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Although our regression results indicate some systematic dif-
ferences between the flux stations, the overall relationship be-
tween SR and SCD is strong (Fig. 3). There is no indication that
the differences among stations arise from differences in tree
species or region, that is, southern, central, or northern boreal
forest. The SR of photosynthesis has also been found to follow
environmental drivers according to a general pattern across dif-
ferent types of boreal coniferous forest (30). An obvious constraint
of the methodology is the requirement of the presence of persis-
tent seasonal snow cover, as demonstrated by the results for
Norunda, Sweden. The Norunda data show more scatter (Fig. 3)
because of its ephemeral (transitory) snow conditions. Fortu-
nately, the proportion of boreal forest with ephemeral snow is very
small. Another factor that weakens the correlation between SR
and SCD is a large difference in the size of their respective
footprints: ∼25 km spatial resolution for SCD from space-borne
microwave radiometer data, compared with a few hundred hect-
ares for eddy-covariance measurements above forests.

Discussion
Our results show that passive microwave satellite-derived esti-
mates of SCD can be combined with continuous CO2 flux mea-
surements to retrieve the trends of boreal forest SR (Fig. 3). The
trend over 36 y is statistically significant for both Eurasia and
North America and particularly strong for Eurasia (Table 1). This
trend results in a significant increase in the springtime carbon
uptake for Eurasia over the investigated period (Table 1). Here we
affirm the important role of EO in producing spatial and temporal
information on variability in the carbon cycle not available from
flux-tower measurements alone. Thus, combining EO and in situ
flux data is a powerful tool to move from direct geophysical re-
trievals (snow clearance) to high-order parameters (SR and car-
bon uptake). The numbers obtained here for the advancement of
SR (0.23 d/y for the whole region) are consistent with the observed
longer-term advance of the seasonal cycle of atmospheric CO2 in

high latitudes, such as 0.17 d/y measured at Barrow, AK (31). An
increase in the equivalent photosynthetic active period of 0.48 d/y
has been estimated for the boreal zone (figure 3d in ref. 32). This
estimate is for the entire year, but it is consistent with our esti-
mates, which are for springtime (6 mo) only. Our estimates of
increasing GPP in spring for the boreal forest are comparable to
model predictions of annual net primary production reported
elsewhere (7). This is apparent since our results suggest that there
is typically a slight positive correlation between the early onset of
carbon uptake and the level of July–August GPP.

The recent boreal warming trend causes earlier SR, which in-
creases the carbon uptake during spring. This negative feedback
loop reduces radiative forcing, in part counteracting the positive
feedback of the earlier snowmelt (shown here) that reduces the
albedo. Concerning the annual carbon cycle, earlier studies suggest
that the increased soil respiration due to autumn warming may
offset 90% of the increased CO2 uptake during spring (33). The
results obtained here on springtime uptake may be used to revise
the trends in annual carbon balance of boreal forests.

Materials and Methods
Evergreen boreal forest SR dates from in situ CO2 flux measurements are compared
with microwave satellite retrievals of the SCD across the northern hemisphere
boreal forest. The analysis focuses on 10 eddy-covariance flux sites in Eurasia and
North America for 1996–2014. SR was determined from flux data based on the
night–day difference in NEE. (Note that NEE = −NEP, where NEE is typically used for
instantaneous exchange while NEP is used for longer-term balances.) Daily δNEE
(= NEEnight − NEEday) was obtained as a difference of 7-d running mean of night-
time [photosynthetic photon flux density (PPFD) < 20 μmol·m−2·s−1] NEE and
3-d running mean of daytime [photosynthetic photon flux density (PPFD) >
600 μmol·m−2·s−1) NEE. The summer maximum daily δNEE (δNEEmax) across all
measurement years at each site (e.g., 2001–2010 in Sodankylä) was estimated
as the 90th percentile of the daily δNEE from the 30-d period with the highest
uptake on average. The SR for different years was then defined as the date
when daily δNEE first exceeded 15% of site specific δNEEmax. The data from all
stations were analyzed in the same manner, providing an unbiased dataset.

The obtained linear least-squares model between SR and SCD (Fig. 3) is

SRreg = bβ1   SCD + bβ0, [1]

where bβ1 = 0.72 ± 0.15 d and bβ0 = 26.2 ± 17.4 d (with 95% CIs). The coefficient
of determination for Eq. 1 is 0.57. This equation holds for evergreen conifers
in regions of seasonal snow cover. Of the 10 flux-tower sites, only Norunda
(Sweden), at the southern border of the boreal forest zone, has ephemeral
snow conditions and is thus excluded from the determination of Eq. 1. Never-
theless, the overall behavior of the Norunda data agrees reasonably well with Eq.
1, and the regression including Norunda data points does not differ statistically
significantly from Eq. 1 and Fig. 3. The method according to Eq. 1 was also applied
to FT-ESDR data by replacing SCD with the corresponding FT-ESDR landscape
freeze-to-thaw transition date.

Based on long-term hemispheric satellite observations of snow cover, de-
rived from daily passive microwave radiometer observations, we derive spatial
maps of SCD for each year (Fig. 2, Top). The time series analysis algorithm
indicates the timing of snow clearance for all hemispheric grid cells with
seasonal snow cover (10). This snowmelt dataset has been also applied to
construct the European Space Agency (ESA) GlobSnow daily snow water
equivalent (SWE) and SCD climate data record (CDR) extending from 1979 to the
present (34, 35). The spatial information on SR is generated by applying Eq. 1 to
the SCD retrievals (Fig. 2, Middle). The boreal forest extent is extracted using a
criterion that each grid cell of size 625 km2 includes conifer evergreen forests for
more than 30% of the total area. The forest mask is determined according to
ESA GlobCover and ESA Climate Change Initiative (CCI) land cover information
(36), with the latter used only to filter out larch-dominated regions of
Siberian forests.

The reliability of trends in Fig. 4 was analyzed by adding a random noise (SD
9.42 d from Fig. 3) to every data-point time series of Fig. 4 (a Monte Carlo
simulation). This resulted in a worst-case scenario assuming that the confi-
dence of the regression algorithm of Fig. 3 is limited by the interannual var-
iability (i.e., fluctuations arise from the year-to-year variability in the relation
between the SR and SCD). This worst-case scenario suggests that there is a
likelihood P > 0.93 that the trend is negative for the boreal forests of the
northern hemisphere, P > 0.97 for Eurasian forests and P > 0.79 for North Amer-
ican forests, respectively (Figs. S2 and S3).

Fig. 6. Sensitivity of modeled GPPspring to satellite data-derived SR for dif-
ferent regions. The sensitivity values are obtained by linear least-squares
fitting of SR data to modeled annual springtime GPP sums (January–June)
for each grid cell for 1979–2014. The slope of the regression line provides the
sensitivity δGPPspring/δSR.
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Carbon cycle–climate model simulations were carried out using the JSBACH
ecosystem model (37, 38) coupled with the E CHAM6 global circulation model (39).
The simulations for past decades (1957 –2014) were performed with the coupled
ECHAM/JSBACH model nudged toward observed climate [ERA40 and ERA Interim
data (40, 41)], sea surface temperature, and atmospheric CO 2 concentration data.
Springtime GPP was estimated for boreal c oniferous evergreen forest in all model
grid cells with significant coverage of that plant functional type, using the first
180 d of each year over the period of 1979 –2014. The change of GPP for the
simulation period was estimated in each grid cell by linear regression.
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