Endotoxin levels and contribution factors of endotoxins in resident, school, and office environments - A review

Salonen, Heidi

2016-10

http://hdl.handle.net/10138/225835
https://doi.org/10.1016/j.atmosenv.2016.08.018

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.
Review article

Endotoxin levels and contribution factors of endotoxins in resident, school, and ofﬁce environments — A review

Heidi Salonen a,⁎, Caroline Duchaine b, c, Valérie Létourneau c, Mandana Mazaheri d, Sirpa Laitinen e, Sam Clifford d, f, Raimo Mikkola a, Sanna Lappalainen g, Kari Reijula h, Lidia Morawska d

a Aalto University, Department of Civil and Structural Engineering, PO Box 12100, FI-00076, Aalto, Finland
b Université Laval, Département de Biochimie, de Microbiologie et de Bio-informatique, 2325, rue de l'Université Québec G1V 0A6, Canada
c Centre de recherche de l'Institut universitaire de cardiology et de pneumologie de Québec, 2725, chemin Sainte-Foy, Québec G1V 4C5, Canada
d Queensland University of Technology, International Laboratory for Air Quality and Health, 2 George Street, Brisbane, Q 4001, Australia
e Finnish Institute of Occupational Health, Biological Hazards and Indoor Air, Neulankäyttilä 4, FI-70101, Kuopio, Finland
f Centre for Air Quality & Health Research and Evaluation, 431 Glebe Point Rd, Glebe, 2037, Australia
g Finnish Institute of Occupational Health, Developing Indoor Environments, Topeliuksenkatu 41 A, FI-00250, Helsinki, Finland
h Helsinki University, Clinicum, Department of Public Health, Tukholmankatu 8, FI-00014, Finland

HIGHLIGHTS

• Mean endotoxin loads in settled ﬂoor dust were 660–107,000 EU/m2.
• Mean airborne endotoxin concentrations in indoor air were 0.04–1610 EU/m3.
• There were several strong determinants for the endotoxin loads.
• The presence of pets was extremely strongly associated with the endotoxin concentration.
• Literature ﬁndings concerning several determinants were inconsistent.

ARTICLE INFO

Article history:
Received 16 February 2016
Received in revised form 2 August 2016
Accepted 6 August 2016
Available online 6 August 2016

Keywords:
Endotoxins
Indoor environments
Environmental characteristics
Airborne endotoxins
Bioaerosols
Settled dust

ABSTRACT

As endotoxin exposure has known effects on human health, it is important to know the generally existing levels of endotoxins as well as their contributing factors. This work reviews current knowledge on the endotoxin loads in settled ﬂoor dust, concentrations of endotoxins in indoor air, and different environmental factors potentially affecting endotoxin levels. The literature review consists of peer-reviewed manuscripts located using Google and Pubmed, with search terms based on individual words and combinations. References from relevant articles have also been searched. Analysis of the data showed that in residential, school, and ofﬁce environments, the mean endotoxin loads in settled ﬂoor dust varied between 660 and 107,000 EU/m², 2180 and 48,000 EU/m², and 2700 and 12,890 EU/m², respectively. Correspondingly, the mean endotoxin concentrations in indoor air varied between 0.04 and 1610 EU/m³ in residences, and 0.07 and 9.30 EU/m³ in schools and ofﬁces. There is strong scientiﬁc evidence indicating that age of houses (or housing unit year category), cleaning, farm or rural living, ﬂooring materials (the presence of carpets), number of occupants, the presence of dogs or cats indoors, and relative humidity affect endotoxin loads in settled ﬂoor dust. The presence of pets (especially dogs) was extremely strongly associated with endotoxin concentrations in indoor air. However, as reviewed articles show inconsistency, additional studies on these and other possible predicting factors are needed.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

There is great concern about the potential health hazard of biological components in airborne particulate matter (bioaerosols),
including endotoxins, in indoor environments. Endotoxin is a biologically active lipopolysaccharide that is a component of the outer membrane of gram-negative bacteria (Duchaine et al., 2001; Rennie et al., 2012; Todar, 2015) and has been shown to cause health responses among occupants. Epidemiologic and toxicologic studies provide evidence associating elevated endotoxin levels with increased asthma severity and bronchial hyperresponsiveness (Rabinovitch et al., 2005; Thorne et al., 2005), and it has been reported recently in a review study (Kanchongkittiphon et al., 2015) that there is sufficient evidence of an association between indoor endotoxin exposure and exacerbation of asthma. Although some studies have suggested a protective role of endotoxin exposure in infancy (Liu, 2002) or at school age (Norbäck et al., 2014), exposure to endotoxins later in life appears to have a detrimental effect in both individuals with asthma and other respiratory conditions and in healthy volunteers (Michel et al., 1996; Gehring et al., 2001; Thorne et al., 2009). Thus, to reduce endotoxin exposure may be important for the control of detrimental effects, and examine the association between indoor characteristics and endotoxin levels is prerequisite in reducing.

Although several studies were carried out worldwide to assess indoor exposure to endotoxins mainly through quantification of endotoxin loads in settled dust samples collected by vacuum cleaners (Noss et al., 2008; Samadi et al., 2010; Frankel et al., 2012b), and a few studies were conducted to measure endotoxin levels in ambient air (Park et al., 2000; Heinrich et al., 2003; Morgenstern et al., 2005; Dales et al., 2006; Wheeler et al., 2011), an overall overview of the data about the loads and concentration of endotoxin in different indoor environments is not available. Duquenne et al. (2013) reviewed examples of the airborne inhalable endotoxin concentration levels measured at the workplace but not in other indoor environments, such as residences. In addition, despite the reported sources and predictors of endotoxin — such as dairy farming, pets, cigarette smoke and dampness (Park et al., 2001a; Bischof et al., 2002; Tavernier et al., 2005; Mazique et al., 2011; Bari et al., 2014) — a systematic summary of the different predictors of endotoxin loads in indoor settled dust and endotoxin concentrations in indoor air is needed. Moreover, there is a need to rank the different predictors in indoor settings in terms of their importance.

With this motivation in mind, the aim of the present review study was (1) to summarize the reported endotoxin loads in settled floor dust (expressed as EU/m2) and airborne endotoxin concentrations (expressed as EU/m3) in school, office and residential indoor environments; (2) to summarize the different predictors of endotoxin in settled dust and indoor air; and (3) to rank the predictors of endotoxin in terms of their importance.

2. Material and methods

2.1. Literature search and selection

A PubMed search of the literature published between 1958 and 2016 was performed at http://www.ncbi.nlm.nih.gov/pubmed/ (National Library of Medicine (NLM), a division of the National Library of Medicine (NLM) at the National Institutes of Health (NIH)). Altogether, 52 search terms (See Table S1 in supplementary material (SM)) as well as different combinations of those terms were used. Searches included combinations of at least three terms simultaneously, and the terms endotoxin and indoor air/floor dust were used each time. Original peer-reviewed scientific articles and literature reviews were included in the search. Then, a search was done in the lists of references of relevant articles (based on their title and abstract) that included measurements of endotoxins in settled floor dust (expressed as EU/m2) and/or in the air (expressed as the EU/m3) as well as environmental factors affecting the levels of endotoxins. From the lists of references, relevant articles (based on their titles) were chosen for a detailed search. A few often-cited authors (Park, Chen, Gehring, and Thorne) were also added as search terms. Personal contacts with experts in the field were also established in order to collect relevant data. The basic search was performed from April 2013 to February 2014 and updated from September 2015 to July 2016.

A total of 290 abstracts were selected based on the eligibility of their titles, 200 of which were read based on the eligibility of their abstracts. Review of the whole articles was subject to their availability in the electronic databases of Aalto University, QUT (Queensland University of Technology), FIOH (Finnish Institute of Occupational Health) library subscriptions, or as free downloads from the Internet.

In the next step, 122 publications were selected for inclusion in the analysis. Indoor environments in this work include residential, school, and office buildings.

2.2. Relationship between environmental factors and the endotoxin loads in settled dust and the concentrations of airborne endotoxins

The relationship between environmental factors and the endotoxin loads in settled dust and the concentrations of airborne endotoxins were classified into three categories: 1) Extremely strong scientific evidence (several (>6) empirical studies from peer-reviewed journals and/or several systematic reviews, as reviewed herein); 2) Strong scientific evidence (at least three empirical studies from peer-reviewed journals and/or at least three systematic reviews, as reviewed herein); and 3) Scientific evidence was found (one or two empirical studies from peer-reviewed journals).

3. Results and discussion

3.1. Endotoxin loads in settled surface floor dust in different indoor environments

We found 11 residential studies from 3160 residents (n = 9049), three school studies (n = 95) from 42 school buildings and two office studies (n = 630) from two offices that reported the loads of endotoxins in settled floor dust expressed as EU/m2. A summary of these studies is presented in Table 1 and detailed information of studies is available in Table S2 in the SM. In all of the selected studies settled floor dust samples were collected by using vacuum cleaners. In all the studies, endotoxins were evaluated with a LAL based bioassay (e.g. kinetic turbidimetric LAL, endpoint chromogenic LAL or kinetic chromogenic LAL) (Chun et al., 2002; Thorne et al., 2009). Other detailed information about the selected studies is presented in Table S2 in the SM.

In a residential settings, the reported average loads of endotoxin in the floor dust collected by vacuum cleaners varied between 660 EU/m2 (in the Netherlands) and 107,000 EU/m2 (in Cincinnati and Northern Kentucky, USA) (Douwes et al., 1998; Wouters et al., 2000; Gehring et al., 2002; Wickens et al., 2003b; Thorne et al., 2005; Perzanowski et al., 2006; Gehring et al., 2008; Noss et al., 2008; Thorne et al., 2009; Johansson et al., 2013; Adhikari et al., 2014; Holst et al., 2015a). In a study comparing farming and non-farming households, the endotoxin loads in settled floor dust were higher in farming households (geometric mean (GM): 28,400–29,900 EU/m2) than in non-farming households (GM: 11,500–14,460 EU/m2) (Noss et al., 2008).

In a school environment, mean (GM) endotoxin loads in the settled floor dust collected by vacuum cleaners varied between 2200 and 48,000 EU/m2 (Foarde and Berry, 2004; Ebbehøj et al., 2005; Salonen et al., 2013; Holst et al., 2015a). The lowest and
highest mean values were reported in rural schools in North Carolina. In an office environment, mean (GM) endotoxin loads in settled floor dust varied between 2700 and 12,890 EU/m² in a metropolitan area in the north-east of the United States (Park et al., 2006; Akpinar-Elci et al., 2013).

3.2. Endotoxin concentrations in indoor air of different indoor environments

Table 2 shows the airborne endotoxin concentrations from 34 published studies on residential microenvironments (1970 residents, 3521 samples), school microenvironments (59 schools, 123 samples) and an office microenvironment (one office, two
Table 2

The concentrations of airborne endotoxins in different indoor environments.

<table>
<thead>
<tr>
<th>Study location</th>
<th>Type of buildings (number of buildings)</th>
<th>Sampling location/housing and other characteristics</th>
<th>n*</th>
<th>Endotoxin (EU/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baltimore, MD, Maryland, USA. Homes (84)</td>
<td>Participant’s main living area</td>
<td>84</td>
<td>AM: 0.55 (SD: 1.3)</td>
<td></td>
</tr>
<tr>
<td>Baltimore, MD, Maryland, USA. Inner-city homes (85)</td>
<td>Bedroom</td>
<td>170</td>
<td>AM: 0.13 (SD: 0.26)</td>
<td></td>
</tr>
<tr>
<td>Bavaria and Switzerland Farming homes (30) (von Mutius et al., 2000)</td>
<td>Inhalable (PM7.5) endotoxins from several locations where children were usually playing</td>
<td>30</td>
<td>GM: 150</td>
<td></td>
</tr>
<tr>
<td>Bavaria and Switzerland Farming homes (30) (von Mutius et al., 2000)</td>
<td>Respirable (PM2.5) endotoxins from several locations where children were usually playing</td>
<td>30</td>
<td>GM: 7</td>
<td></td>
</tr>
<tr>
<td>Boston, Massachusetts, USA Metropolitan homes (82) (Horick et al., 2006)</td>
<td>Bedroom</td>
<td>142</td>
<td>GM: 0.64 (GSD: 2.6)</td>
<td></td>
</tr>
<tr>
<td>Boston, Massachusetts, USA Homes (116) (Park et al., 2001b)</td>
<td>Family room</td>
<td>116</td>
<td>GM: 0.77 (GSD: 2.3)</td>
<td></td>
</tr>
<tr>
<td>Boulder, Colorado, USA Homes (30) (Escobedo et al., 2014)</td>
<td>Kitchen/living room during weekday and weekend</td>
<td>30</td>
<td>Weekday: AM: 0.052 Week: AM: 0.058</td>
<td></td>
</tr>
<tr>
<td>Brussels, Belgium Naturally ventilated homes (9) (Bouillard et al., 2006)</td>
<td>Naturally ventilated rooms, inhalable and respirable endotoxins</td>
<td>18</td>
<td>Range: 0.0025–12.147</td>
<td></td>
</tr>
<tr>
<td>Cincinnati and Northern Kentucky, USA Low (31) and high (11) ERMI homes (Adhikari et al., 2014)</td>
<td>Low-ERMI homes</td>
<td>31</td>
<td>GM: 4.44</td>
<td></td>
</tr>
<tr>
<td>Cincinnati and Northern Kentucky, USA Homes (184) (Reponen et al., 2010)</td>
<td>Children’s primary activity room</td>
<td>184</td>
<td>GM: 4.2</td>
<td></td>
</tr>
<tr>
<td>Danmark Homes [5] (Frankel et al., 2012a)</td>
<td>Homes during spring</td>
<td>19</td>
<td>Median: 1.24; Range: 0.078–8.32 Median:1.48;</td>
<td></td>
</tr>
<tr>
<td>Danmark Homes [5] (Frankel et al., 2012a)</td>
<td>Homes during summer</td>
<td>11</td>
<td>Range: 0.32–3.38</td>
<td></td>
</tr>
<tr>
<td>Danmark Homes [5] (Frankel et al., 2012a)</td>
<td>Homes during autumn</td>
<td>10</td>
<td>Median: 0.88; Range: 0.59–4.59</td>
<td></td>
</tr>
<tr>
<td>Danmark Homes [5] (Frankel et al., 2012a)</td>
<td>Homes during winter</td>
<td>12</td>
<td>Median: 0.86; Range: 0.21–2.56</td>
<td></td>
</tr>
<tr>
<td>Edmonton, Canada Homes with no reported smoking (76) (Bari et al., 2014)</td>
<td>Winter sample from a family room or living room (26 homes)</td>
<td>142</td>
<td>Median: 0.12; Range: 0.002–12</td>
<td></td>
</tr>
<tr>
<td>Edmonton, Canada Homes with no reported smoking (76) (Bari et al., 2014)</td>
<td>Summer sample from a family room or living room (50 homes)</td>
<td>243</td>
<td>Median: 0.41; Range: 0.005–53</td>
<td></td>
</tr>
<tr>
<td>Fresno, California, USA Homes (83) (Tager et al., 2006)</td>
<td>Homes measured during different months</td>
<td>83</td>
<td>Range GM: 0.28–3.77</td>
<td></td>
</tr>
<tr>
<td>Keokuk County, Iowa, USA Rural households (117) (Pavilionis et al., 2013)</td>
<td>The area where the family spend most of their time</td>
<td>117</td>
<td>AM: 0.32; GM: 0.21 (GSD: 2.51)</td>
<td></td>
</tr>
<tr>
<td>Missoula, MT, USA Wood stove homes (50) (McNamara et al., 2013)</td>
<td>Samples from common living area</td>
<td>100</td>
<td>AM: 9.2 (SD:12.4)</td>
<td></td>
</tr>
<tr>
<td>Nepal and Malawi Wood-dung-, and maize crop residue-burning-homes (37) (Semple et al., 2010)</td>
<td>Short cooking-time samples taken from Nepalese wood-burning homes</td>
<td>16</td>
<td>AM: 100 (SD: 113)</td>
<td></td>
</tr>
<tr>
<td>Nepal and Malawi Wood-dung-, and maize crop residue-burning-homes (37) (Semple et al., 2010)</td>
<td>Short cooking-time samples taken from Nepalese dung-burning homes</td>
<td>15</td>
<td>AM: 498 (SD: 291)</td>
<td></td>
</tr>
<tr>
<td>Nepal and Malawi Wood-dung-, and maize crop residue-burning-homes (37) (Semple et al., 2010)</td>
<td>Short cooking-time samples taken from Malawian wood-burning homes</td>
<td>4</td>
<td>AM: 201 (SD: 217)</td>
<td></td>
</tr>
<tr>
<td>Nepal and Malawi Wood-dung-, and maize crop residue-burning-homes (37) (Semple et al., 2010)</td>
<td>Short cooking-time samples taken from Malawian dung-burning homes</td>
<td>2</td>
<td>AM: 1609 (SD: 2211)</td>
<td></td>
</tr>
<tr>
<td>Netherlands Farm homes (9) and non-farm homes (7) (Noss et al., 2008)</td>
<td>Living room samples from farm homes</td>
<td>72</td>
<td>GM: 1.04 (GSD: 2.84)</td>
<td></td>
</tr>
<tr>
<td>Netherlands Farm homes (9) and non-farm homes (7) (Noss et al., 2008)</td>
<td>Living room samples from non-farm homes</td>
<td>56</td>
<td>GM: 0.36 (GSD: 2.33)</td>
<td></td>
</tr>
<tr>
<td>New Orleans, USA Flooded single-family houses (3) (Chew et al., 2006)</td>
<td>Homes</td>
<td>9</td>
<td>Range GM: 17-139</td>
<td></td>
</tr>
<tr>
<td>New Orleans, USA Residents (20) (Rao et al., 2007)</td>
<td>Homes (samples collected from the moldiest room of the house)</td>
<td>20</td>
<td>GM: 23.3 (GSD: 5.6)</td>
<td></td>
</tr>
<tr>
<td>New Orleans, Louisiana, USA Homes stratified by water damage (31) (Riggs et al., 2008)</td>
<td>Homes</td>
<td>31</td>
<td>GM: 40.2</td>
<td></td>
</tr>
<tr>
<td>New Orleans, Louisiana, USA Houses stratified by water damage (31) (Riggs et al., 2008)</td>
<td>The main living area of the coal-burning, peat-burning, wood-burning, gas-cooking, and “smoking” homes</td>
<td>100</td>
<td>AM: 5.69</td>
<td></td>
</tr>
</tbody>
</table>
| Northeast Scotland and in west coast of Ireland Households (100) (Semple et al., 2012) | Living room or family room | 40 | Range GM: 0.5–2.2 (Range GSD: 1.6–4.0) | (continued on next page)
samples). In all the studies endotoxins were assayed with a LAL-based bioassay (e.g. kinetic turbidimetric LAL, endpoint chromogenic LAL or kinetic chromogenic LAL) (Chun et al., 2002; Thorne et al., 2009). Other detailed information about the selected studies is presented in Table S3 in the SM.

In residential settings, the reported average concentrations of endotoxin in indoor air varied between 0.04 and 1610 EU/m³ (Park et al., 2000, 2001b; von Mutius et al., 2000; Boullard et al., 2006; Chew et al., 2006; Dales et al., 2006; Horick et al., 2006; Rao et al., 2007; Dassonville et al., 2008; Noss et al., 2008; Riggs et al., 2008; Chen and Hildemann, 2009; Reponen et al., 2010; Semple et al., 2011). Although in urban residential studies, concentrations of endotoxin were generally < 1 EU/m³ in residences with open combustion processes (such as burning coal, peat, or wood fuel, or using a gas cooker or stove) or where there was at least one smoker, the mean airborne endotoxin concentrations can be much higher generally < 10 EU/m³ but in some cases over 20 EU/m³ and even up to 1610 EU/m³ (when cooking by burning maize crop residue) (Semple et al., 2010, 2012). In addition, an ultrasonic humidifier was reported to highly affect endotoxin concentrations. In a theoretical study by Anderson et al. (2007), the calculated endotoxin concentrations in homes with an ultrasonic humidifier were the following: 93 EU/m³ (when 25 EU/ml endotoxin in water), 3729 EU/m³ (with 1000 EU/ml endotoxin in water) and 141,687 EU/m³ (with 38,000 EU/ml endotoxin in water).

In urban areas, the mean concentration of airborne endotoxins was generally lower than in rural areas (Park et al., 2000, 2001b), and it was higher in farming houses than in non-farming houses (Noss et al., 2008). Moreover, samples collected in high-density farming areas had higher mid-range endotoxin levels (Mueller-Anneling et al., 2004). Moniruzzaman et al. (2012) reported that direct contact with farming animals or indirect contact from carrying dust (loaded with endotoxin) on clothes and shoes from the

Table 2 (continued)

<table>
<thead>
<tr>
<th>Study location</th>
<th>Type of buildings (number of buildings)</th>
<th>Sampling location/housing and other characteristics</th>
<th>n’</th>
<th>Endotoxin (EU/m³)</th>
</tr>
</thead>
</table>

- **Northern California (Bay area), USA**
 - *Single-family homes (10)* (Chen and Hildemann, 2009)
 - *Homes (70)* (Padhi et al., 2016)
 - *Homes during the 1st visit* (140) GM: 0.592 (GSD: 4.175)
 - *Homes during the 2nd visit* (140) GM: 0.553 (GSD: 2.921)

- **Odisha, India**
 - *Homes using LPG gas for cooking (35 homes)* (35) Median: 110

- **Paris, France**
 - *Homes using LPG gas for cooking (35 homes)* (35) Median: 110

- **Prince Edward Island, Canada**
 - *Child’s bedroom* (332) GM: 0.49 (GSD: 3.49)

- **Regina, Saskatchewan (SK), Canada**
 - *Homes during winter* (146) Range: 0.02–1.5
 - *Homes during summer* (146) Range: 0.06–1.4

- **Riverside and Whittier, California**
 - *Whittier homes* (31) AM: 0.58 (SD: 0.42)
 - *Riverside homes* (78) AM: 1.48; (SD: 1.29)

- **Santiago, Chile**
 - *Living room* (44) AM: 0.099; GM: 0.077 (GSD: 2.1)

- **Barraza et al., 2016**
 - *Different rooms* (42) Range AM: 6–39 (Range SD: 2–60)

- **Singapore**
 - *Teaching classrooms* (74) GM: 1.2; AM: 2.7 (SD: 3.2)

- **Urban schools (25)** (Salonen et al., 2013)
 - *Wet (8) and dry* (7) schools (Ebbehøj et al., 2005; Holst et al., 2015a)
 - *Teaching classrooms* (15) GM: 9.34 (GSD: 2.92)

- **Denver, CO, USA**
 - *Urban schools (18)* (Menetrez et al., 2009)
 - *Schools with and without obvious water damage and clearly visible patches of mold growth* (18) AM: 9.2 (SD: 6.9)

- **Denver, CO, USA**
 - *School* (1) (Rabinovitch et al., 2005)
 - *Schools* (16) GM: 0.07 (GSD: 3.74)

- **School (1)**
 - *Room sample* (2) AM: 6 (SD: 4)

- **Residential apartment (1)** (Balasubramanian et al., 2012)
 - *Different buildings* (number of buildings)

- **Urban schools (25)** (Salonen et al., 2013)
 - *Different buildings* (number of buildings)

- **Urban schools (18)** (Menetrez et al., 2009)
 - *Teaching classrooms* (15) GM: 9.34 (GSD: 2.92)

- **Denver, CO, USA**
 - *Schools* (16) GM: 0.07 (GSD: 3.74)

- **School (1)**
 - *Room sample* (2) AM: 6 (SD: 4)

- **Office studies**
 - *Different buildings* (number of buildings)

- **Singapore**
 - *Teaching classrooms* (74) GM: 1.2; AM: 2.7 (SD: 3.2)

- **Urban schools (25)**
 - *Different buildings* (number of buildings)

- **Urban schools (18)**
 - *Teaching classrooms* (15) GM: 9.34 (GSD: 2.92)

- **Residential apartment (1)** (Balasubramanian et al., 2012)
 - *Different buildings* (number of buildings)

- **Office studies**
 - *Different buildings* (number of buildings)

- **Singapore**
 - *Teaching classrooms* (74) GM: 1.2; AM: 2.7 (SD: 3.2)
stables are direct sources of endotoxin.

In a school environment, the reported average endotoxin concentrations in indoor air varied between 0.07 and 9.30 EU/m³ (Ebbehøj et al., 2005; Rabinovitch et al., 2005; Menetrez et al., 2009; Salonen et al., 2013; Holst et al., 2015a), the average being the highest in Denmark (Ebbehøj et al., 2005; Holst et al., 2015a) and the lowest in Denver, USA (Rabinovitch et al., 2005). Generally, in school environments, the mean concentrations of endotoxins in indoor air were higher than those reported in several urban residential settings, such as in residences in Northern California (Chen and Hildemann, 2009), Boston (Park et al., 2000), Canada (Dales et al., 2006), and Belgium (Bouillard et al., 2006). In urban areas, schools are therefore at least as important as home environments as a source of endotoxins. In an office environment in Singapore the mean endotoxin concentration was 6 EU/m³.

All reported (see Table 2) mean airborne endotoxin levels in undamaged (either by flooding, mold, or water) buildings without wood-, dung- or maize residue-burning indoor environments (generally GM < 10 EU/m³ in non-flooded areas) were much lower than the recommended exposure limit (REL) for endotoxins suggested by HCN (Health Council of the Netherlands) (HCN, 2010). HCN (2010) proposes an 8-hour time-weighted average (TWA) of less than the recommended exposure limit (REL) for endotoxins suggestive of an increased prevalence of wheezing (Park et al., 2001a), sensitization (Bolte et al., 2003), and asthma (Thorne et al., 2005). It should be noted that caution is needed when comparing airborne endotoxin concentrations from different studies as field studies show important differences in sampling strategies (e.g., different sampling periods), although the method of analysis remains the same (Rylander, 2002; Duquenne et al., 2013). Studies employing different sampling strategies are not directly comparable.

3.3. Effect of different environmental factors on the levels of endotoxin in indoor environments

Table 3 summarizes the relationship between environmental factors and the endotoxin loads in settled floor dust and the concentration of endotoxins in indoor air. It should be noted that findings from all studies with concentrations of endotoxins in settled floor dust were included in Table 3 regardless of the expression units used (EU/mg or EU/m²). Both units were reported to be highly correlated with each other (Thorne et al., 2005).

Table 3 shows that there is extremely strong scientific evidence that the age of building, cleaning/cleanliness, farm or rural living, flooring materials (the presence of carpets), number of occupants (in a residence or in a school), the presence of dogs or cats indoors, and relative humidity affect the endotoxin loads in settled floor dust. In addition, there is strong scientific evidence that children living in the home/the presence of children, moisture/dampness damages, the presence of animals (dog, cat, vermin, or cockroaches) or pet owner indoors, season, temperature and tobacco smoking also influence endotoxin concentrations in settled dust. Correspondingly, there is extremely strong scientific evidence that the presence of pets (especially dog), and strong scientific evidence

Table 3

<table>
<thead>
<tr>
<th>Environmental factors</th>
<th>Association with loads or concentrations of endotoxins in floor dust</th>
<th>No relationship with loads/concentrations of endotoxins in floor dust</th>
<th>Association with concentrations of endotoxins in indoor air</th>
<th>No relationship with concentrations of endotoxins in indoor air</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age of building/housing unit year category</td>
<td>***</td>
<td>*</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Cat ownership/dog ownership/pet ownership/</td>
<td>**</td>
<td>**</td>
<td>NR</td>
<td>*</td>
</tr>
<tr>
<td>presence of pet owner</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Children living in the home/presence of children</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Cleaning (floor vacuuming/use of a vacuum, wet mop cleaning)</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Farm or rural living/agricultural activities/</td>
<td>***</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>animal husbandry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floor materials/flooring materials</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Moisture/dampness damages/visible dampness or mould/water damage/metrics of moisture damage</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Mouse infestation/problems or sign of with mice in the previous 12 months/mice in the house</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Number of occupants/a high household crowding index/family size</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Presence of cat</td>
<td>**</td>
<td>**</td>
<td>NR</td>
<td>**</td>
</tr>
<tr>
<td>Presence of cockroaches</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Presence of dog</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Presence of furry pets/number of furry pets</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Presence of pets/animals indoors (dog, cat, vermin)</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Relative humidity of indoor and/or outdoor air</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Seasonality/season/seasonal effects</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Temperature in indoor/outdoor</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Tobacco smoking inside</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
</tbody>
</table>

***Extremely strong scientific evidence was found (several (>6) empirical studies from peer-reviewed journals and/or several systematic reviews, as reviewed herein); ** Strong scientific evidence was found (at least three empirical studies from peer-reviewed journals and/or at least three systematic reviews, as reviewed herein); * Scientific evidence was found (one or two empirical studies from peer-reviewed journals); NR — Not reported.

Note: Table 3 includes only factors with extremely strong/strong scientific evidence. Factors with “only” scientific evidence were only presented in S4 and S5 in SM.
that cleaning/cleanliness, moisture/dampness damages, number of occupants, problems with/or sign of mice in the previous 12 months, relative humidity, season/seasonality, temperature and tobacco smoking affect the concentrations of endotoxins in indoor air. Despite strong scientific findings, it should be noted that with several factors (e.g. temperature and relative humidity) contradictory findings were found for both indoor air and settled dust.

3.3.1. Age of the houses

Despite strong scientific evidence that the age of houses is related to the loads of endotoxins in settled floor dust (Douwes et al., 1998; Bischof et al., 2002; Dales et al., 2006; Thorne et al., 2009; AlAli et al., 2010), no association between the age of school buildings and concentrations of endotoxins in settled floor dust has been found (Sheehan et al., 2012).

3.3.2. Cleaning/cleanliness

Recently, cleaning/cleanliness has been reported as an important predicting factor of endotoxin levels inside the home, both in settled dust (Thorne et al., 2009; Pavilonis et al., 2013) and in indoor air (Sebastian et al., 2006). Higher levels of domestic endotoxins in settled floor dust have been associated with less vacuuming (Bischof et al., 2002; Wickens et al., 2003b; Leung et al., 2010) while frequent dusting has been shown to be related to lower airborne endotoxin concentrations (Mazique et al., 2011), and wet mop cleaning with lower settled dust endotoxin levels (Perzanowski et al., 2006). Owmbey et al. (2013) reported that home occupancy (occupants per room) and cleanliness were consistently correlated to endotoxins in all home sites. Data from Owmbey et al. (2013) suggest that reducing occupancy and improving home cleanliness would reduce home endotoxin concentrations more than removing pets (cats or dogs) from the home. Finally, Pavilonis et al. (2013) demonstrated that, excluding home cleanliness, the majority of agricultural and housing characteristics were found to be poorly associated with concentrations of particulates and endotoxins.

3.3.3. Farmhouses versus other rural and urban houses

Several studies have found that endotoxin levels were significantly higher in floor dust from farmhouses compared to other rural and urban homes (Gereda et al., 2000; von Mutius et al., 2000; Waser et al., 2004; Vedanthan et al., 2006; Morcos et al., 2011; Barnig et al., 2013). However, no difference was found between endotoxin concentrations in the air of urban and rural houses (Park et al., 2000; Barnig et al., 2013), and there was no reported correlation between airborne and settled dust endotoxin levels (Barnig et al., 2013).

3.3.4. The type of floor materials

Having a carpet as a flooring material has been strongly associated with higher loads of endotoxin in the settled floor dust in several studies (Wickens et al., 2003b; Perzanowski et al., 2006; Giovannangelo et al., 2007; Mazique et al., 2011; Holst et al., 2015b; Thorne et al., 2015). It has also been reported that the presence of wall-to-wall carpeting may lead to higher dust loading and higher settled dust endotoxin concentrations (Mazique et al., 2011). On the other hand, linoleum flooring was associated with lower airborne endotoxin concentrations (Mazique et al., 2011) and smooth floor was associated with lower endotoxin loads in floor dust (Thorne et al., 2015).

3.3.5. The number of occupants and the presence of children

The number of household occupants correlate with endotoxin levels in settled dust and in indoor air (Dassonville et al., 2008; Thorne et al., 2009; Chen et al., 2012; Rennie et al., 2012; McNamara et al., 2013), and consequently, a large family size is one notable predictor of high domestic endotoxin levels (Wickens et al., 2003b; Waser et al., 2004; Thorne et al., 2005). Several studies have also found that the presence of children is potential contributor to increased endotoxin levels in house dust (Waser et al., 2004; Thorne et al., 2009, 2015). Recently, Jacobs et al. (2014) reported that factors affecting endotoxin levels in European schools differ by country. In general, endotoxin levels were higher in lower grades and in classrooms with higher occupancy (Jacobs et al., 2014).

3.3.6. Pets

In several studies, dogs and/or cats have been identified as a major source of endotoxins in indoor environments both in settled floor dust and in indoor air (Bischof et al., 2002; Rylander, 2002; Bottcher et al., 2003; Rabinovitch et al., 2006; Mazique et al., 2011; Thorne et al., 2015). It has been reported that children living in a household with dogs or a cat were exposed to high levels of endotoxins (Rabinovitch et al., 2006). Although increased household endotoxin concentrations were strongly associated with pet ownership (Thorne et al., 2009), dog and cat ownership was significantly associated with increased personal but not stationary sampling (Delfino et al., 2011). Delfino et al. (2011) concluded that personal dust cloud exposures may be the predominant driver of personal endotoxin exposure and that regional differences (weather and local sources) influencing ambient endotoxins are important to consider when assessing personal endotoxin exposure. Sheehan et al. (2012) reported that levels of dog and cat allergens were associated with higher concentrations of endotoxins in schools. Given that there were no pets in the schools, this association may indicate that children are tracking endotoxins into the schools along with pet allergens, and the number of “dog owner” families may affect the levels of endotoxins in studied classrooms.

3.3.7. Climate factors

Though it has been reported that geographical locations affect the concentrations of endotoxins (Delfino et al., 2011; Kallawicha et al., 2015) and that airborne endotoxin concentrations tended to be higher during the autumn and spring seasons (Mazique et al., 2011; Moon et al., 2014), and higher in the summer than the winter season (Tager et al., 2010; Wheeler et al., 2011; Pavilonis et al., 2013; Bari et al., 2014), the results of the reviewed studies data on the possible effects of climate factors, such as humidity and temperature on endotoxin levels in both indoor air and settled dust were contradictory. Several studies found that higher relative humidity leads to higher airborne endotoxin levels (Park et al., 2000; Wickens et al., 2003b), and it has been suggested that relative humidity may be an important factor for controlling endotoxin exposure indoors (Park et al., 2000). On the other hand, an increase in relative humidity has been found to lead to a decrease in airborne endotoxin concentrations (Salonen et al., 2013). It has also been reported that humidity was not associated with airborne endotoxin concentrations (Mazique et al., 2011; Hwang et al., 2016). It has been assumed that humid climates are associated with higher endotoxin levels. Indeed, the growth of endotoxin-producing bacteria, Gram-negative bacteria, is better supported in environments with high water activity, such as wet surfaces and stagnant water (Salonen et al., 2013). Several studies have found that relative humidity affects dust endotoxin levels (Park et al., 2000; Wickens et al., 2003a, 2003b; Thorne et al., 2005; Dales et al., 2006). However, there are also many contrary findings suggesting no association between relative humidity and endotoxin levels in settled floor dust (Douwes et al., 1998; Bischof et al., 2002; Chen et al., 2012), or showing only a weak effect (Salonen et al., 2013).

Concerning the effects of temperature on indoor levels of
endotoxins, findings are contradictory as well, both for endotoxin concentrations in indoor air and endotoxin loads in settled floor dust. Although numerous studies have reported that temperature affects endotoxin loads in settled floor dust (Park et al., 2000; Singh et al., 2011; Salonen et al., 2013) and endotoxin concentrations in indoor air (Thorn et al., 2002; Salonen et al., 2013; Hwang et al., 2016), there are other studies in which no such association was found (Dowues et al., 1998; Bischof et al., 2002; Mazique et al., 2011; Chen et al., 2012). In some studies temperature increases were associated with lower endotoxin concentrations in indoor air (Park et al., 2000; Salonen et al., 2013) and higher loads in settled floor dust (Salonen et al., 2013).

3.3.8. Tobacco smoking

Tobacco smoking has been reported to influence both the concentrations of endotoxins in indoor air (Larsson et al., 2004; Sebastian et al., 2006; Rennie et al., 2012) and the endotoxin loads in settled dust significantly (Hasday et al., 1999; Rennie et al., 2008; Thorne et al., 2009; Leung et al., 2010). Hasday et al. (1999) reported that high bacterial endotoxin levels are present in cigarette smoke because smoke from one cigarette contains approximately 1200 EU of bioactive LPS (endotoxin). Findings regarding the effect of tobacco smoke on endotoxin concentrations in indoor air are contradictory. For example Park et al. (2001b) and Pavlisonis et al. (2013) did not find a relationship between tobacco smoking and endotoxin concentrations in indoor air.

3.3.9. Dampness

There is strong scientific evidence that moisture/dampness damages/visible mold/damp affect endotoxin loads in settled dust (Bischof et al., 2002; El Sharif et al., 2004; Jacobs et al., 2012; Casas et al., 2013), and endotoxin concentrations in indoor air (Park et al., 2000, 2001b; Tavernier et al., 2006; Adhikari et al., 2014). Adhikari et al. (2014) reported that endotoxin levels in air were significantly greater in high Environmental Relative Moldiness Index (ERMI) homes, suggesting that both short-term and long-term mold contamination in homes could be linked with bacterial concentrations in house dust. However, only the current mold status was associated with airborne bacterial concentrations. Reponen et al. (2010) found that homes that had a moldy odor also had the highest concentrations of measured endotoxins, and moldy odor may be more strongly associated with the concentrations of airborne endotoxins than with the concentrations measured in dust samples. However, most studies failed to detect an association between endotoxin levels and localized moisture damages (Dowues et al., 1998; Gereda et al., 2001; Wickens et al., 2003b; Chen et al., 2007; Giovannangelo et al., 2007; Johansson et al., 2011).

3.3.10. Outdoor air

Although several environmental factors affecting indoor endotoxin levels have been observed (Heinrich et al., 2001; Park et al., 2001b; Waser et al., 2004), the contribution from the outdoor environment has not been well characterized (Menetrez et al., 2001). Indeed, it has been reported that in temperate climates or during the warmer months of the year in colder climates, it is possible that outdoor endotoxin levels have an influence on indoor levels, especially when the windows are open or if the building is not tightly sealed (Park et al., 2000).

The relationship between environmental factors and the endotoxin loads in settled floor dust and the concentrations of endotoxins in indoor air is summarized in Table S4 in the SM. The references are available in Table S5 in the SM.

4. Conclusions

Knowledge of generally existing levels of endotoxins in indoor air and in settled floor dust as well as the factors influencing endotoxin levels in indoor environments is needed to correctly understand field data and to recognize “abnormal” levels of endotoxins. This review may be used as a guide to aid in the interpretation of endotoxin levels in different indoor environments. The analysis of the data showed that the reported indoor loads of endotoxins in settled floor dust, as well as the concentrations of endotoxin in indoor air varied widely within an indoor environment and between different indoor environments, being 660–107,000 EU/m² and 0.04–1610 EU/m² in residential homes; 2180–48,000 EU/m² and 0.07–9.30 EU/m³ in schools; and 2700–12,890 EU/m² and 6 EU/m³ in offices. Our review suggests that the age of houses, cleaning, farm or rural living, flooring materials (the presence of carpets), number of occupants, the presence of dogs or cats indoors, and relative humidity were the strongest determinants for endotoxin loads in settled floor dust, while the presence of pets (especially dogs) were the strongest contributing factors for airborne endotoxin concentrations. Concerning the effect of several environmental factors on endotoxin levels, the literature findings are inconsistent and additional studies are needed. This review recommends that further efforts should be made to create a standardized, uniform sampling methodology for endotoxins and to investigate the impact of different local factors in different climate regions.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.atmosenv.2016.08.018.

References

