drafting of the article. Ari Ahola-Olli: analysis and interpretation of data; critical revision of the manuscript for important intellectual content. Jorma S. A. Viikari: study concept and design; acquisition of data; analysis and interpretation of data; drafting of the article; critical revision of the manuscript for important intellectual content. Jorma S. A. Viikari: study concept and design; acquisition of data; analysis and interpretation of data; drafting of the article; critical revision of the manuscript for important intellectual content; study supervision. Olli T. Raitakari: analysis and interpretation of data; critical revision of the manuscript for important intellectual content. Markus Juonala: analysis and interpretation of data; critical revision of the manuscript for important intellectual content. Antti Jula: analysis and interpretation of data; critical revision of the manuscript for important intellectual content. Jorma S. A. Viikari: study concept and design; acquisition of data; analysis and interpretation of data; critical revision of the manuscript for important intellectual content. Jorma S. A. Viikari: study concept and design; acquisition of data; analysis and interpretation of data; drafting of the article; critical revision of the manuscript for important intellectual content; study supervision.

Acknowledgements

Expert technical assistance in data management and statistical analyses by Irina Lisinen and Johanna Ikonen is gratefully acknowledged.

Supplementary data

Supplementary data associated with this article can be found in the online version, at http://dx.doi.org/10.1016/j.jhep.2016.05.020.

References

Author names in bold designate shared co-first authorship

Research Article

